UNIVERSITYOF
 BIRMINGHAM

Generating hardware from game semantics

Dan R. Ghica

UNIVERSITYOF BIRMINGHAM

Generating hardware from game semantics

Dan R. Ghica


```
if (sock< < ) {
    fprintf(stderr, "asphibian_sfp: unable to create unix dowsin socket: ss",
    return -1; strerror(errno));
)
```

nemset (Gsaun, 0, sizeof(struct sockadir_wn)) ;
saun. sun family $=$ AF UNIX;

F (connect (sock (contt truct sockoiw t) seaun izeof (struct sockeoidic un))
fprintf(stderr, "amphibian: maoble to connect fishsocket: is $\mathrm{m} \mathrm{m}^{2}$, strerror (err \rightarrow

closern -1 ;
)
else
int i
int i;
int zok $=-1$;

f(zok == -1)
fprintf(stderr, "amphibizn_zFp: unable to find' a working fishisocket: "s ln ",
,
return sock;
\} else
return socket(domain, type, protocol)
$\}^{\text {r }}$

- returns 0 on success, -1 on failure
int fishsockots_cormect (int sockfd, const struct sockaddr *serv addr, socklen_t addrl)

struct cornection request req.
chor status buf $[20]$;

from (programming) languages to circuits

basic syntactic control of interference

$$
\begin{gathered}
x: \theta \vdash x: \theta \text { Identity } \frac{\Gamma \vdash M: \theta}{\Gamma, x: \theta^{\prime} \vdash M: \theta} \text { Weakening } \\
\frac{\Gamma, x: \theta^{\prime} \vdash M: \theta}{\Gamma \vdash \lambda x \cdot M: \theta^{\prime} \rightarrow \theta} \rightarrow \text { Introduction } \\
\frac{\Gamma \vdash F: \theta^{\prime} \rightarrow \theta \quad \Delta \vdash M: \theta^{\prime}}{\Gamma, \Delta \vdash F M: \theta} \rightarrow \text { Elimination } \\
\frac{\Gamma \vdash M: \theta^{\prime} \quad \Gamma \vdash N: \theta}{\Gamma \vdash\langle M, N\rangle: \theta^{\prime} \times \theta} \times \text { Introduction }
\end{gathered}
$$

basic syntactic control of interference

$$
\begin{array}{rr}
1 & : \exp \\
0 & \text { exp } \\
\text { skip }: \operatorname{com} & \begin{array}{r}
\text { constant } \\
\text { constant }
\end{array} \\
\text { asg }: \text { cell } \times \exp \rightarrow \operatorname{com} & \text { no-op } \\
\text { der }: \operatorname{cell} \rightarrow \exp & \text { assignment } \\
\text { seq }: \operatorname{com} \times \operatorname{com} \rightarrow \text { com } & \text { dereferencing } \\
\text { seq }: \operatorname{com} \times \exp \rightarrow \exp & \text { sequencing } \\
\text { op }: \exp \times \exp \rightarrow \exp & \text { sequencing with boolean } \\
\text { if }: \exp \times \operatorname{com} \times \operatorname{com} \rightarrow c o m & \text { logical operations } \\
\text { while }: \exp \times \operatorname{com} \rightarrow \operatorname{com} & \text { branching } \\
\text { newvar }:(\operatorname{cell} \rightarrow \operatorname{com}) \rightarrow \operatorname{com} & \text { iteration } \\
\text { newvar }:(\operatorname{cell} \rightarrow \exp) \rightarrow \exp & \text { local variable }
\end{array}
$$

basic syntactic control of interference

```
            1: exp
            0: exp
        skip : com
        asg : cell }\times\operatorname{exp}->\mathrm{ com
        der : cell }->\mathrm{ exp
        seq : com }\times\mathrm{ com }->\mathrm{ com
        seq : com }\times\operatorname{exp}->\operatorname{exp
        op : exp }\times\operatorname{exp}->\operatorname{exp
        if : exp }\times\mathrm{ com }\times\mathrm{ com }->\mathrm{ com
        while : }\operatorname{exp}\times\mathrm{ com }->\mathrm{ com
newvar: (cell }->\mathrm{ com) }->\mathrm{ com
newvar : (cell }->\mathrm{ exp) }->\mathrm{ exp
    par : com }->\mathrm{ com }->\mathrm{ com.
```

geometry of synthesis: a "direct" circuit semantics

closed monoidal category with cartesian products

$$
\begin{aligned}
\llbracket x: \theta \vdash x: \theta \rrbracket & =i d_{\llbracket \theta \rrbracket} \\
\llbracket \Gamma, x: \theta^{\prime} \vdash M: \theta \rrbracket & =\llbracket \Gamma \vdash M: \theta \rrbracket \circ \pi_{1} \\
\llbracket \Gamma \vdash \lambda x \cdot M: \theta^{\prime} \rightarrow \theta \rrbracket & =\Lambda\left(\llbracket \Gamma, x: \theta^{\prime} \vdash M: \theta \rrbracket\right) \\
\llbracket \Gamma, \Delta \vdash F M: \theta \rrbracket & =\operatorname{eval} \circ\left(\llbracket \Delta \vdash M: \theta^{\prime} \rrbracket \otimes \llbracket \Gamma \vdash F: \theta^{\prime} \rightarrow \theta \rrbracket\right) \\
\llbracket \Gamma \vdash\langle M, N\rangle: \theta \times \theta^{\prime} \rrbracket & =\left(\llbracket \Gamma \vdash M: \theta \rrbracket \otimes \llbracket \rho\left(\Gamma \vdash N: \theta^{\prime}\right) \rrbracket\right) \circ \delta_{\llbracket \Gamma \rrbracket},
\end{aligned}
$$

closed monoidal category with cartesian products

$$
\begin{aligned}
\llbracket x: \theta \vdash x: \theta \rrbracket & =i d_{\llbracket \theta \rrbracket} \\
\llbracket \Gamma, x: \theta^{\prime} \vdash M: \theta \rrbracket & =\llbracket \Gamma \vdash M: \theta \rrbracket \circ \pi_{1} \\
\llbracket \Gamma \vdash \lambda x \cdot M: \theta^{\prime} \rightarrow \theta \rrbracket & =\Lambda\left(\llbracket \Gamma, x: \theta^{\prime} \vdash M: \theta \rrbracket\right) \\
\llbracket \Gamma, \Delta \vdash F M: \theta \rrbracket & =\operatorname{eval} \circ\left(\llbracket \Delta \vdash M: \theta^{\prime} \rrbracket \otimes \llbracket \Gamma \vdash F: \theta^{\prime} \rightarrow \theta \rrbracket\right) \\
\llbracket \Gamma \vdash\langle M, N\rangle: \theta \times \theta^{\prime} \rrbracket & =\left(\llbracket \Gamma \vdash M: \theta \rrbracket \otimes \llbracket \rho\left(\Gamma \vdash N: \theta^{\prime}\right) \rrbracket\right) \circ \delta_{\llbracket \Gamma \rrbracket},
\end{aligned}
$$

game-inspired semantics for language constants

【seq : $\left(\mathrm{com}_{1} \times \mathrm{com}_{2}\right) \rightarrow \mathrm{com}_{3} \rrbracket$

【while : $\left(\exp _{1} \times \mathrm{com}_{2}\right) \rightarrow \mathrm{com}_{3} \rrbracket$

R.D

R3.R1.D1.R2.D2.D3
R3.Q1.T1.R2.D2.Q1.F.D3
it works

... but not as well as it should
while true do skip

... but not as well as it should
while true do skip

ill formed!
... but not as well as it should
while true do skip

... but not as well as it should

> while true do skip

ill formed!
digital (clocked) hardware is synchronous game-semantic models are asynchronous
synchronous traces for constants

\llbracket seq : $\left(\mathrm{com}_{1} \times \mathrm{com}_{2}\right) \rightarrow \mathrm{com}_{3} \rrbracket$
【while : $\left(\exp _{1} \times \operatorname{com}_{2}\right) \rightarrow \mathrm{com}_{3} \rrbracket$

synchronous traces for constants

$$
\llbracket \mathrm{seq}:\left(\mathrm{com}_{1} \times \mathrm{com}_{2}\right) \rightarrow \mathrm{com}_{3} \rrbracket
$$

【while : $\left(\exp _{1} \times \operatorname{com}_{2}\right) \rightarrow \operatorname{com}_{3} \rrbracket$

synchronous traces for constants

【while : $\left(\exp _{1} \times \operatorname{com}_{2}\right) \rightarrow \operatorname{com}_{3} \rrbracket$

synchronous traces for constants

synchronous traces for constants

synchronous traces for constants

【while : $\left(\exp _{1} \times \operatorname{com}_{2}\right) \rightarrow \operatorname{com}_{3} \rrbracket$

synchronous traces for constants

【while : $\left(\exp _{1} \times \operatorname{com}_{2}\right) \rightarrow \operatorname{com}_{3} \rrbracket$

$<$ R3,Q1>.<T1,R2> $<\mathrm{D} 2, \mathrm{Q} 1>.<\mathrm{F} 1, \mathrm{D} 3>$

synchronous traces for constants

【while : $\left(\exp _{1} \times \operatorname{com}_{2}\right) \rightarrow \operatorname{com}_{3} \rrbracket$

$<$ R3,Q1>.<T1,R2> $<\mathrm{D} 2, \mathrm{Q} 1>.<\mathrm{F} 1, \mathrm{D} 3>$
<R3,Q1,T1,R2>
$<\mathrm{D} 2, \mathrm{Q} 1>.<$ F1,D3>

synchronous traces for constants

【while : $\left(\exp _{1} \times \operatorname{com}_{2}\right) \rightarrow \operatorname{com}_{3} \rrbracket$

$<$ R3,Q1>.<T1,R2> $<\mathrm{D} 2, \mathrm{Q} 1>.<\mathrm{F} 1, \mathrm{D} 3>$
<R3,Q1,T1,R2>
$<\mathrm{D} 2, \mathrm{Q} 1>.<\mathrm{F} 1, \mathrm{D} 3>$
$<\mathrm{R} 3, \mathrm{Q} 1, \mathrm{~T} 1, \mathrm{R} 2, \mathrm{D} 2, \mathrm{Q} 1>$
$<\mathrm{F} 1, \mathrm{D} 3>$ $<$ F1,D3>
more complex languages: scc

$$
\frac{\Gamma, x: \theta^{m}, y: \theta^{n} \vdash_{r} M: \theta^{\prime}}{\Gamma, x: \theta^{m+n} \vdash_{r} M[x / y]: \theta^{\prime}}
$$

$$
\begin{gathered}
\frac{\Gamma, x: \theta^{m}, y: \theta^{n} \vdash_{r} M: \theta^{\prime}}{\Gamma, x: \theta^{m+n} \vdash_{r} M[x / y]: \theta^{\prime}} \\
A^{n} \rightarrow B \equiv \underbrace{\& A \otimes \cdots \otimes A}_{n} \multimap B \\
\quad \llbracket A \odot B \rrbracket=\llbracket A \rrbracket \llbracket B \rrbracket \cup \llbracket B \rrbracket \llbracket A \rrbracket \quad \llbracket b A \rrbracket=\llbracket A \rrbracket^{*}
\end{gathered}
$$

why not represent the game models in hardware?

why not represent the game models in hardware?

$$
\text { seq }: c o m \times c o m \Rightarrow c o m
$$

why not represent the game models in hardware?

$$
\text { seq }: c o m \times c o m \Rightarrow c o m
$$

why not represent the game models in hardware?

$$
\text { seq }: c o m \times c o m \Rightarrow c o m
$$

more on representing game models in hardware

par: com $->\operatorname{com}->\mathrm{Com}$

more on representing game models in hardware

par : com \rightarrow com $->$ com

a solution: round abstraction

a solution: round abstraction

- "Reactive Modules", Alur \& Henzinger. LICS 1996 / FMSD 1999.

a solution: round abstraction

- "Reactive Modules", Alur \& Henzinger. LICS 1996 / FMSD 1999.
- create synchronous "rounds" of signals controlled by specific signals used as "clocks"

a solution: round abstraction

- "Reactive Modules", Alur \& Henzinger. LICS 1996 / FMSD 1999.
- create synchronous "rounds" of signals controlled by specific signals used as "clocks"
- we use a "maximal" form of round abstraction

a solution: round abstraction

- "Reactive Modules", Alur \& Henzinger. LICS 1996 / FMSD 1999.
- create synchronous "rounds" of signals controlled by specific signals used as "clocks"
- we use a "maximal" form of round abstraction
- make the rounds as long as possible

a solution: round abstraction

- "Reactive Modules", Alur \& Henzinger. LICS 1996 / FMSD 1999.
- create synchronous "rounds" of signals controlled by specific signals used as "clocks"
- we use a "maximal" form of round abstraction
- make the rounds as long as possible
-... but avoid using the same signal twice in one round (cf "schizophrenia" in Esterel)
asynchronous automaton: while

step 1: round generation

step 1: round generation

Step 2: reduction

synchronous automaton for while

6 states, 23 LUTs

4 states, 28 LUTs

asynchronous versus synchronous representations for skip

8 states, 26 LUTs

4 states, 12 LUTs

4 states, 12 LUTs

async versus sync representations for sequential composition
what is going on with sequential composition?

what is going on with sequential composition?

what is going on with sequential composition?

what is going on with sequential composition?

a genuine application: diagonals (bsci)

7 registers 22 LUTs

3 registers 6 LUTs
asynchronous vs. synchronous diagonals on com

diagonal for com \Rightarrow com (bsci)

13 registers 94 LUTs
7 registers 77 LUTs
how about concurrent sharing? seq \otimes seq

how about concurrent sharing? seq
seq

conclusion

conclusion

- it is nice to be able to reuse game models

conclusion

- it is nice to be able to reuse game models
- but naive representation of game model is very inefficient

conclusion

- it is nice to be able to reuse game models
- but naive representation of game model is very inefficient
- synchronous representation of (asynchronous) game model can be done via round abstraction

conclusion

- it is nice to be able to reuse game models
- but naive representation of game model is very inefficient
- synchronous representation of (asynchronous) game model can be done via round abstraction
- usually results in smaller circuits (always faster)

conclusion

- it is nice to be able to reuse game models
- but naive representation of game model is very inefficient
- synchronous representation of (asynchronous) game model can be done via round abstraction
- usually results in smaller circuits (always faster)
- still room for optimisation (eliminate "error detection")

conclusion

- it is nice to be able to reuse game models
- but naive representation of game model is very inefficient
- synchronous representation of (asynchronous) game model can be done via round abstraction
- usually results in smaller circuits (always faster)
- still room for optimisation (eliminate "error detection")
- r.a. can be applied to any game model, not just to game models of constants

conclusion

- it is nice to be able to reuse game models
- but naive representation of game model is very inefficient
- synchronous representation of (asynchronous) game model can be done via round abstraction
- usually results in smaller circuits (always faster)
- still room for optimisation (eliminate "error detection")
- r.a. can be applied to any game model, not just to game models of constants
- peep-hole optimisation for games

conclusion

- it is nice to be able to reuse game models
- but naive representation of game model is very inefficient
- synchronous representation of (asynchronous) game model can be done via round abstraction
- usually results in smaller circuits (always faster)
- still room for optimisation (eliminate "error detection")
- r.a. can be applied to any game model, not just to game models of constants
- peep-hole optimisation for games
- concurrent sharing not feasible

