
Dan R. Ghica

Generating hardware from game semantics

1

Dan R. Ghica

Generating hardware from game semantics

1

from (programming) languages to circuits
2

basic syntactic control of interference

locations in this case. In synthesis, as every sub-term of a program
becomes a physical entity, every program interaction, more pre-
cisely every procedure call, involves some potentially dangerous
sharing of circuitry.

These considerations motivate our choice of Basic SCI (bSCI) [16,
Sec. 7.1]. We first introduce this language, then we show a different
but equivalent presentation intended to make the issues related to
sharing even more explicit.

The primitive types of the language are commands, memory cells
and (boolean) expressions: σ ::= com | cell | exp. The static
nature of hardware forces us to use a bounded data type. For
simplicity we only deal with booleans, but bounded integers can
be added in a straightforward way.

Additionally, the language contains function types and products:

θ ::= σ | θ × θ′ | θ → θ.

What is peculiar about the types above is that pairs of terms may
share identifiers but functions may not share identifiers with their
arguments. This is made explicit by the following typing rules (also
known as the affine λ-calculus).

Terms have types, described by typing judgments of the form Γ #
M : θ, where Γ = x1 : θ1, . . . xn : θn is a variable type
assignment, M is a term and θ the type of the term.

Identity
x : θ # x : θ

Γ # M : θ Weakening
Γ, x : θ′ # M : θ

Γ, x : θ′ # M : θ
→ Introduction

Γ # λx.M : θ′ → θ

Γ # F : θ′ → θ ∆ # M : θ′
→ Elimination

Γ, ∆ # FM : θ

Γ # M : θ′ Γ # N : θ × Introduction
Γ # 〈M, N〉 : θ′ × θ

The language also contains a number of (functional) constants for
state manipulation and (structured) control.

1 : exp constant
0 : exp constant

skip : com no-op
asg : cell× exp → com assignment
der : cell → exp dereferencing
seq : com× com → com sequencing
seq : com× exp → exp sequencing with boolean
op : exp× exp → exp logical operations
if : exp× com× com → com branching

while : exp× com → com iteration
newvar : (cell → com) → com local variable
newvar : (cell → exp) → exp local variable.

Product has syntactic precedence over arrow, which associates to
the right. This “functionalised” syntax may seem peculiar but a
more conventional syntax can be readily encoded into it.

For now we are omitting parallel composition of commands and
recursion, but we shall consider them in later sections.

2.1 Operational semantics
We call terms Γ # M : θ semi-closed if all free identifiers are of
type cell. The operational semantics of the language is given by a
big-step rule of the form M, s ⇓ T, s′ where M is a semi-closed

term, s : domΓ → {0, 1} a state and T a terminal (0, 1, skip,
lambda abstraction).

B, s ⇓ b, s′ V, s′ ⇓ v, s′′

asg〈V, B〉, s ⇓ skip, (s′′ | v '→ b)

V, s ⇓ v, s′

der V ⇓ s′(v), s′

C, s ⇓ skip, s′ M, s′ ⇓ T, s′′

seq〈C, M〉, s ⇓ T, s′′

M, s⊕ (v '→ 0) ⇓ T, s′ ⊕ (v '→ b)

newvar(λv.M), s ⇓ T, s′

B1, s ⇓ b1, s1 B2, s1 ⇓ b2, s2
b = b1 op b2

op〈B1, B2〉, s ⇓ b, s2

B, s ⇓ b, s′ Mi, s
′ ⇓ i, s′′

if〈B, M1, M0〉, s ⇓ T, s′′

B, s ⇓ 0, s′

while〈B, C〉, s ⇓ skip, s′

B, s ⇓ 1, s′ C, s′ ⇓ skip, s′′ while〈B, C〉, s′′ ⇓ skip, s′′′

while〈B, C〉, s ⇓ skip, s′′′

M, s ⇓ λx.M ′, s

MM ′′, s ⇓ M ′[M ′′/x], s

If a term has no free variables we say it is closed. If for a closed
term M, ∅ ⇓ T, ∅ we write M ⇓.

3. A category of digital circuits
We give a denotational semantics for bSCI in terms of digital
circuits. The semantics is directly inspired by the game-semantic
model for similar languages [4], especially in its automata-theoretic
formulation [9]. There are, however important distinctions between
the game and digital-circuit semantics, which will be discussed
later.

We consider the common conceptual model of (especially asyn-
chronous) VLSI circuits as being defined by an interface and by
behaviour. The interface is a set of ports, designated either as in-
put or output. Ports consume (produce) signals, which are called
inputs (outputs). The behaviour of a circuit is defined by the way
it produces outputs in response to the inputs coming from its en-
vironment. Two circuits with the same interface and the same be-
haviour are considered equal. An input port can be connected to
an output port by a wire, wich propagates the signal after a non-
zero bounded delay. The notions above should be intuitive and it
will help the presentation to maintain a certain level of informality
about them. Full formalisations using CSP-like process calculi are
quite standard [27], but would make this presentation more opaque
for a minimum gain in rigour. We will present such a full formali-
sation elsewhere.

A handshake circuit (HC) is a digital circuit where each port has
two labels: r(equest) and a(cknowledgement), i(nput) and o(output)
〈P, l:P → {i, o}× {r, a}〉. By convention, we draw such circuits
with the r-ports on the left and a-ports on the right; we will denote
the input/output polarity by arrows.

P
P
(ir)

P
(or)

P
(oa)

P
(ia)

3

basic syntactic control of interference

locations in this case. In synthesis, as every sub-term of a program
becomes a physical entity, every program interaction, more pre-
cisely every procedure call, involves some potentially dangerous
sharing of circuitry.

These considerations motivate our choice of Basic SCI (bSCI) [16,
Sec. 7.1]. We first introduce this language, then we show a different
but equivalent presentation intended to make the issues related to
sharing even more explicit.

The primitive types of the language are commands, memory cells
and (boolean) expressions: σ ::= com | cell | exp. The static
nature of hardware forces us to use a bounded data type. For
simplicity we only deal with booleans, but bounded integers can
be added in a straightforward way.

Additionally, the language contains function types and products:

θ ::= σ | θ × θ′ | θ → θ.

What is peculiar about the types above is that pairs of terms may
share identifiers but functions may not share identifiers with their
arguments. This is made explicit by the following typing rules (also
known as the affine λ-calculus).

Terms have types, described by typing judgments of the form Γ #
M : θ, where Γ = x1 : θ1, . . . xn : θn is a variable type
assignment, M is a term and θ the type of the term.

Identity
x : θ # x : θ

Γ # M : θ Weakening
Γ, x : θ′ # M : θ

Γ, x : θ′ # M : θ
→ Introduction

Γ # λx.M : θ′ → θ

Γ # F : θ′ → θ ∆ # M : θ′
→ Elimination

Γ, ∆ # FM : θ

Γ # M : θ′ Γ # N : θ × Introduction
Γ # 〈M, N〉 : θ′ × θ

The language also contains a number of (functional) constants for
state manipulation and (structured) control.

1 : exp constant
0 : exp constant

skip : com no-op
asg : cell× exp → com assignment
der : cell → exp dereferencing
seq : com× com → com sequencing
seq : com× exp → exp sequencing with boolean
op : exp× exp → exp logical operations
if : exp× com× com → com branching

while : exp× com → com iteration
newvar : (cell → com) → com local variable
newvar : (cell → exp) → exp local variable.

Product has syntactic precedence over arrow, which associates to
the right. This “functionalised” syntax may seem peculiar but a
more conventional syntax can be readily encoded into it.

For now we are omitting parallel composition of commands and
recursion, but we shall consider them in later sections.

2.1 Operational semantics
We call terms Γ # M : θ semi-closed if all free identifiers are of
type cell. The operational semantics of the language is given by a
big-step rule of the form M, s ⇓ T, s′ where M is a semi-closed

term, s : domΓ → {0, 1} a state and T a terminal (0, 1, skip,
lambda abstraction).

B, s ⇓ b, s′ V, s′ ⇓ v, s′′

asg〈V, B〉, s ⇓ skip, (s′′ | v '→ b)

V, s ⇓ v, s′

der V ⇓ s′(v), s′

C, s ⇓ skip, s′ M, s′ ⇓ T, s′′

seq〈C, M〉, s ⇓ T, s′′

M, s⊕ (v '→ 0) ⇓ T, s′ ⊕ (v '→ b)

newvar(λv.M), s ⇓ T, s′

B1, s ⇓ b1, s1 B2, s1 ⇓ b2, s2
b = b1 op b2

op〈B1, B2〉, s ⇓ b, s2

B, s ⇓ b, s′ Mi, s
′ ⇓ i, s′′

if〈B, M1, M0〉, s ⇓ T, s′′

B, s ⇓ 0, s′

while〈B, C〉, s ⇓ skip, s′

B, s ⇓ 1, s′ C, s′ ⇓ skip, s′′ while〈B, C〉, s′′ ⇓ skip, s′′′

while〈B, C〉, s ⇓ skip, s′′′

M, s ⇓ λx.M ′, s

MM ′′, s ⇓ M ′[M ′′/x], s

If a term has no free variables we say it is closed. If for a closed
term M, ∅ ⇓ T, ∅ we write M ⇓.

3. A category of digital circuits
We give a denotational semantics for bSCI in terms of digital
circuits. The semantics is directly inspired by the game-semantic
model for similar languages [4], especially in its automata-theoretic
formulation [9]. There are, however important distinctions between
the game and digital-circuit semantics, which will be discussed
later.

We consider the common conceptual model of (especially asyn-
chronous) VLSI circuits as being defined by an interface and by
behaviour. The interface is a set of ports, designated either as in-
put or output. Ports consume (produce) signals, which are called
inputs (outputs). The behaviour of a circuit is defined by the way
it produces outputs in response to the inputs coming from its en-
vironment. Two circuits with the same interface and the same be-
haviour are considered equal. An input port can be connected to
an output port by a wire, wich propagates the signal after a non-
zero bounded delay. The notions above should be intuitive and it
will help the presentation to maintain a certain level of informality
about them. Full formalisations using CSP-like process calculi are
quite standard [27], but would make this presentation more opaque
for a minimum gain in rigour. We will present such a full formali-
sation elsewhere.

A handshake circuit (HC) is a digital circuit where each port has
two labels: r(equest) and a(cknowledgement), i(nput) and o(output)
〈P, l:P → {i, o}× {r, a}〉. By convention, we draw such circuits
with the r-ports on the left and a-ports on the right; we will denote
the input/output polarity by arrows.

P
P
(ir)

P
(or)

P
(oa)

P
(ia)

4

basic syntactic control of interference

locations in this case. In synthesis, as every sub-term of a program
becomes a physical entity, every program interaction, more pre-
cisely every procedure call, involves some potentially dangerous
sharing of circuitry.

These considerations motivate our choice of Basic SCI (bSCI) [16,
Sec. 7.1]. We first introduce this language, then we show a different
but equivalent presentation intended to make the issues related to
sharing even more explicit.

The primitive types of the language are commands, memory cells
and (boolean) expressions: σ ::= com | cell | exp. The static
nature of hardware forces us to use a bounded data type. For
simplicity we only deal with booleans, but bounded integers can
be added in a straightforward way.

Additionally, the language contains function types and products:

θ ::= σ | θ × θ′ | θ → θ.

What is peculiar about the types above is that pairs of terms may
share identifiers but functions may not share identifiers with their
arguments. This is made explicit by the following typing rules (also
known as the affine λ-calculus).

Terms have types, described by typing judgments of the form Γ #
M : θ, where Γ = x1 : θ1, . . . xn : θn is a variable type
assignment, M is a term and θ the type of the term.

Identity
x : θ # x : θ

Γ # M : θ Weakening
Γ, x : θ′ # M : θ

Γ, x : θ′ # M : θ
→ Introduction

Γ # λx.M : θ′ → θ

Γ # F : θ′ → θ ∆ # M : θ′
→ Elimination

Γ, ∆ # FM : θ

Γ # M : θ′ Γ # N : θ × Introduction
Γ # 〈M, N〉 : θ′ × θ

The language also contains a number of (functional) constants for
state manipulation and (structured) control.

1 : exp constant
0 : exp constant

skip : com no-op
asg : cell× exp → com assignment
der : cell → exp dereferencing
seq : com× com → com sequencing
seq : com× exp → exp sequencing with boolean
op : exp× exp → exp logical operations
if : exp× com× com → com branching

while : exp× com → com iteration
newvar : (cell → com) → com local variable
newvar : (cell → exp) → exp local variable.

Product has syntactic precedence over arrow, which associates to
the right. This “functionalised” syntax may seem peculiar but a
more conventional syntax can be readily encoded into it.

For now we are omitting parallel composition of commands and
recursion, but we shall consider them in later sections.

2.1 Operational semantics
We call terms Γ # M : θ semi-closed if all free identifiers are of
type cell. The operational semantics of the language is given by a
big-step rule of the form M, s ⇓ T, s′ where M is a semi-closed

term, s : domΓ → {0, 1} a state and T a terminal (0, 1, skip,
lambda abstraction).

B, s ⇓ b, s′ V, s′ ⇓ v, s′′

asg〈V, B〉, s ⇓ skip, (s′′ | v '→ b)

V, s ⇓ v, s′

der V ⇓ s′(v), s′

C, s ⇓ skip, s′ M, s′ ⇓ T, s′′

seq〈C, M〉, s ⇓ T, s′′

M, s⊕ (v '→ 0) ⇓ T, s′ ⊕ (v '→ b)

newvar(λv.M), s ⇓ T, s′

B1, s ⇓ b1, s1 B2, s1 ⇓ b2, s2
b = b1 op b2

op〈B1, B2〉, s ⇓ b, s2

B, s ⇓ b, s′ Mi, s
′ ⇓ i, s′′

if〈B, M1, M0〉, s ⇓ T, s′′

B, s ⇓ 0, s′

while〈B, C〉, s ⇓ skip, s′

B, s ⇓ 1, s′ C, s′ ⇓ skip, s′′ while〈B, C〉, s′′ ⇓ skip, s′′′

while〈B, C〉, s ⇓ skip, s′′′

M, s ⇓ λx.M ′, s

MM ′′, s ⇓ M ′[M ′′/x], s

If a term has no free variables we say it is closed. If for a closed
term M, ∅ ⇓ T, ∅ we write M ⇓.

3. A category of digital circuits
We give a denotational semantics for bSCI in terms of digital
circuits. The semantics is directly inspired by the game-semantic
model for similar languages [4], especially in its automata-theoretic
formulation [9]. There are, however important distinctions between
the game and digital-circuit semantics, which will be discussed
later.

We consider the common conceptual model of (especially asyn-
chronous) VLSI circuits as being defined by an interface and by
behaviour. The interface is a set of ports, designated either as in-
put or output. Ports consume (produce) signals, which are called
inputs (outputs). The behaviour of a circuit is defined by the way
it produces outputs in response to the inputs coming from its en-
vironment. Two circuits with the same interface and the same be-
haviour are considered equal. An input port can be connected to
an output port by a wire, wich propagates the signal after a non-
zero bounded delay. The notions above should be intuitive and it
will help the presentation to maintain a certain level of informality
about them. Full formalisations using CSP-like process calculi are
quite standard [27], but would make this presentation more opaque
for a minimum gain in rigour. We will present such a full formali-
sation elsewhere.

A handshake circuit (HC) is a digital circuit where each port has
two labels: r(equest) and a(cknowledgement), i(nput) and o(output)
〈P, l:P → {i, o}× {r, a}〉. By convention, we draw such circuits
with the r-ports on the left and a-ports on the right; we will denote
the input/output polarity by arrows.

P
P
(ir)

P
(or)

P
(oa)

P
(ia)

!C ′"

!
1

!
n

CELL
B1

1
CELL

Bn

n

!C"

We apply the induction hypothesis on C and obtain the equivalent
circuit, but with memory cells in new state B′

i.

!C ′"

!
1

!
n

CELL
B

′

1

1
CELL

B
′

n

n

We then apply the induction hypothesis on C′ and obtain

!
1

!
n

CELL
B

′′

1

1
CELL

B
′′

n

n

This proves the inductive step for sequential composition, as this
circuit is equivalent to skip and leaves the each cell i in state s′′(i).

In the case of the local-variable binder:
M, s⊕ (v "→ 0) ⇓ T, s′ ⊕ (v "→ b)

newvar(λv.M), s ⇓ T, s′

we can see that both the hypothesis and the conclusion turn out to
be modelled by the same circuit:

!x.M

"

CELL
(s)

R D

"

CELL
(v)

We also sketch out the case of iteration, which is more interesting.
The rules for iteration are:

B, s ⇓ 0, s′

while(B, C), s ⇓ skip, s′

B, s ⇓ 1, s′ C, s′ ⇓ skip, s′′ while〈B, C〉, s′′ ⇓ skip, s′′′

while〈B, C〉, s ⇓ skip, s′′′

Let us sketch the interpretation of iteration in state s:

+

B C

!

CELL
(s)

R

D

F
T

The reset property (Prop. 9) ensures that we can rewrite the circuit
as below, without changing its behaviour (δ here shares four copies
of an identifier):

B C

!
CELL

(s)

R

D

F
T

C B
F

T

+

+

The equivalent circuit above is actually

!Γ ' if〈B, seq〈C, while〈B, C〉〉〉 : com".
This leads to an immediate proof by applying the induction hypoth-
esis.

!
The soundness result is a proof of correctness for the compiler from
bSCI to SHCs.

5. Concurrency
5.1 Safe concurrency
The language bSCI also has a construct for concurrent composition
of commands, which we shall consider now:

par : com → com → com.

The contrast between its type and the type of sequential compo-
sition (com × com → com) reflects the restriction that the two
arguments may not share identifiers. The operational semantics for
this rule is

C1, s1 ⇓ skip, s′
1 C2, s2 ⇓ skip, s′

2

par C1 C2, s1 ⊕ s2 ⇓ skip, s′
1 ⊕ s′

2

Where by s ⊕ s′ we mean the union of two function with disjoint
domains. The rule makes it explicit that the two commands operate
on disjoint stores.

The circuit for !par : com → com → com" is:

4

geometry of synthesis: a “direct” circuit semantics

We write A(i) =
˘
p ∈ P | l(p) ∈ {ir, ia}

¯
and so on.

We define a closed-monoidal category of HCs in the following way:
• Objects are sets of ports with polarities as defined above.
• Morphisms f : A → B are circuits with sets of ports:

f (i) = A(o) #B(i), f (o) = A(i) #B(o),

f (r) = A(r) #B(r), f (a) = A(a) #B(a).

• Composition of HCs f : A → B and g : B → C is the circuit
g ◦ f : A → C defined by connecting f and g in the following
way:

fB(ir) B(oa)

B(ia)B(or)

A(ir) A(oa)

A(ia)A(or)

gC(ir) C(oa)

C(ia)C(or)

B(ir) B(oa)

B(ia)B(or)

Note that the ports labeled by B become internal channels and
are no longer part of the interface.

• Identity is a HC idA : A2 → A1 (we use tags 1 and 2 to
distinguish between argument ports and result ports) of the
following shape:

A
1
(ir)

A
1
(or)

A
2
(ir)

A
2
(or)

A
1
(oa)

A
1
(ia)

A
2
(oa)

A
2
(ia)

id

PROPOSITION 1. HCs form a category.

Proof :
• Composition is well defined, by inspecting the diagram.
• Composition is associative. f ◦ (g ◦ h) = (f ◦ g) ◦ h as they

are both equal to the circuit in Fig. 1.
• Identity is an idempotent. The diagram for f ◦ id shows that

immediately (straightening the wires):

fB
(ir)

B
(oa)

B
(ia)

B
(or)

A
(ir)

A
(oa)

A
(ia)

A
(or)

A
1
(ir)

A
1
(or)

A
2
(ir)

A
2
(or)

A
1
(oa)

A
1
(ia)

A
2
(oa)

A
2
(ia)

id

id ◦ f has a similar diagram.

fB(ir) B(oa)

B(ia)B(or)

A(ir) A(oa)

A(ia)A(or)

gC(ir) C(oa)

C(ia)C(or)

B(ir) B(oa)

B(ia)B(or)

hD(ir) D(oa)

D(ia)D(or)

C(ir) C(oa)

C(ia)C(or)

Figure 1. Associativity

We call the category of handshake circuits HC.

The monoidal structure is defined by the functor−⊗− defined by:

• The unit object I is the empty set of ports.
• On objects, (A⊗B)(x) = A(x) #B(x) where x ∈ {i, o, r, a}.
• On morphisms f ⊗ g : A⊗ C → B ⊗D is

fB(ir) B(oa)

B(ia)B(or)

A(ir) A(oa)

A(ia)A(or)

gD(ir) D(oa)

D(ia)D(or)

C(ir) C(oa)

C(ia)C(or)

PROPOSITION 2. HC with ⊗ and I is a monoidal category.

The closed structure is defined as follows:

• On objects, let

(A ⇒ B)(i) = A(o) #B(i), (A ⇒ B)(o) = A(i) #B(o),

(A ⇒ B)(r) = A(r) #B(r), (A ⇒ B)(a) = A(a) #B(a).

• For each A, B let the evaluation morphism evalA,B : A1 ⊗
(A2 ⇒ B1) → B2 be the circuit:

A
1
(ir)

A
1
(or)

A
2
(ir)

A
2
(or)

A
1
(oa)

A
1
(ia)

A
2
(oa)

A
2
(ia)

eval
B
1
(ir)

B
1
(or)

B
2
(ir)

B
2
(or)

B
1
(oa)

B
1
(ia)

B
2
(oa)

B
2
(ia)

PROPOSITION 3. HC with−⊗−, I, −⇒−, eval−,− is a monoidal
closed category.

Proof: The universal property property that for every morphism f :
A ⊗X → B there exists an unique morphism h : X → A ⇒ B
such that f = evalA,B ◦ (idA ⊗ h) is immediate from the diagram
of the composition on the right-hand side:

A
1
(ir)

A
1
(or)

A
2
(ir)

A
2
(or)

A
1
(oa)

A
1
(ia)

A
2
(oa)

A
2
(ia)

eval
B
1
(ir)

B
1
(or)

B
2
(ir)

B
2
(or)

B
1
(oa)

B
1
(ia)

B
2
(oa)

B
2
(ia)

A
1
(ir)

A
1
(or)

A
2
(ir)

A
2
(or)

A
1
(oa)

A
1
(ia)

A
2
(oa)

A
2
(ia)

id

hB
(ir)

B
(oa)

B
(ia)

B
(or)

A
(ir)

A
(oa)

A
(ia)

A
(or)

XX

It is obvious, after straightening the wires, that the only h that can
satisfy the equality is f itself, with appropriately relabeled ports,
and is unique. This relabeling is in fact the currying isomorphism
Λ(−).

The category HC is similar to other diagram-based models of
monoidal closed categories, for example in quantum computa-
tion [2].

Note that the axioms for a monoidal closed category are satisfied
in a purely “structural” way, by considering only the ports and the
wirings. The behaviour of the circuits is not important up to this
point, as it is safe to assume that structurally equal circuits are also
behaviourally equal.

3.1 Cartesian product
To model bSCI we also need a notion of product. We will find a
sub-category of HC for which:
• the unit of the monoidal product is a terminal object;
• for each object there is a diagonal morphism.

It is known that such categories have Cartesian products [17].

DEFINITION 4 (Diagonal). For an object Z in a monoidal cate-
gory where the unit is terminal, a diagonal is a morphism δZ :
Z → Z ⊗ Z such that the diagram below commutes:

Z

id

!!!!!!!!!!!!!

δZ

""

id

##"""""""""""

I ⊗ Z ∼= Z Z ⊗ Z
!⊗id$$ id⊗! %% Z ⊗ I ≡ Z

Structurally, this means that the circuits in this sub-category need
to satisfy the following equations:

!:Z!I

!

=

=

In words, all circuits which are morphisms to I should be equiva-
lent to a circuit with no (open) ports: I does not have ports by de-
signs, and the circuits associated with the domain are left “discon-
nected.” A diagonal δA : A → A1 × A2 with the ports associated
with A1 disconnected (by composition with !) should behave like
the identity idA : A → A2 (similarly for A2). For these equations
to hold, the behaviour of the circuits becomes relevant.

Let δA : A → A1 ×A2 be defined by the circuit

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

!

That behaves in the following way:

1. after an input on a port associated with Ai remember the value
of i and produce an output on the equivalent port associated
with A

2. after an output on a port associated with A produce an output
on the equivalent port associated with the memorised i.

It is obvious that the diagonal construction is not well defined for
all HCs. What happens, for example, if two consecutive inputs
arrive from the two distinct components? Below we will identify
a restricted class of HCs, for which the behaviour of the diagonal is
well defined, and which form a Cartesian sub-category of HC.

Before we can prove this lemma we need the following definition.

DEFINITION 5. For object A there is a designated set of input
requests IA called initial, such that:

IA⊗B = IA×B = IA) IB

A
1
(ir)

A
1
(or)

A
2
(ir)

A
2
(or)

A
1
(oa)

A
1
(ia)

A
2
(oa)

A
2
(ia)

eval
B
1
(ir)

B
1
(or)

B
2
(ir)

B
2
(or)

B
1
(oa)

B
1
(ia)

B
2
(oa)

B
2
(ia)

PROPOSITION 3. HC with−⊗−, I, −⇒−, eval−,− is a monoidal
closed category.

Proof: The universal property property that for every morphism f :
A ⊗X → B there exists an unique morphism h : X → A ⇒ B
such that f = evalA,B ◦ (idA ⊗ h) is immediate from the diagram
of the composition on the right-hand side:

A
1
(ir)

A
1
(or)

A
2
(ir)

A
2
(or)

A
1
(oa)

A
1
(ia)

A
2
(oa)

A
2
(ia)

eval
B
1
(ir)

B
1
(or)

B
2
(ir)

B
2
(or)

B
1
(oa)

B
1
(ia)

B
2
(oa)

B
2
(ia)

A
1
(ir)

A
1
(or)

A
2
(ir)

A
2
(or)

A
1
(oa)

A
1
(ia)

A
2
(oa)

A
2
(ia)

id

hB
(ir)

B
(oa)

B
(ia)

B
(or)

A
(ir)

A
(oa)

A
(ia)

A
(or)

XX

It is obvious, after straightening the wires, that the only h that can
satisfy the equality is f itself, with appropriately relabeled ports,
and is unique. This relabeling is in fact the currying isomorphism
Λ(−).

The category HC is similar to other diagram-based models of
monoidal closed categories, for example in quantum computa-
tion [2].

Note that the axioms for a monoidal closed category are satisfied
in a purely “structural” way, by considering only the ports and the
wirings. The behaviour of the circuits is not important up to this
point, as it is safe to assume that structurally equal circuits are also
behaviourally equal.

3.1 Cartesian product
To model bSCI we also need a notion of product. We will find a
sub-category of HC for which:
• the unit of the monoidal product is a terminal object;
• for each object there is a diagonal morphism.

It is known that such categories have Cartesian products [17].

DEFINITION 4 (Diagonal). For an object Z in a monoidal cate-
gory where the unit is terminal, a diagonal is a morphism δZ :
Z → Z ⊗ Z such that the diagram below commutes:

Z

id

!!!!!!!!!!!!!

δZ

""

id

##"""""""""""

I ⊗ Z ∼= Z Z ⊗ Z
!⊗id$$ id⊗! %% Z ⊗ I ≡ Z

Structurally, this means that the circuits in this sub-category need
to satisfy the following equations:

!:Z!I

!

=

=

In words, all circuits which are morphisms to I should be equiva-
lent to a circuit with no (open) ports: I does not have ports by de-
signs, and the circuits associated with the domain are left “discon-
nected.” A diagonal δA : A → A1 × A2 with the ports associated
with A1 disconnected (by composition with !) should behave like
the identity idA : A → A2 (similarly for A2). For these equations
to hold, the behaviour of the circuits becomes relevant.

Let δA : A → A1 ×A2 be defined by the circuit

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

!

That behaves in the following way:

1. after an input on a port associated with Ai remember the value
of i and produce an output on the equivalent port associated
with A

2. after an output on a port associated with A produce an output
on the equivalent port associated with the memorised i.

It is obvious that the diagonal construction is not well defined for
all HCs. What happens, for example, if two consecutive inputs
arrive from the two distinct components? Below we will identify
a restricted class of HCs, for which the behaviour of the diagonal is
well defined, and which form a Cartesian sub-category of HC.

Before we can prove this lemma we need the following definition.

DEFINITION 5. For object A there is a designated set of input
requests IA called initial, such that:

IA⊗B = IA×B = IA) IB

5

closed monoidal category with cartesian products

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

6

closed monoidal category with cartesian products

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

6

game-inspired semantics for language constants

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

R.D R3.R1.D1.R2.D2.D3 R3.Q1.T1.R2.D2.Q1.F.D3

7

it works
Page 1 [col 1 of 1, row 1 of 1] top.ncd

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

8

... but not as well as it should

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

while true do skip

9

... but not as well as it should

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

while true do skip

ill formed!

9

... but not as well as it should

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

while true do skip

ill formed!

9

... but not as well as it should

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

while true do skip

ill formed!

hack!

9

digital (clocked) hardware is synchronous
game-semantic models are asynchronous

10

synchronous traces for constants

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

11

synchronous traces for constants

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

<R,D>

11

synchronous traces for constants

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

<R,D> <R3,R1>.<D1,R2>.<D2,D3>

11

synchronous traces for constants

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

<R,D> <R3,R1>.<D1,R2>.<D2,D3>

<R3,R1,D1,R2>.<D2,D3>

11

synchronous traces for constants

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

<R,D> <R3,R1>.<D1,R2>.<D2,D3>

<R3,R1,D1,R2>.<D2,D3>

<R3,R1>.<D1,R2,D2,D3>

11

synchronous traces for constants

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

<R,D> <R3,R1>.<D1,R2>.<D2,D3>

<R3,R1,D1,R2>.<D2,D3>

<R3,R1>.<D1,R2,D2,D3>

<R3,R1,D1,R2,D2,D3>

11

synchronous traces for constants

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

<R,D> <R3,R1>.<D1,R2>.<D2,D3> <R3,Q1>.<T1,R2>
<D2,Q1>.<F1,D3>

<R3,R1,D1,R2>.<D2,D3>

<R3,R1>.<D1,R2,D2,D3>

<R3,R1,D1,R2,D2,D3>

11

synchronous traces for constants

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

<R,D> <R3,R1>.<D1,R2>.<D2,D3> <R3,Q1>.<T1,R2>
<D2,Q1>.<F1,D3>

<R3,R1,D1,R2>.<D2,D3>

<R3,R1>.<D1,R2,D2,D3>

<R3,Q1,T1,R2>
<D2,Q1>.<F1,D3>

<R3,R1,D1,R2,D2,D3>

11

synchronous traces for constants

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

A
(ir)

A
(or)

A
1
(ir)

A
1
(or)

A
(oa)

A
(ia)

A
1
(oa)

A
1
(ia)

!
1

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

A
(ir)

A
(or)

A
(oa)

A
(ia)

A
1
(ir)

A
1
(or)

A
1
(oa)

A
1
(ia)

A
2
(ir)

A
2
(or)

A
2
(oa)

A
2
(ia)

"

Figure 3. Projections

!exp" ={Q !→ (ir), T !→ (oa), F !→ (oa)}
!cell" ={WT !→ (ir), WF !→ (ir), Q !→ (ir), D !→ (oa),

T !→ (oa), F !→ (oa)}.

with I!com" = {R}, I!exp" = {Q}, I!cell" = {WT, WF, Q}. For
other types, the interpretations are:

!θ → θ′" = !θ"⇒ !θ′", !θ × θ′" = !θ"× !θ′".
The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn %M : θ are interpreted by morphisms
O

1≤i≤n

!θi"
!x1:θ1,...,xn:θn#M :θ"−−−−−−−−−−−−−−−−−−→ !θ".

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:

+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

!op : (bool1 × bool2) → bool3"

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

!x : θ ! x : θ" = id!θ"

!Γ, x : θ′ ! M : θ" = !Γ ! M : θ" ◦ π1

!Γ ! λx.M : θ′ → θ" = Λ(!Γ, x : θ′ ! M : θ")
!Γ, ∆ ! FM : θ" = eval ◦

`
!∆ ! M :θ′"⊗ !Γ ! F :θ′→θ"

´

!Γ ! 〈M, N〉 : θ × θ′" =
`
!Γ ! M :θ"⊗ !ρ(Γ ! N :θ′)"

´
◦ δ!Γ",

where ρ(Γ ! N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:
LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:
PROPOSITION 9 (Reset). For any SHC !Γ ! M : θ" the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

!
We show that this compilation technique is correct through the
following soundness theorem.
THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then !M : com" is equivalent to !skip : com".

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.
LEMMA 11. If Γ ! M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
!Γ ! M : σ"◦

`
CELLB1

1 ⊗ · · ·⊗CELLBn
n

´
is equivalent to !c : σ"

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

v

<R,D> <R3,R1>.<D1,R2>.<D2,D3> <R3,Q1>.<T1,R2>
<D2,Q1>.<F1,D3>

<R3,R1,D1,R2>.<D2,D3>

<R3,R1>.<D1,R2,D2,D3>

<R3,Q1,T1,R2>
<D2,Q1>.<F1,D3>

<R3,Q1,T1,R2,D2,Q1>
<F1,D3><R3,R1,D1,R2,D2,D3>

11

more complex languages: scc

SCC: structural rules

x : θ1 !r x : θ

Γ !r M : θ
Γ, x : γ !r M : θ

Γ, x : θm, y : θn !r M : θ′

Γ, x : θm+n !r M [x/y] : θ′

Dan R. Ghica, Program verification and analysis using games 31
12

more complex languages: scc

SCC: structural rules

x : θ1 !r x : θ

Γ !r M : θ
Γ, x : γ !r M : θ

Γ, x : θm, y : θn !r M : θ′

Γ, x : θm+n !r M [x/y] : θ′

Dan R. Ghica, Program verification and analysis using games 31

Dissecting the types

ICA: A → B ≡ !A ! B

!A⊗B"= !A"$!B" !!A"= !A""

SCC: An → B ≡ !◦A⊗ · · ·⊗ !◦A︸ ︷︷ ︸
n

! B

!A&B"= !A"!B"∪ !B"!A" !!◦A"= !A"∗

Dan R. Ghica, Program verification and analysis using games 36

12

why not represent the game models in hardware?

13

why not represent the game models in hardware?

seq : com × com ⇒ com

?r

!r1

?d1

!r2

?d2

!d

13

why not represent the game models in hardware?

seq : com × com ⇒ com

?r

!r1

?d1

!r2

?d2

!d

13

why not represent the game models in hardware?

seq : com × com ⇒ com

?r

!r1

?d1

!r2

?d2

!d

correct,
but inefficient

13

more on representing game models in hardware

par : com -> com -> com

?r

!r1

?d1

!r2

!r2

!r2

!r1

?d1

?d2

?d2

?d2

!r1

?d1

!d

14

more on representing game models in hardware

par : com -> com -> com

?r

!r1

?d1

!r2

!r2

!r2

!r1

?d1

?d2

?d2

?d2

!r1

?d1

!d

incorrect:
non-deterministic automata

 cannot be represented.

14

a solution: round abstraction

15

a solution: round abstraction

•“Reactive Modules”, Alur & Henzinger. LICS 1996 / FMSD 1999.

15

a solution: round abstraction

•“Reactive Modules”, Alur & Henzinger. LICS 1996 / FMSD 1999.

•create synchronous “rounds” of signals controlled by specific signals
used as “clocks”

15

a solution: round abstraction

•“Reactive Modules”, Alur & Henzinger. LICS 1996 / FMSD 1999.

•create synchronous “rounds” of signals controlled by specific signals
used as “clocks”

•we use a “maximal” form of round abstraction

15

a solution: round abstraction

•“Reactive Modules”, Alur & Henzinger. LICS 1996 / FMSD 1999.

•create synchronous “rounds” of signals controlled by specific signals
used as “clocks”

•we use a “maximal” form of round abstraction

•make the rounds as long as possible

15

a solution: round abstraction

•“Reactive Modules”, Alur & Henzinger. LICS 1996 / FMSD 1999.

•create synchronous “rounds” of signals controlled by specific signals
used as “clocks”

•we use a “maximal” form of round abstraction

•make the rounds as long as possible

•... but avoid using the same signal twice in one round
(cf “schizophrenia” in Esterel)

15

asynchronous automaton: while

?r

 !q

 ?t

?f

!r1

?d1

!d

16

step 1: round generation

?r

 !q

 ?t

?f

!r1

?d1

!d

?r!q

?r!q?t

?r!q?t!r1

?r!q?f
?r!q?f!d

?r!q?t!r1?d1

17

step 1: round generation

?r

 !q

 ?t

?f

!r1

?d1

!d

?r!q

?r!q?t

?r!q?t!r1

?r!q?f
?r!q?f!d

?r!q?t!r1?d1

17

Step 2: reduction

 !q

 ?t

?f

!r1

?d1

!d

?r!q

?r!q?t

?r!q?t!r1

?r!q?f
?r!q?f!d

?r!q?t!r1?d1

18

synchronous automaton for while

?r,!q,?t,!r1,?d1

?r,!q,?f,!d

?r,!q,?t,!r1

?r,!q
!q,?f,!d,?r !q,?t,!r1,?d1

!q,?f,!d

!q,?t,!r1

!q

?d1,!q,?f,!d,?r

?d1,!q,?f,!d

?d1,!q,?t,!r1

?d1,!q

?t,!r1,?d1,!q,?f,!d,?r

?f,!d,?r,!q,?t,!r1

?t,!r1,?d1,!q,?f,!d

?f,!d,?r,!q ?t,!r1,?d1,!q

?f,!d

?t,!r1

19

asynchronous versus synchronous representations for iteration

6 states, 23 LUTs 4 states, 28 LUTs

20

asynchronous versus synchronous representations for skip
21

async vs sync representations for (deterministic) parallel composition

8 states, 26 LUTs 4 states, 12 LUTs

22

async versus sync representations for sequential composition

8 states, 26 LUTs 4 states, 12 LUTs

23

async versus sync representations for sequential composition

8 states, 26 LUTs 4 states, 12 LUTs

Better, but not
just wires!

23

what is going on with sequential composition?

24

what is going on with sequential composition?

 ?r,!r1,?d1,!r2,?d2,!d

?r,!r1,?d1,!r2

?r,!r1?d2,!d,?r,!r1,?d1,!r2

?d2,!d,?r,!r1

?d2,!d

?d1,!r2,?d2,!d,?r,!r1

?d1,!r2,?d2,!d

?d1,!r2

vs !I ?O

24

what is going on with sequential composition?

 ?r,!r1,?d1,!r2,?d2,!d

?r,!r1,?d1,!r2

?r,!r1?d2,!d,?r,!r1,?d1,!r2

?d2,!d,?r,!r1

?d2,!d

?d1,!r2,?d2,!d,?r,!r1

?d1,!r2,?d2,!d

?d1,!r2

vs !I ?O

the representation
of the game model has
built-in (unnecessary)

“error detection”

24

what is going on with sequential composition?

 ?r,!r1,?d1,!r2,?d2,!d

?r,!r1,?d1,!r2

?r,!r1?d2,!d,?r,!r1,?d1,!r2

?d2,!d,?r,!r1

?d2,!d

?d1,!r2,?d2,!d,?r,!r1

?d1,!r2,?d2,!d

?d1,!r2

vs !I ?O

the representation
of the game model has
built-in (unnecessary)

“error detection”

the behaviour of
these two automata in
legal environments is
actually the same

24

a genuine application: diagonals (bsci)

?r1.0

!r.0

?d.0

!d1.0

?r2.0

!r.0

?d.0

!d2.0

?r2.0,!r.0,?d.0,!d2.0

?r1.0,!r.0,?d.0,!d1.0

?r2.0,!r.0

?r1.0,!r.0

?d.0,!d2.0,?r2.0,!r.0

?d.0,!d2.0,?r1.0,!r.0

?d.0,!d2.0

?d.0,!d1.0,?r2.0,!r.0

?d.0,!d1.0,?r1.0,!r.0

?d.0,!d1.0

25

asynchronous vs. synchronous diagonals on com

7 registers 22 LUTs 3 registers 6 LUTs

26

diagonal for com ⇒ com (bsci)

?r1.0

!r.0

?d.0

?rr.0

!d1.0

!rr1.0

?dd1.0

!dd.0

?r2.0

!r.0

?d.0

?rr.0

!d2.0

!rr2.0

?dd2.0

!dd.0

 ?r2.0,!r.0,?rr.0,!rr2.0,?dd2.0,!dd.0,?d.0,!d2.0?r1.0,!r.0,?rr.0,!rr1.0,?dd1.0,!dd.0,?d.0,!d1.0

?r2.0,!r.0,?rr.0,!rr2.0,?dd2.0,!dd.0

?r1.0,!r.0,?rr.0,!rr1.0,?dd1.0,!dd.0

?r2.0,!r.0,?rr.0,!rr2.0

?r2.0,!r.0,?d.0,!d2.0

?r1.0,!r.0,?rr.0,!rr1.0

?r1.0,!r.0,?d.0,!d1.0

?r2.0,!r.0

?r1.0,!r.0

?d.0,!d2.0,?r2.0,!r.0,?rr.0,!rr2.0,?dd2.0,!dd.0

?rr.0,!rr2.0,?dd2.0,!dd.0,?d.0,!d2.0

?d.0,!d2.0,?r2.0,!r.0,?rr.0,!rr2.0

?rr.0,!rr2.0,?dd2.0,!dd.0?d.0,!d2.0,?r2.0,!r.0

?d.0,!d2.0,?r1.0,!r.0

?rr.0,!rr2.0

?d.0,!d2.0

?d.0,!d1.0,?r1.0,!r.0,?rr.0,!rr1.0,?dd1.0,!dd.0

?rr.0,!rr1.0,?dd1.0,!dd.0,?d.0,!d1.0

?d.0,!d1.0,?r1.0,!r.0,?rr.0,!rr1.0

?rr.0,!rr1.0,?dd1.0,!dd.0

?d.0,!d1.0,?r2.0,!r.0

?d.0,!d1.0,?r1.0,!r.0

?rr.0,!rr1.0

?d.0,!d1.0

?dd2.0,!dd.0,?d.0,!d2.0,?r2.0,!r.0,?rr.0,!rr2.0

?dd2.0,!dd.0,?d.0,!d2.0,?r2.0,!r.0

?dd2.0,!dd.0,?d.0,!d2.0,?r1.0,!r.0

?dd2.0,!dd.0,?rr.0,!rr2.0

?dd2.0,!dd.0,?d.0,!d2.0

?dd2.0,!dd.0

?dd1.0,!dd.0,?d.0,!d1.0,?r1.0,!r.0,?rr.0,!rr1.0

?dd1.0,!dd.0,?d.0,!d1.0,?r2.0,!r.0

?dd1.0,!dd.0,?d.0,!d1.0,?r1.0,!r.0

?dd1.0,!dd.0,?rr.0,!rr1.0

?dd1.0,!dd.0,?d.0,!d1.0

?dd1.0,!dd.0

7 registers 77 LUTs13 registers 94 LUTs

27

how about concurrent sharing? seq ⊗ seq

6.1

6.2

?r.1

6.3

!r1.1

6.4

?d1.1

6.5

!r2.1

6.6

?d2.1

!d.1

5.1

5.2

?r.1

5.3

!r1.1

5.4

?d1.1

5.5

!r2.1

5.6

?d2.1

!d.1

4.1

4.2

?r.1

4.3

!r1.1

4.4

?d1.1

4.5

!r2.1

4.6

?d2.1

!d.1

3.1

3.2

?r.1

3.3

!r1.1

3.4

?d1.1

3.5

!r2.1

3.6

?d2.1

!d.1

2.1

2.2

?r.1

2.3

!r1.1

2.4

?d1.1

2.5

!r2.1

2.6

?d2.1

!d.1

1.1

1.2

?r.1

1.3

!r1.1

1.4

?d1.1

1.5

!r2.1

1.6

?d2.1

!d.1

?r.2

!r1.2

?d1.2

!r2.2

?d2.2

!d.2

?r.2

!r1.2

?d1.2

!r2.2

?d2.2

!d.2

?r.2

!r1.2

?d1.2

!r2.2

?d2.2

!d.2

?r.2

!r1.2

?d1.2

!r2.2

?d2.2

!d.2

?r.2

!r1.2

?d1.2

!r2.2

?d2.2

!d.2

?r.2

!r1.2

?d1.2

!r2.2

?d2.2

!d.2

72 trans
36 states

28

how about concurrent sharing? seq ⊗ seq

6.1

6.2

?r.1

6.3

!r1.1

6.4

?d1.1

6.5

!r2.1

6.6

?d2.1

!d.1

5.1

5.2

?r.1

5.3

!r1.1

5.4

?d1.1

5.5

!r2.1

5.6

?d2.1

!d.1

4.1

4.2

?r.1

4.3

!r1.1

4.4

?d1.1

4.5

!r2.1

4.6

?d2.1

!d.1

3.1

3.2

?r.1

3.3

!r1.1

3.4

?d1.1

3.5

!r2.1

3.6

?d2.1

!d.1

2.1

2.2

?r.1

2.3

!r1.1

2.4

?d1.1

2.5

!r2.1

2.6

?d2.1

!d.1

1.1

1.2

?r.1

1.3

!r1.1

1.4

?d1.1

1.5

!r2.1

1.6

?d2.1

!d.1

?r.2

!r1.2

?d1.2

!r2.2

?d2.2

!d.2

?r.2

!r1.2

?d1.2

!r2.2

?d2.2

!d.2

?r.2

!r1.2

?d1.2

!r2.2

?d2.2

!d.2

?r.2

!r1.2

?d1.2

!r2.2

?d2.2

!d.2

?r.2

!r1.2

?d1.2

!r2.2

?d2.2

!d.2

?r.2

!r1.2

?d1.2

!r2.2

?d2.2

!d.2

72 trans
36 states

1
.3

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

3
.1

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.2
,!r1

.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

6
.3

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

3
.6

?
d
1
.1
,!r2

.1
,?
d
2
.1
,?
r.2
,!r1

.2

2
.1

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.2

1
.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1

5
.3

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

3
.5

?
d
1
.1
,!r2

.1
,?
r.2
,!r1

.2

2
.6

?
d
1
.1
,!r2

.1
,?
d
2
.1
,?
r.2

1
.1

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

4
.3

?
r.2
,!r1

.2
,?
d
1
.2

3
.4

?
d
1
.1
,?
r.2
,!r1

.2

2
.5

?
d
1
.1
,!r2

.1
,?
r.2

1
.6

?
d
1
.1
,!r2

.1
,?
d
2
.1

3
.3

?
r.2
,!r1

.2

2
.4

?
d
1
.1
,?
r.2

1
.5

?
d
1
.1
,!r2

.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

?
r.1
,!r1

.1
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

?
r.1
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

?
r.1
,!r1

.1
,?
d
1
.2
,!r2

.2
,?
d
2
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

6
.2

?
r.1
,?
d
1
.2
,!r2

.2
,?
d
2
.2

?
r.1
,!r1

.1
,?
d
1
.2
,!r2

.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

6
.1

?
d
1
.2
,!r2

.2
,?
d
2
.2

5
.2

?
r.1
,?
d
1
.2
,!r2

.2

?
r.1
,!r1

.1
,?
d
1
.2

?
r.1
,!r1

.1
,?
d
1
.1

5
.1

?
d
1
.2
,!r2

.2

4
.2

?
r.1
,?
d
1
.2

?
r.1
,!r1

.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.2
,?
d
1
.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

1
.4

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

4
.1

!r2
.1
,?
d
2
.1
,!d
.1
,!r1

.2
,?
d
1
.2

3
.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.2

2
.3

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

6
.4

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

4
.6

!r2
.1
,?
d
2
.1
,!r1

.2
,?
d
1
.2

!r2
.1
,?
d
2
.1
,!d
.1
,!r1

.2

2
.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1

5
.4

!r1
.2
,?
d
1
.2
,!r2

.2

4
.5

!r2
.1
,!r1

.2
,?
d
1
.2

!r2
.1
,?
d
2
.1
,!r1

.2

!r2
.1
,?
d
2
.1
,!d
.1

4
.4

!r1
.2
,?
d
1
.2

!r2
.1
,!r1

.2

!r2
.1
,?
d
2
.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

!r1
.1
,?
d
1
.1
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

!r1
.1
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

!r1
.1
,?
d
1
.1
,!r2

.2
,?
d
2
.2
,!d
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2

!r1
.1
,!r2

.2
,?
d
2
.2
,!d
.2

!r1
.1
,?
d
1
.1
,!r2

.2
,?
d
2
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

!r2
.2
,?
d
2
.2
,!d
.2

!r1
.1
,!r2

.2
,?
d
2
.2

!r1
.1
,?
d
1
.1
,!r2

.2

!r1
.1
,?
d
1
.1
,!r2

.1

!r2
.2
,?
d
2
.2

!r1
.1
,!r2

.2

!r1
.1
,?
d
1
.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.2
,!r2

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

?
d
2
.1
,!d
.1
,?
r.1
,?
d
1
.2
,!r2

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

?
d
2
.1
,!d
.1
,?
d
1
.2
,!r2

.2

?
d
2
.1
,!d
.1
,?
r.1
,?
d
1
.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

6
.5

?
d
1
.2
,!r2

.2
,?
d
2
.2

5
.6

?
d
2
.1
,?
d
1
.2
,!r2

.2

?
d
2
.1
,!d
.1
,?
d
1
.2

?
d
2
.1
,!d
.1
,?
r.1

5
.5

?
d
1
.2
,!r2

.2

?
d
2
.1
,?
d
1
.2

?
d
2
.1
,!d
.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

?
d
1
.1
,!r2

.1
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

?
d
1
.1
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

?
d
1
.1
,!r2

.1
,?
d
2
.2
,!d
.2
,?
r.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

?
d
1
.1
,?
d
2
.2
,!d
.2
,?
r.2

?
d
1
.1
,!r2

.1
,?
d
2
.2
,!d
.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

?
d
2
.2
,!d
.2
,?
r.2

?
d
1
.1
,?
d
2
.2
,!d
.2

?
d
1
.1
,!r2

.1
,?
d
2
.2

?
d
1
.1
,!r2

.1
,?
d
2
.1

?
d
2
.2
,!d
.2

?
d
1
.1
,?
d
2
.2

?
d
1
.1
,!r2

.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.2
,?
r.2
,!r1

.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

?
d
1
.1
,!r2

.1
,!d
.2
,?
r.2
,!r1

.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.2
,?
r.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

?
d
1
.1
,!d
.2
,?
r.2
,!r1

.2

?
d
1
.1
,!r2

.1
,!d
.2
,?
r.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

!d
.2
,?
r.2
,!r1

.2

?
d
1
.1
,!d
.2
,?
r.2

?
d
1
.1
,!r2

.1
,!d
.2

6
.6

?
d
1
.1
,!r2

.1
,?
d
2
.1

!d
.2
,?
r.2

?
d
1
.1
,!d
.2

?
d
1
.1
,!r2

.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

!d
.1
,?
r.1
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.2
,!r2

.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

!d
.1
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!d
.1
,?
r.1
,?
d
1
.2
,!r2

.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

?
d
1
.2
,!r2

.2
,?
d
2
.2

!d
.1
,?
d
1
.2
,!r2

.2
!d
.1
,?
r.1
,?
d
1
.2

!d
.1
,?
r.1
,!r1

.1

?
d
1
.2
,!r2

.2

!d
.1
,?
d
1
.2

!d
.1
,?
r.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.2
,?
d
2
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

!d
.1
,?
r.1
,!r1

.1
,!r2

.2
,?
d
2
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2

!d
.1
,?
r.1
,!r2

.2
,?
d
2
.2

!d
.1
,?
r.1
,!r1

.1
,!r2

.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

!r2
.2
,?
d
2
.2
,!d
.2

!d
.1
,!r2

.2
,?
d
2
.2

!d
.1
,?
r.1
,!r2

.2

!d
.1
,?
r.1
,!r1

.1

!r2
.2
,?
d
2
.2

!d
.1
,!r2

.2

!d
.1
,?
r.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!r2
.1
,?
d
2
.1
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

!r2
.1
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

!r2
.1
,?
d
2
.1
,!d
.2
,?
r.2
,!r1

.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

!r2
.1
,!d
.2
,?
r.2
,!r1

.2

!r2
.1
,?
d
2
.1
,!d
.2
,?
r.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1

!d
.2
,?
r.2
,!r1

.2

!r2
.1
,!d
.2
,?
r.2

!r2
.1
,?
d
2
.1
,!d
.2

!r2
.1
,?
d
2
.1
,!d
.1

!d
.2
,?
r.2

!r2
.1
,!d
.2

!r2
.1
,?
d
2
.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.2
,!r1

.2
,?
d
1
.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!r2
.1
,?
d
2
.1
,?
r.2
,!r1

.2
,?
d
1
.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.2
,!r1

.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

!r2
.1
,?
r.2
,!r1

.2
,?
d
1
.2

!r2
.1
,?
d
2
.1
,?
r.2
,!r1

.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1

?
r.2
,!r1

.2
,?
d
1
.2

!r2
.1
,?
r.2
,!r1

.2

!r2
.1
,?
d
2
.1
,?
r.2

!r2
.1
,?
d
2
.1
,!d
.1

?
r.2
,!r1

.2

!r2
.1
,?
r.2

!r2
.1
,?
d
2
.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.2
,?
d
2
.2
,!d
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

?
r.1
,!r1

.1
,!r2

.2
,?
d
2
.2
,!d
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.2
,?
d
2
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2

?
r.1
,!r2

.2
,?
d
2
.2
,!d
.2

?
r.1
,!r1

.1
,!r2

.2
,?
d
2
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

!r2
.2
,?
d
2
.2
,!d
.2

?
r.1
,!r2

.2
,?
d
2
.2

?
r.1
,!r1

.1
,!r2

.2

?
r.1
,!r1

.1
,?
d
1
.1

!r2
.2
,?
d
2
.2

?
r.1
,!r2

.2

?
r.1
,!r1

.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.2
,!d
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

?
r.1
,!r1

.1
,?
d
1
.1
,?
d
2
.2
,!d
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

?
r.1
,!r1

.1
,?
d
2
.2
,!d
.2

?
r.1
,!r1

.1
,?
d
1
.1
,?
d
2
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

?
d
2
.2
,!d
.2
,?
r.2

?
r.1
,?
d
2
.2
,!d
.2

?
r.1
,!r1

.1
,?
d
2
.2

?
r.1
,!r1

.1
,?
d
1
.1

?
d
2
.2
,!d
.2

?
r.1
,?
d
2
.2

?
r.1
,!r1

.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

?
d
2
.1
,!d
.1
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

?
d
2
.1
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

?
d
2
.1
,!d
.1
,?
r.2
,!r1

.2
,?
d
1
.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

?
d
2
.1
,?
r.2
,!r1

.2
,?
d
1
.2

?
d
2
.1
,!d
.1
,?
r.2
,!r1

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

?
r.2
,!r1

.2
,?
d
1
.2

?
d
2
.1
,?
r.2
,!r1

.2

?
d
2
.1
,!d
.1
,?
r.2

?
d
2
.1
,!d
.1
,?
r.1

?
r.2
,!r1

.2

?
d
2
.1
,?
r.2

?
d
2
.1
,!d
.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.2
,?
d
1
.2
,!r2

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

?
d
2
.1
,!d
.1
,!r1

.2
,?
d
1
.2
,!r2

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.2
,?
d
1
.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

?
d
2
.1
,!r1

.2
,?
d
1
.2
,!r2

.2

?
d
2
.1
,!d
.1
,!r1

.2
,?
d
1
.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

!r1
.2
,?
d
1
.2
,!r2

.2

?
d
2
.1
,!r1

.2
,?
d
1
.2

?
d
2
.1
,!d
.1
,!r1

.2

?
d
2
.1
,!d
.1
,?
r.1

!r1
.2
,?
d
1
.2

?
d
2
.1
,!r1

.2

?
d
2
.1
,!d
.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.2
,!d
.2
,?
r.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

!r1
.1
,?
d
1
.1
,?
d
2
.2
,!d
.2
,?
r.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.2
,!d
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

!r1
.1
,?
d
2
.2
,!d
.2
,?
r.2

!r1
.1
,?
d
1
.1
,?
d
2
.2
,!d
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

?
d
2
.2
,!d
.2
,?
r.2

!r1
.1
,?
d
2
.2
,!d
.2

!r1
.1
,?
d
1
.1
,?
d
2
.2

!r1
.1
,?
d
1
.1
,!r2

.1

?
d
2
.2
,!d
.2

!r1
.1
,?
d
2
.2

!r1
.1
,?
d
1
.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

!d
.1
,?
r.1
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

!d
.1
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!d
.1
,?
r.1
,!r1

.2
,?
d
1
.2
,!r2

.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!d
.1
,!r1

.2
,?
d
1
.2
,!r2

.2

!d
.1
,?
r.1
,!r1

.2
,?
d
1
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

!r1
.2
,?
d
1
.2
,!r2

.2

!d
.1
,!r1

.2
,?
d
1
.2

!d
.1
,?
r.1
,!r1

.2

!d
.1
,?
r.1
,!r1

.1

!r1
.2
,?
d
1
.2

!d
.1
,!r1

.2

!d
.1
,?
r.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.2
,?
r.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

!r1
.1
,?
d
1
.1
,!r2

.1
,!d
.2
,?
r.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

!r1
.1
,?
d
1
.1
,!d
.2
,?
r.2

!r1
.1
,?
d
1
.1
,!r2

.1
,!d
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

!d
.2
,?
r.2
,!r1

.2

!r1
.1
,!d
.2
,?
r.2

!r1
.1
,?
d
1
.1
,!d
.2

!r1
.1
,?
d
1
.1
,!r2

.1

!d
.2
,?
r.2

!r1
.1
,!d
.2

!r1
.1
,?
d
1
.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

?
r.1
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

?
r.1
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

?
r.1
,!r1

.2
,?
d
1
.2
,!r2

.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

!r1
.2
,?
d
1
.2
,!r2

.2

?
r.1
,!r1

.2
,?
d
1
.2

?
r.1
,!r1

.1
,?
d
1
.1

!r1
.2
,?
d
1
.2

?
r.1
,!r1

.2

?
r.1
,!r1

.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,?
r.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
r.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

?
r.2
,!r1

.2
,?
d
1
.2

!r1
.1
,?
d
1
.1
,?
r.2

!r1
.1
,?
d
1
.1
,!r2

.1

?
r.2
,!r1

.2

!r1
.1
,?
r.2

!r1
.1
,?
d
1
.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

!r1
.2
,?
d
1
.2
,!r2

.2

!r1
.1
,?
d
1
.1
,!r2

.1

!r1
.2
,?
d
1
.2

!r1
.1
,?
d
1
.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

!r1
.1
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

!r1
.1
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

!r1
.1
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!r1
.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

?
d
1
.2
,!r2

.2
,?
d
2
.2

!r1
.1
,?
d
1
.2
,!r2

.2

!r1
.1
,?
d
1
.1
,!r2

.1

?
d
1
.2
,!r2

.2

!r1
.1
,?
d
1
.2

!r1
.1
,?
d
1
.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,!r1

.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1

!r1
.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!r1

.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

!r1
.2
,?
d
1
.2
,!r2

.2

?
d
1
.1
,!r2

.1
,!r1

.2

?
d
1
.1
,!r2

.1
,?
d
2
.1

!r1
.2
,?
d
1
.2

?
d
1
.1
,!r1

.2

?
d
1
.1
,!r2

.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

?
d
1
.2
,!r2

.2
,?
d
2
.2

?
d
1
.1
,!r2

.1
,?
d
2
.1

?
d
1
.2
,!r2

.2

?
d
1
.1
,!r2

.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

?
d
1
.1
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

?
d
1
.1
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1
,?
r.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2

?
d
1
.1
,!r2

.2
,?
d
2
.2
,!d
.2

?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

!r2
.2
,?
d
2
.2
,!d
.2

?
d
1
.1
,!r2

.2
,?
d
2
.2

?
d
1
.1
,!r2

.1
,?
d
2
.1

!r2
.2
,?
d
2
.2

?
d
1
.1
,!r2

.2

?
d
1
.1
,!r2

.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2
,?
r.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,?
d
1
.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
d
1
.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1

?
d
1
.2
,!r2

.2
,?
d
2
.2

!r2
.1
,?
d
2
.1
,?
d
1
.2

!r2
.1
,?
d
2
.1
,!d
.1

?
d
1
.2
,!r2

.2

!r2
.1
,?
d
1
.2

!r2
.1
,?
d
2
.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1

!r2
.2
,?
d
2
.2
,!d
.2

!r2
.1
,?
d
2
.1
,!d
.1

!r2
.2
,?
d
2
.2

!r2
.1
,?
d
2
.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

!r2
.1
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

!r2
.1
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

!r2
.1
,?
d
2
.2
,!d
.2
,?
r.2

!r2
.1
,?
d
2
.1
,!d
.1
,?
r.1

?
d
2
.2
,!d
.2
,?
r.2

!r2
.1
,?
d
2
.2
,!d
.2

!r2
.1
,?
d
2
.1
,!d
.1

?
d
2
.2
,!d
.2

!r2
.1
,?
d
2
.2

!r2
.1
,?
d
2
.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,!r2

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

!r2
.2
,?
d
2
.2
,!d
.2
,?
r.2

?
d
2
.1
,!d
.1
,?
r.1
,!r2

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

!r2
.2
,?
d
2
.2
,!d
.2

?
d
2
.1
,!d
.1
,!r2

.2

?
d
2
.1
,!d
.1
,?
r.1

!r2
.2
,?
d
2
.2

?
d
2
.1
,!r2

.2

?
d
2
.1
,!d
.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

?
d
2
.2
,!d
.2
,?
r.2

?
d
2
.1
,!d
.1
,?
r.1

?
d
2
.2
,!d
.2

?
d
2
.1
,!d
.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

?
d
2
.1
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

?
d
2
.1
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

?
d
2
.1
,!d
.2
,?
r.2
,!r1

.2

?
d
2
.1
,!d
.1
,?
r.1
,!r1

.1

!d
.2
,?
r.2
,!r1

.2

?
d
2
.1
,!d
.2
,?
r.2

?
d
2
.1
,!d
.1
,?
r.1

!d
.2
,?
r.2

?
d
2
.1
,!d
.2

?
d
2
.1
,!d
.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,?
d
2
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

?
d
2
.2
,!d
.2
,?
r.2
,!r1

.2

!d
.1
,?
r.1
,!r1

.1
,?
d
2
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

?
d
2
.2
,!d
.2
,?
r.2

!d
.1
,?
r.1
,?
d
2
.2

!d
.1
,?
r.1
,!r1

.1

?
d
2
.2
,!d
.2

!d
.1
,?
d
2
.2

!d
.1
,?
r.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

!d
.2
,?
r.2
,!r1

.2

!d
.1
,?
r.1
,!r1

.1

!d
.2
,?
r.2

!d
.1
,?
r.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

!d
.1
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

!d
.1
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

!d
.1
,?
r.2
,!r1

.2
,?
d
1
.2

!d
.1
,?
r.1
,!r1

.1
,?
d
1
.1

?
r.2
,!r1

.2
,?
d
1
.2

!d
.1
,?
r.2
,!r1

.2

!d
.1
,?
r.1
,!r1

.1

?
r.2
,!r1

.2

!d
.1
,?
r.2

!d
.1
,?
r.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,!d
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

!d
.2
,?
r.2
,!r1

.2
,?
d
1
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!d
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

!d
.2
,?
r.2
,!r1

.2

?
r.1
,!r1

.1
,!d
.2

?
r.1
,!r1

.1
,?
d
1
.1

!d
.2
,?
r.2

?
r.1
,!d
.2

?
r.1
,!r1

.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2
,!d
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1
,!d
.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2
,?
d
2
.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1
,?
d
2
.1

?
r.2
,!r1

.2
,?
d
1
.2
,!r2

.2

?
r.1
,!r1

.1
,?
d
1
.1
,!r2

.1

?
r.2
,!r1

.2
,?
d
1
.2

?
r.1
,!r1

.1
,?
d
1
.1

?
r.2
,!r1

.2

?
r.1
,!r1

.1

?
r.1

!r1
.1

?
d
1
.1

!r2
.1

?
d
2
.1

!d
.1

?
r.1

!r1
.1

?
d
1
.1

!r2
.1

?
d
2
.1

!d
.1

?
r.1

!r1
.1

?
d
1
.1

!r2
.1

?
d
2
.1

!d
.1

?
r.1

!r1
.1

?
d
1
.1

!r2
.1

?
d
2
.1

!d
.1

?
r.1

!r1
.1

?
d
1
.1

!r2
.1

?
d
2
.1

!d
.1

?
r.1

!r1
.1

?
d
1
.1

!r2
.1

?
d
2
.1

!d
.1

?
r.2

!r1
.2

?
d
1
.2

!r2
.2

?
d
2
.2

!d
.2

?
r.2

!r1
.2

?
d
1
.2

!r2
.2

?
d
2
.2

!d
.2

?
r.2

!r1
.2

?
d
1
.2

!r2
.2

?
d
2
.2

!d
.2

?
r.2

!r1
.2

?
d
1
.2

!r2
.2

?
d
2
.2

!d
.2

?
r.2

!r1
.2

?
d
1
.2

!r2
.2

?
d
2
.2

!d
.2

?
r.2

!r1
.2

?
d
1
.2

!r2
.2

?
d
2
.2

!d
.2

34 states
642 trans

(fails synthesis)

28

conclusion

29

conclusion

•it is nice to be able to reuse game models

29

conclusion

•it is nice to be able to reuse game models

•but naive representation of game model is very inefficient

29

conclusion

•it is nice to be able to reuse game models

•but naive representation of game model is very inefficient

•synchronous representation of (asynchronous) game model can be
done via round abstraction

29

conclusion

•it is nice to be able to reuse game models

•but naive representation of game model is very inefficient

•synchronous representation of (asynchronous) game model can be
done via round abstraction

•usually results in smaller circuits (always faster)

29

conclusion

•it is nice to be able to reuse game models

•but naive representation of game model is very inefficient

•synchronous representation of (asynchronous) game model can be
done via round abstraction

•usually results in smaller circuits (always faster)

•still room for optimisation (eliminate “error detection”)

29

conclusion

•it is nice to be able to reuse game models

•but naive representation of game model is very inefficient

•synchronous representation of (asynchronous) game model can be
done via round abstraction

•usually results in smaller circuits (always faster)

•still room for optimisation (eliminate “error detection”)

•r.a. can be applied to any game model, not just to game models of
constants

29

conclusion

•it is nice to be able to reuse game models

•but naive representation of game model is very inefficient

•synchronous representation of (asynchronous) game model can be
done via round abstraction

•usually results in smaller circuits (always faster)

•still room for optimisation (eliminate “error detection”)

•r.a. can be applied to any game model, not just to game models of
constants

•peep-hole optimisation for games

29

conclusion

•it is nice to be able to reuse game models

•but naive representation of game model is very inefficient

•synchronous representation of (asynchronous) game model can be
done via round abstraction

•usually results in smaller circuits (always faster)

•still room for optimisation (eliminate “error detection”)

•r.a. can be applied to any game model, not just to game models of
constants

•peep-hole optimisation for games

•concurrent sharing not feasible
29

