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Abstract—We address the problem of localization in vehicular
ad hoc networks. Our goal is to leverage vehicle communications
and smartphone sensors to improve the overall localization
performance. Assuming vehicles are equipped with IEEE 802.11p
wireless interfaces, we employ a two-stage Bayesian filter to track
the vehicle’s position: an unscented Kalman filter for heading
estimation using smartphone inertial sensors, and a particle
filter that fuses vehicle-to-vehicle signal strength measurements
received from mobile anchors whose positions are uncertain, with
velocity, GPS position, and map information. Our model leads to
a robust localization system and is able to provide useful position
information even in the absence of GPS data. We evaluate the
algorithm performance using real-world measurements collected
from four communicating vehicles in an urban scenario, and con-
sidering different combinations of location information sources.

Index Terms—Information fusion, road vehicle localization,
vehicular ad hoc networks (VANETs), vehicle-to-vehicle (V2V)
communications.

I. INTRODUCTION

VEHICULAR ad hoc networks (VANETs) are a promising
technology that may provide solutions to many of the

current transportation problems, and enable interesting new
applications to the users in their everyday lives. Location
information plays a key role in several important VANET
applications such as geographic information dissemination,
traffic control, and automatic positioning of accidents. The
focus of this work is on distributed localization of vehicles
in a VANET by combining different sources of information.
Nowadays, the most widely used positioning service is the
Global Positioning System (GPS). However, GPS ceases to
work or exhibits large positioning errors in multipath en-
vironments and non-line-of-sight conditions to the satellites,
such as urban canyons, tunnels, and underground parking [1].
Additional sources of information can be exploited in order
to provide better positioning performance for the navigation
system. Performance is not exclusively the accuracy, but also
integrity, availability, and continuity of service [2].

In VANETs, IEEE 802.11p communication range typically
reaches few hundreds of meters. Deploying a whole network
in which any node has a minimum of three road side units
(RSU) within reach at all times is highly costly, while lower
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density will not provide enough accuracy or coverage [3].
Neighbor-aided localization arises as an alternative approach
that overcomes these limitations of localization techniques that
rely on fixed anchors alone. Vehicles able to collect informa-
tion about themselves and about the surrounding environment
can act as mobile anchors by sharing information with their
neighbors [4]. Our main goal is to leverage communication in
VANETs, both between vehicles (V2V) and between vehicles
and infrastructure (V2I), and low-cost smartphone sensors in
order to improve localization performance. We also use map
information, if available, but our algorithm is not dependent on
the availability of any of the location information sources. In
the absence of GPS, the combination of ranging information
from neighbor vehicles and map data is particularly interesting
since while the map limits the lateral error, the V2V ranging
helps to reduce the error along the road direction, where the
closest anchors are distributed. We show that this strategy,
for a typical urban scenario where the vehicle of interest
reaches at least three nearby (maximum distance of 40 m)
anchors with limited uncertainty (1σ confidence interval of
8 m), gives a similar performance to what we obtained using
the smartphone’s GPS.

The key contributions of this paper are as follows: 1) a new
neighbor-aided localization and tracking model using moving
vehicles with uncertain positions as anchors that is able to
provide reliable position information even in the absence of
GPS data; 2) a robust distributed inference algorithm suitable
for large-scale use in vehicular networks, fusing various types
of data such as V2V signal strength measurements, GPS po-
sitions, inertial data from a smartphone, and map information,
in a particle filter; and 3) evaluation using real-world data
in a challenging urban scenario with quality assessment for
different combinations of the location information sources,
proposing a characterization for favorable V2V ranging con-
ditions. The rest of the paper is organized as follows. Section
II provides an overview of the vehicular networks localization
literature, focusing mainly on collaborative approaches. We
formulate the problem statement in Section III, and the model
assumptions in Section IV. Our proposed inference algorithm
is explained in Section V, and in Section VI we show
experiments with real data to evaluate its performance. Section
VII concludes the paper.

II. OVERVIEW OF LOCALIZATION IN VANETS

Existing wireless positioning approaches typically rely on
pairwise range estimates, and/or relative angles with respect to
some anchor nodes whose positions are fixed and known [5].
Range is estimated either from received signal strength indica-
tor (RSSI) measurements using a calibrated channel model [6],
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signal propagation time [7]–[10], or combination of the
two [11], whereas angle estimation requires either antenna
arrays [5], or coil arrays [12]. Other popular localization
techniques are RSSI fingerprinting [13] and simultaneous
localization and mapping [14].

Apart from the wireless-based techniques, various on-board
sensors may be used to gather useful information for position-
ing [15]. Vehicle motion sensors such as odometer, velocity
encoder, steering encoder, gyroscope, electronic compass, and
accelerometer allow the extraction of kinematic information
like traveled distance, heading, linear/angular velocity and ac-
celeration. Such sensors are used in inertial navigation systems
or dead reckoning techniques [16]. If there is access to digital
road maps, the set of possible locations can be reduced and
the accuracy of the estimator improved by correcting vehicles’
positions and trajectories to the roads, a technique known as
map matching. A survey on this topic is provided in [17].
The aim of this paper is to leverage the cheap inertial sensor
available in the passenger’s mobile phone, as well as vehicle-
to-vehicle communication, which will most likely become
mandatory in future vehicles (e.g. in Europe [18]).

A. Collaborative Localization in VANETs

Localization in wireless networks is a broad subject. We
focus on collaborative approaches [19], [20] for vehicular
networks. A comprehensive review on this topic can be found
in [21]. The area of robotics also addresses the problem of
cooperative localization. However, robots typically share a
common goal, and motion and control models differ from the
ones for road vehicles. Furthermore, solutions often involve
sensors too expensive to be deployed in large scale, such as
cameras and lasers [22]. VANETs are a very special type
of ad-hoc networks, with particular constraints on vehicle
movement, high mobility causing rapid topology changes, and
limited bandwidth [23]. These fundamental differences call for
specially tailored solutions. Many works address the localiza-
tion problem in VANETs, pointing out that GPS is insufficient
in urban areas. Fusing data from a variety of sources increases
not only the accuracy, but also the reliability. In [24], each
vehicle shares its own velocity and distance to the neighbors
(calculated through RSSI) among its cluster of vehicles. GPS,
if available, is used only to define the initial position since
the focus is the relative positions of vehicles. Accuracy is
increased by using road constraints. Uncertainty along the
road is set to be higher than in the orthogonal direction. In
[25], every vehicle is equipped with a GPS receiver, an INS
and a VANET transceiver. The inter-vehicle communication
system extracts information pertinent to the location estimates
of vehicles in its vicinity: the distance between the vehicle
and its neighbors (GPS based), the location estimates of the
neighbors, and their level of uncertainty. Vehicles with the
smallest uncertainty are used as anchors, whereas vehicles
with detected multipath are not. Both works apply an EKF,
which tends to perform better in approximately linear settings
(see Section V). Their main limitation is the performance
assessment of the proposed model solely on simulations and
using a straight highway scenario of few kilometers. These

scenarios are very limited as they do not pose most of
the challenges faced in real situations, especially in urban
settings, such as alternative paths (bifurcations, intersections,
roundabouts, etc), sinuous routes, multipath and shadowing
effects from numerous obstacles (including moving ones)
and non-line of sight communications. By contrast, we use
a particle filter, which has the ability to represent arbitrary
probability densities, converging to the true posterior asymp-
totically even in non-Gaussian, nonlinear dynamic systems.
This filter is therefore more suitable for our localization
approach, evaluated in tortuous urban trajectories and using
real measurements.

CoVeL project [26], [27] includes tests with real collected
data. The authors use four (valid) vehicles, one of them
equipped with a high accuracy GPS and inertial navigation
reference system used for ground truth retrieval. V2V is
solely employed to exchange GPS raw measurements among
vehicles to determine their relative positions, assuming that
all vehicles experience the same GPS positioning bias and
disregarding other errors such as multipath. A group map
matching is performed in order to improve accuracy, along
with a UKF for position tracking. There are other cooperative
localization works that do not use V2V ranging techniques,
namely [28], [29], focusing instead on improving the low-
level GPS data. They require at least four pseudo-ranges
from visible satellites, making them unsuitable whenever GPS
exhibits limited coverage and large positioning error, which
happens frequently in dense urban areas. The solution in
[30] also uses real data to evaluate performance. However,
it makes use of expensive sensors, namely laser scanners, and
is therefore beyond the scope of our work, which focuses on
approaches with the potential for large-scale application.

III. PROBLEM FORMULATION

Our system consists in a group of vehicles (and RSUs if
available), all equipped with IEEE 802.11p vehicular con-
nectivity. Concerning sources of information, we assume that
vehicles are heterogeneous and each may have access to
different types of data. Examples of potential sources comprise
GPS, on-board sensors, road maps, and WLANs signals. In our
implementation, we include the first three. The approach is not
exclusively developed for urban environments, but focuses on
those scenarios since they are more challenging.

We focus on the computations performed in a single vehicle
as the center of the network, denoted as V0. This vehicle of
interest (VOI) aims to calculate its own state. For simplicity,
the state of a vehicle consists in its 2D position and velocity
(heading and speed). Our approach can be easily extended
to a more complex state, including for example 3D position
and acceleration, and to comprise other information sources.
Considering the whole network, our goal is to estimate the
state of all vehicles, each performing the calculations by
seeing itself as the VOI (and its one-hop neighbors as mobile
anchors).

We propose a distributed architecture since it is more
scalable and flexible for dynamic vehiclular networks than
a centralized one. By handling information locally and pro-
cessing it in the vehicle itself, the computational burden is
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spread among the vehicles. A centralized architecture would
imply a high use of resources and be less robust to failure [19]
since it would require all measurements to be sent to a central
processor that would then transmit the computed results to
the vehicles. One limitation of distributed algorithms is the
circular reasoning that can arise from inter-estimate depen-
dency, which might lead to over convergence [31]. To avoid
this issue, in our work the vehicles do not share any estimation
made with external data, i.e. data collected and shared by
other vehicles. Each vehicle sends a position estimate obtained
only with data acquired from its own sensors, which we name
individual position information. This location is sent along
with a corresponding measure of uncertainty.

IV. MODEL ASSUMPTIONS

A. Path-loss Channel Model

In free space, the power of a radio-frequency signal de-
cays proportionally to d2, where d is the distance between
transmitter and receiver. In real-world channels, however, the
propagation of a signal is affected by various phenomena
such as reflection, refraction, diffraction, and scattering. It is
nonetheless accepted on the basis of empirical evidence that
the received signal strength may be modeled as a log-normally
distributed random variable with a distance-dependent location
parameter [32]. Since the aforementioned effects are envi-
ronment dependent, the models have to be calibrated for the
intended scenario. Eq. (1) provides a path-loss channel model
that describes the received signal strength ρ measured in dBm
(decibel milliwatt) given the transmitter-receiver distance d (in
meters), using three parameters: received signal strength ρ0
[dBm] at a reference distance of 1 m, channel path-loss expo-
nent α, and the fading vσ , modeled as a zero-mean Gaussian
random variable with variance σ2, i.e., vσ ∼ N (0, σ2).

ρ(d) = ρ0 − 10α log10(d) + vσ (1)

Fig. 1 shows a set of real measurements along with the
estimated path-loss model (using logarithmic scale for the dis-
tance, the model becomes linear). The data were collected in
an urban scenario, from four vehicles communicating through
802.11p with 50Hz beacons, during a 10 minutes drive of
approximately 5.5 km, in Porto, Portugal. The linear model
in Fig. 1 was obtained from the measurement data of one of
the vehicles using linear regression. The estimated values for
the channel parameters are ρ0 = −34 dBm, α = 2.1, and
σ = 5.5 dB. Having calculated these channel parameters, we
are able to apply the path-loss model to estimate the distances
from the RSSI values of the neighbors. Different techniques
can be used to estimate the position of the vehicle from the
distance to its neighbors. We opted for a parametric approach
as it takes into account the uncertainty of the measurements.
In order to estimate the location of a vehicle, we calculate
the likelihood function lρ(d) = p(ρ|d) corresponding to the
path-loss model in (1).

lρ(d) = N (ρ0 − 10α log10(d), σ2) (2)

It is important to note that several parameters impact ranging
precision, such as the true distance d, the fading variance σ2,
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Fig. 1: Pairs of GPS estimated distance and RSSI used to
determine channel parameters along with the estimated model.

and the number of available measurements M . Below, we
provide the Cramér-Rao Lower Bound (CRLB), a lower bound
on the variance of any unbiased estimator d̂ of d:

CRLB(d̂) =
1

M

(
σd ln 10

10α

)2

. (3)

Eq. (3) highlights the importance of each parameter in the
estimator variance. The CRLB increases quadratically with d
and σ and is inversely proportional to M .

We substitute d by the Euclidean distance between a vehicle
position x0 = [x0, y0]ᵀ and anchor position xa = [xa, ya]ᵀ

to obtain the likelihood of the location of the VOI V0. We
assume that nA anchors are available, and that the channel
model is the same for all anchors. Since the anchors are at
different locations separated by a distance much higher than
the wavelength, we also assume that the vehicles experience
independent fading. Therefore, the joint likelihood function of
the position factorizes as follows:

lρ(x0) =

nA∏
a=1

N (ρ0 − 10α lg ‖xa − x0‖, σ2). (4)

The corresponding CRLB for the general scenario with nA
anchors, each providing Ma independent RSSI measurements,
is given by (5). We observe that the number of anchors and
their geometry relative to the VOI impact the lowest achievable
variance. These results are consistent with the ones presented
in [5] for a location estimation algorithm using RSSI, although
we show ours from the perspective of a single vehicle, VOI,
while in [5] they are calculated for the whole network. In [33],
the authors present the CRLB for the scenario of network
topology uncertainty. The fundamental limits of wideband
localization are presented in [34].

CRLB(x̂0)=
(σ ln 10

10α

)2[ nA∑
a=1

(xa − x0)(xa − x0)ᵀ

M−1
a ‖xa − x0‖4

]−1

(5)

A higher number of anchors helps to build up the rank of
the Fisher information matrix (FIM) by summing up rank-one
matrices (outer products) in (5). The FIM rank is increased
as long as the corresponding position vectors are linearly
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independent. For example, 2-D position estimation requires a
rank-two (invertible) FIM. When the anchors lie approximately
on a line, the rank of the FIM tends to one, and therefore the
positioning estimator exhibits very large variance along the di-
rection orthogonal to the corresponding line (null space). This
conclusion is also consistent with the concept of horizontal
dilution of precision (HDOP), which quantifies the impact of
range estimation errors on the positioning error given certain
anchor configurations.

B. Map Information

If a road map is available, we distinguish between road
and non-road areas. In our implementation we use basic map
data from Open Street Map: each road segment is defined
simply by two edge points. We consider this segment as the
center of the road. The map does not include the width of the
roads or their number of lanes. Since our focus is on urban
environments, we attribute a default width of 10.5 m to all road
segments, assuming a three-lane road (3.5 m each lane) as the
largest possible scenario. Most streets in the city have either
one or two lanes (same or opposite directions), so this value
already gives us a safe margin by including potential roadsides
or parking spaces. By choosing the highest value, we may
keep non-road locations flanking narrower roads as valid but
we also guarantee that we do not eliminate suitable position
candidates. This assumption can be adapted depending on the
scenario and the available map details.

V. INFERENCE ALGORITHM

A. Bayesian Approach

Fusing different types of data with different degrees of
reliability in a single position estimator can be done in many
different ways. Parametric estimation approaches, such as
Maximum Likelihood, rely on statistical models associated
with erroneous measurements. Based on the assumption that
the errors corresponding to different sensors are statically
independent, a joint likelihood of all available information
can be calculated [35]. Bayesian inference methods can also
be applied, involving prior information, and not only the
likelihood [36]. Typically, when estimating time-varying pa-
rameters filtering algorithms are used, the choice being based
upon a trade-off between accuracy and complexity. Kalman
Filter (KF) is widely used for its simplicity of implementa-
tion, tractability and robustness. When measurement and state
transition models are linear and all errors are Gaussian, KF
is an optimal estimator in the mean-square sense. However,
often the observation model and vehicle dynamics in road
navigation are nonlinear processes. Therefore, we focus on
nonlinear filtering methods more suitable for navigation. Ex-
tended Kalman Filter (EKF) linearizes the nonlinear model
with first-order Taylor series about the predicted state, such
that KF can be applied. However, the employed models are
often highly nonlinear, and divergence may occur, especially
when measurements exhibit high noise. Unscented Kalman
Filter (UKF) [37] appears as an alternative to EKF, especially
for highly nonlinear systems for which the latter gives particu-
larly poor performance. Particle filters, on one hand, impose no

restrictions on the state-space model. On the other hand, when
the dimension of the state is large, they suffer from “the curse
of dimensionality” [38], i.e., large computational complexity.
More details on the comparison of nonlinear filters can be
found in [39].

Bayesian-filters are powerful statistical tools for state es-
timation that reliably combine information originating from
multiple sources with different degrees of reliability. In order
to track the location over time, we employ a two-stage
Bayesian filter. The main stage is a particle filter for location
tracking. We choose this filter because it allows the represen-
tation of arbitrary probability density functions and makes it
very easy to incorporate the road restrictions. We are, however,
mindful of their potential large complexity and careful to keep
the computational cost feasible. Once the posterior function
has been calculated, in order to obtain the state estimate, we
use a maximum a posteriori estimate, which corresponds to
the mode of the posterior density. As our state-space model is
highly non-linear, we opt for a bootstrap particle filter that im-
plements a sequential importance sampling with the transition
prior probability distribution as importance function [35]. This
main filtering stage includes a prediction phase based on the
vehicle’s dynamics, namely the velocity (speed and heading).
A secondary filtering stage, which is a UKF, is employed and
outputs the heading estimate required by the main stage. This
UKF fuses inertial measurements collected from a smartphone
(magnetometer, gyroscope and accelerometer data).

B. Proposed Filter

In Section IV-A, we considered the method to estimate
the position of V0 in a fixed time instant, i.e. we did not
take the motion of the vehicles into account yet. Now, we
focus on the dynamic part of the solution, proposing a two
stage inference method. We shall first introduce the state-
space model corresponding to the main stage of our Bayesian
filter, i.e., the particle filter for position tracking. We define
the current full state of the vehicle of interest V0 at time k in
Cartesian coordinates as

X0(k) = [x0(k), y0(k), s0(k), h0(k)]ᵀ, (6)

where x0(k), y0(k) are the vehicle position coordinates (in me-
ters) at time k, s0(k) is the vehicle speed (in meters/second),
and h0(k) denotes the vehicle’s heading (measured in radians
from the x-axis that coincides with the East direction, and
positive angles are measured from East to North).

The state-space model of the second stage is given as:

x0(k) = x0(k − 1) + Ts0(k − 1) cos(h0(k − 1)) (7)
y0(k) = y0(k − 1) + Ts0(k − 1) sin(h0(k − 1)) (8)

s0(k) = ŝ0(k) + wsk (9)

h0(k) = h0(k − 1) + ∆ĥ+ whk
(10)

where T is the time interval between instances k − 1 and
k (in seconds), whereas ∆ĥ is the estimated heading change
rate during interval T , and ŝk is the estimated average speed
within that time interval. The process noise is defined for
both heading and speed as Gaussian distributions, represented
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by whk
and wsk , respectively. The corresponding normal

distributions have zero mean and variances Tσ2
h and Tσ2

s ,
respectively, where σh and σs are the reference standard
deviations for an interval of one second.

1) State Equations: The state prediction equation is a
simple linear motion model along each coordinate x and y,
as shown in Eqs. (7) and (8), respectively. We assume the
vehicle has access to heading and speed estimates to be used
in the motion model. These can be obtained from any source,
without loss of generality. For example, the speed information
can be collected by a low-cost on-board diagnostics (OBD)
device connected to the vehicle. In our case, the heading is
estimated using the inertial sensors available in the passen-
ger’s smartphone, namely accelerometer, magnetometer and
gyroscope. A UKF implementation based on [40] was used,
corresponding to the secondary stage of the proposed Bayesian
filter. Please refer to Section 5.2 of [40] for details about the
algorithm for orientation estimation.

2) Measurement Equations: We define Z(k), a composite
measurement vector at time k which is comprised of individual
GPS position estimates and RSSI measurements the VOI
collected from the available anchors. A different model is
necessary for each sensor in composite vector Z(k). For the
RSSI, the model is derived from (1), rewriting the distance
d in terms of coordinates of the VOI x0(k) for all available
anchors xa(k). The RSSI measurement ρa(k) corresponding
to the packets sent from an anchor a at time k is related to
the vehicle position x0(k) as follows

ρa(k) = ρ0 − 10α lg ‖xa(k)− x0(k)‖+ vσ(k), (11)

and the corresponding joint likelihood function for nA anchors
is given in (4). In our model, moving vehicles that are in the
range of V0 act as mobile anchors. They know their positions
with some degree of uncertainty and share their own estimated
positions x̂a(k) = [x̂a, ŷa]ᵀ along with respective uncertainty,
e.g. (a representation of) their location posterior density. In
the implementation, we used GPS position estimates along
with position reliability measure provided by the GPS receiver.
Due to anchor position uncertainty, their realizations have been
drawn from a Gaussian distribution with mean xa as the mea-
sured GPS position, and standard deviation σa derived from
the corresponding position reliability measure. The likelihood
corresponding to the anchor’s GPS measurements is given by
N (x̂a(k), σa(k)), where x̂a(k) and σa are the estimated GPS
position and its standard deviation at time k. In the algorithm
(see Algorithm 1), in order to reduce the computational cost
of calculating the joint likelihood function for nA anchors
with uncertain positions online, we precompute it using 100
particles drawn from the aforementioned Gaussian function to
represent each anchor and save the results in a lookup table.

If individual location estimates are available at the vehicles,
for example from GPS, the corresponding likelihood functions
are modeled according to the reliability of these estimates. The
composite likelihood function p(Z(k)|X(k)) is given by

p(Z(k)|X(k)) = lL(x0(k))lρ(x0(k)) (12)

where lL(x0(k)) is the product of the probabilities of x0(k)
being the current position of V0, for each alternative source

Origin

Destination

Fig. 2: Urban trajectory of approximately 7 km.

of individual information. The global positions coordinates
have been converted to Cartesian ones using an equirectangular
projection.

3) Map Restrictions: For each particle, we check whether
its position lies on a road or not. Particles outside the roads
are deleted and to maintain the total number of particles, the
ones on the roads are replicated according to their weights, so
that particles with higher weights have higher probability of
being replicated.

4) Computational Cost: The computational complexity of
our particle filter is O(nAnP ) at each time instance k, where
nA is the number of anchors and nP the number of particles.
The number of anchors is usually much lower than the number
of particles and anchors should be limited to the closest or
more promising neighbors (the ones with higher confidence
in their position). Therefore the computational cost is mostly
driven by the number of particles used in the filter, a trade-
off between the accuracy of the estimation and the required
computational resources to achieve it in suitable time. For
example, considering an update rate of few Hz, and one
thousand particles, the computation can be easily carried out
by most modern multi-core processors based smartphones.

VI. EXPERIMENTS WITH REAL DATA

In this section, we show experiments as a proof-of-concept
for our approach in a real world setting and providing an
evaluation of quality among different combinations of in-
formation sources. Four cars were driven for 30 minutes in
the city of Porto along the route shown in Fig. 2, facing
everyday traffic conditions with regular driving behavior. No
special environments or settings were chosen, other than
keeping the vehicles in communication reach of each other
for as long as possible while being safe and compliant with
the road rules. Each vehicle was equipped with a purpose-
built development platform for vehicle communication, NEC
LinkBird MX, which implements 802.11p wireless standard
(5.85–5.925 GHz) and has built-in beaconing functionality of
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Fig. 3: Various metrics for the whole trip displayed per second.

50 beacons per second. A GPS receiver was positioned on ve-
hicle’s rooftop, connected to the LinkBird. Inside, two Nexus
4 or 5 smartphones (near the windshield) collect inertial, Wi-Fi
and GPS measurements with the maximum possible sampling
rates. Video (1080p, 30 fps) was also captured in order to infer
location ground truth. We chose the front vehicle, equipped

with two cameras (front and rear) as the vehicle of interest but
the results apply to all vehicles, since they act simultaneously
as a vehicle of interest from their own perspective and as an
anchor relative to their neighbors. The last part of the drive, in
downtown area, includes some zones with poor GPS coverage
due to narrow streets flanked by buildings. The estimated mean
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Data: State and weight of each particle
Result: Estimated location
get initial position and uncertainty from individual
position data or mean of anchors positions;

initialize particles’ states randomly (3σ area around
initial position) and weights uniformly;

foreach time instance do
get speed measurements;
get heading change from UKF;
foreach particle do

sample speed error;
sample heading error;
calculate displacement;
update state;

end
if using map restrictions then

delete particles outside road;
replicate current particles using weights;

end
if using individual position data then

get individual position and respective uncertainty;
foreach particle do

calculate Gaussian probability of location;
update weight;

end
normalize weights (sum to 1);

end
if using V2V ranging data then

foreach anchor do
get mean RSSI;
get individual position and uncertainty;

end
foreach particle do

foreach anchor do
if σa <= 15 m then

calculate likelihood of particle
position from RSSI, distance to the
anchor and anchor uncertainty (from
a previously created lookup table);

update weight;
end

end
end
if sum(weight) < ZeroThreshold then

restart filter;
else

normalize weights (sum to 1);
end

end
if 1/sum(weight2) < ResamplingThreshold then

delete lowest weighted particles;
copy highest weighted particles according to their

weights maintaining the total number of
particles;

normalize weights (sum to 1);
end
get MAP estimate: the state (location and velocity) of

highest weighted particle;
end

Algorithm 1: Vehicle tracking algorithm using particle filter
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Fig. 4: CDF of location error in meters.

GPS location error of the anchors is 7 m for a confidence
interval of 1σa. The mean GPS distance between V0 and each
of the anchors is 23.2 m, 48.3 m, and 55.8 m. These parameters
are show in Fig. 3a and Fig. 3c, respectively, for each anchor
throughout the trip. The mean RSSI values from 50 beacons
per second are shown as well in Fig. 3b.

The following parameters were used in the experiments.
The ResamplingThreshold was set to 10% of the total number
of particles and the ZeroThreshold was set to 10−18. The
particle filter used 1000 particles with resampling eliminating
the lowest 10% weights and replicating the top 80%. It
applied T = 1 s iterations with sub-iterations of 200 Hz
for the motion model (UKF). The channel parameters were
ρ0 = −34 dBm, α = 2.1, and σ = 5.5 dB, obtained
as described in IV-A from previous experiments in similar
conditions. The individual locations and respective uncertainty
from the anchors were provided by their own GPS receivers
from one the smartphones. If available, GPS position estimates
were drawn from a Gaussian distribution with position as mean
and an estimated horizontal standard deviation provided by the
GPS receiver (when unavailable we used σGPS = 5 m). The
gyroscope and accelerometer from the smartphone collected
data at 200 Hz sampling rate, and magnetometer at 50 Hz. The
speed measurement was obtained from the GPS (even when
GPS is not used in the update phase) since we did not have
the OBD device available. The standard deviations used in the
motion model were set to σh = 2◦/s and σs = 0.75 m/s. Map
information from Open Street Map was used as described in
Section IV-B. The ground truth of the position was marked
manually using videos as the main source. Two different
videos were obtained from cameras at the front and back
of the vehicle of interest, as well as at the front of all the
vehicles following it. In addition, we used the map and GPS
from various devices to disambiguate some situations (when
the videos did not provide clear landmarks). We choose the
smartphone attached to the mid-section of the windshield
(containing the front camera and collecting GPS data) as the
true position of the vehicle. Although the trajectory may be
very close to the real one, some error introduced by the manual
labeling is unfortunately inevitable at high speeds.

The results for 20 runs of the algorithm are presented in
Table I for six different combinations of the three location
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TABLE I: Location errors for full trajectory (meters)

Location
sources GPS GPS

+ map V2V V2V
+ map

GPS
+ V2V

GPS
+ V2V
+ map

RMSE 9.80 9.84 25.71 13.63 9.68 9.47
MAE 8.37 8.31 17.01 11.60 7.92 7.70
SD [heading] 2.68 2.51 4.70 3.03 2.26 2.10
SD [⊥heading] 2.90 2.62 5.51 3.25 2.39 2.19

information sources: GPS, RSSI ranging information denom-
inated V2V for simplicity, and map restrictions. We show
the root-mean-square error (RMSE), the mean absolute error
(MAE), which is the mean of location error, and the standard
deviation (SD) of the posterior function, providing a measure
of confidence in the estimated position, both in the direction of
motion (heading), that will mostly coincide with the direction
of the road, and in the perpendicular direction. In order to have
a better picture of the errors we also present the cumulative
distribution function (CDF) of the location error in meters
in Fig. 4. We observe that both the maps and the V2V, in
combination with GPS, improve its results and, as we would
expect, all three sources of information together provide the
best configuration. The position accuracy achieved in this case
is less than 6.1 m for 50% of the trip, and less than 11.7 m for
80%. It is important to note that not only the accuracy is better,
but also the reliability of the results is improved in comparison
to using only a subset of the available information sources.
The V2V based model, with no GPS available in the vehicle
of interest or fixed anchors with known exact positions, relying
on the GPS estimates of its neighbors, often out-of-reach or in
poorly covered GPS areas, is able to provide localization with
a position accuracy of 12.8 m for 50% of the trip, even without
the map. It’s relevant to point out that this configuration shows
a small percentage of very large errors (5% of the errors are
higher than 40 m) from a specific situation where V0 was
separated from the rest of the vehicles, which got delayed
by a traffic light (see in Fig. 3 the interval of 1 minute
centered in 10:32), resulting not only in very large distances
between the vehicle of interest and the anchors but also in a
especially poor anchor geometry. In fact, very close to each
other from a large distance of V0, these 3 anchors behave as
virtually only one and the likelihood takes an annular shape,
not allowing the model to distinguish the correct road in a
bifurcation. When combining map restrictions, we are able
avoid these high errors and improve significantly the quality
of the overall estimation. The error for the V2V configuration
combined with map restrictions is less than 10.5 m in 50%
of the cases and less than 17.3 m in 80%. We observe that
the use of map restrictions, particularly when combined with
V2V, improves both the accuracy and the reliability of the
estimation significantly.

In Fig. 3d, we show the values of the location error (MAE)
throughout the trip, allowing the observation of its relation
with the error of the anchors and the distance to V0, for the
configurations without GPS, and provide the GPS with maps
as a benchmark. We confirm that the moments for which
the V2V errors are larger, coincide with the situations where
all three anchors were at large distances from the vehicle of

TABLE II: Location errors for intervals with good conditions
of the anchors (meters)

Location
sources GPS GPS

+ map V2V V2V
+ map

GPS
+ V2V

GPS
+ V2V
+ map

RMSE 9.62 9.23 9.60 8.70 7.30 6.93
MAE 8.64 8.28 8.05 7.32 6.18 5.90
SD [heading] 2.08 2.10 2.57 2.18 1.58 1.54
SD [⊥heading] 2.25 2.03 2.66 2.28 1.68 1.58

interest. It is very important to stress that in these experiments
we were limited to those three vehicles as anchors. They
were often distant (sometimes even completely out of reach)
and providing a poor anchor geometry. However, in a typical
scenario of a densely populated urban area, a larger number
of vehicles is expected to be within communication reach
of V0 and the ones providing the best geometry and lowest
position errors might be chosen as anchors. We present in
Table II, the results only for moments that present favorable
conditions to apply V2V, namely all three anchors close to
the leading vehicle (less than 40m of GPS distance) and with
good position accuracy (less than 8 m for 1σa confidence
interval). In our experiment these happened approximately
23% of the trip, but we expect them to occur much more
frequently in large vehicular networks. We observe that for
these favorable conditions, the performance of our tracking
algorithm even when V0 has no access to GPS position is quite
good. The location error of the V2V based configuration is 8 m
and the estimation has a standard deviation of approximately
2.6 m, which is a performance equivalent to the GPS for the
same context. The accuracy of the configuration V2V+map
is 7.3 m, exceeding the accuracy of the GPS+map, which
is 8.3 m. This shows the potential of our proposed model.
It is also interesting to note that, since the anchors follow
the leading vehicle, the distribution of the vehicles in space
is mostly in line or in two lanes in the same direction,
which is a poor geometry (see Fig. 5). However, while this
limits more the longitudinal error (along the direction of the
road/movement, using map restrictions bounds the lateral error
(perpendicular to the previous direction), leading to a balanced
combination of information sources. In our implementation the
road restrictions assume a worse case road width, so the impact
is mostly noticeable in situations for which the errors are very
high (e.g. very distant anchors). Nevertheless, using more tight
road constraints, for example having access to the actual width
of each road, would lead to an even higher impact on location
performance.

VII. CONCLUSION

We propose a location tracking approach for vehicular
networks, allowing vehicles to estimate or improve their
position using widely available low-cost smartphone sensors
and information shared by one-hop neighbors with uncertain
locations. We provide a proof-of-concept using data from a
real urban scenario with four communicating vehicles, collect-
ing their GPS, RSSI, and inertial data, and using available road
maps. We present results evaluating the quality of different
combinations of these information sources. By combining all
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Fig. 5: Geometry of anchors and V0 during the trip: longitudi-
nal distances (measured along the road) Dij ≥ 0 between the
vehicles’ antennas vary in time and represent the distribution
of vehicles in space. The leading vehicle is V0 and A1, A2

and A3 follow in that order (their colors correspond to the
ones used to represent them in Fig. 3), either in one lane or
in two lanes when possible. Except for very close distances,
both geometries have a similar impact. For large distances the
configuration on the right can be approximated by the one on
the left, so the geometry is mostly in line following the VOI.

of them, we provide a mean location error of 7.7 m during
the whole trip, including urban downtown areas with low GPS
coverage, as well as relying on anchors with uncertain and
often poor position estimates and geometry. For intervals with
good conditions of the anchors, we reduce this value to 5.9 m.
It is relevant to highlight that by leveraging different sources of
information not only the accuracy is improved, but the model
is also more reliable and robust to failure. We propose the
existence of at least 3 neighbor vehicles with good position
accuracy (less than 8 m for 1σa confidence interval) and a
maximum distance of 40 m to the VOI as favorable conditions
for using V2V ranging. In these V2V conditions, we show
it is possible to provide a performance comparable to GPS
even when the VOI lacks access to GPS, achieving a mean
location error of approximately 8 m. These results motivate us
to explore more cooperative scenarios, and extend our model to
be applied in a real setting by taking advantage of the currently
largest urban vehicular network in the world, deployed in the
city of Porto, Portugal [41].
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