
Efficient group authentication protocols based
on human interaction

L.H. Nguyen and A.W. Roscoe

Oxford University Computing Laboratory
{Long.Nguyen, Bill.Roscoe@comlab.ox.ac.uk}

Abstract. We re-examine the needs of computer security in pervasive
computing from first principles, specifically the problem of bootstrap-
ping secure networks. We consider the case of systems that may have
no shared secret information, and where there is no structure such as a
PKI available. We propose several protocols which achieve a high degree
of security based on a combination of human-mediated communication
and an ordinary Dolev-Yao communication medium. In particular they
resist combinatorial attacks on the hash or digest values that have to
be compared by human users, seemingly optimising the amount of secu-
rity they can achieve for a given amount of human effort. We compare
our protocols with recent pairwise protocols proposed by, for example,
Hoepman and Vaudenay.

1 Introduction

Imagine that a group of people come together and agree that they want
to transfer data between them securely, meaning that they want it to be
secret and of authenticated origin. They all have some pieces of computing
hardware (e.g., a mobile phone or a PDA). Unfortunately none of them
knows the unique name of any of the others’ equipment, and in any case
there is no PKI which encompasses them all. How can they achieve their
goal in the context that their machines are connected by an insecure
network (whether created by WIFI, the internet, telephony, or a mixture
of these)?

The conventional answer to this question would be that this goal is
unachievable, since it is impossible to prevent some impostor I playing
the man-in-the-middle between the participants. However a little creative
thinking can easily solve the problem: if each person tells the others (using
human conversation) a public key for his or her machine, they can then
use something like the Needham-Schroeder-Lowe protocol [13] (over the
insecure network) to establish secure, authenticated communications. (If
there are more than two participants then they would either have to adapt
that protocol or to use it multiple times.)



They will have bypassed the intruder for the crucial step of exchang-
ing electronic identities. Unfortunately this idea would require a serious
amount of effort on the part of the humans unless, perhaps, they all car-
ried a card with them containing their public key that other machines
could read – but of course that would again introduce a compatibility
problem as well as limiting the range of applications. What we shall
demonstrate in this paper is that high quality security can be obtained
using this same idea of human activity bypassing the intruder for crucial
steps, but with a greatly reduced amount of work. Indeed, it seems that
we essentially minimise this.

Putting this in the context of earlier work, the second author, Creese,
Goldsmith, Zakiuddin and others [9–12] developed the idea that the con-
cept of a PKI is not ideal for many pervasive computing applications,
for the following reasons. It is not realistic to assume that one is both
sufficiently universal and sufficiently available to cover all scenarios. In
any case, in the pervasive world, processes will not know the names of
the others they wish to contact – essential for a conventional PKI. And
finally, it may be unrealistic to expect the average user to understand,
and react properly to questions posed by, PKI such as “Do you trust
certificates issued by authority X?”

If we are not identifying a system by name, there must be some other
feature which identifies the ones we wish to interact with securely. In
pervasive computing this feature is frequently one of position or proxim-
ity [18]. We have argued that these features can often be captured as low
bandwidth empirical channels between systems in addition to the inse-
cure (Dolev-Yao) high bandwidth channels used for most communication.
In the scenario set out earlier, these empirical channels would be imple-
mented by the human users and can be assumed to be non-spoofable1:
an intruder can’t persuade A that an empirical message is from B if it is
not.

We gave several protocols in [9–12] for different classes of empirical
channel, an exercise we intend to continue. These included several related
protocols for the scenarios of a group of people attempting to form a
secure network, and of a single user connecting to an external device,
such as a printer, with a high degree of security. The assumption was
that the human or humans implement non-forgeable channels between
their systems.

1 “Spoofing”, “faking” and “forging” are synonymous terms used in the literature for
the same activity by the intruder.



In this paper we show that such protocols can be vulnerable to com-
binatorial attacks, meaning that the humans have to handle larger data
items than ideal.

We show how these combinatorial attacks can be overcome by several
related methods, all based on the twin ideas:

– Have the human users confirm that all systems involve agree on a
final hash or digest value that is formed from the entire details of the
session. In an ideal world the likelihood of a successful attack would
be bounded above by 1/H, where H is the number of possible hash
values.

– Commit nodes to this final hash or digest value before they (or any
potential attacker) actually know it.

We show that the amount of computation required by the members
of the group can be a trade-off depending on what they seek to achieve
from the protocol, and how much trust they have in other members of
the group.

Our protocols were, in the main, developed before we were aware of
several other recent (pairwise) protocols reported in [15, 19, 6]. We com-
pare ours against these others, comparing both the amount of human and
computational resources required by the different styles.

We introduce a number of different protocols in this paper that are
suitable for many different sizes and types of group, all the way from
pairwise connection between the systems of people who completely trust
each other, to a lecture theatre full or more, for example. This, and the
range of potential implementation technologies, mean that in this paper
we largely abstract away the details that are not immediately important
to security.

This paper is organised as follows: in the next section we show how
protocols for this type of scenario can be vulnerable to combinatorial at-
tacks, and analyse how others have solved this problem. In Section 3 we
introduce a class of efficient group formation protocols that rely on trust
and which seem particularly appropriate for a user’s equipment to set up
secure communications with a group of simple devices. In Section 4 we
show how to build groups securely even in the presence of corrupt par-
ticipants in the protocols, using extra computation to dispense with the
need for trust. Finally we analyse the relative efficiency of our protocols
and those of [15, 19, 6], and look to future verification work.



2 Analysis of Existing Protocols

It has been widely realised that it is impossible to bootstrap security
from nothing. Nevertheless, as we have discussed in the introduction, it is
necessary to be able to bootstrap it from minimal assumptions. So what is
it reasonable to assume exists prior to an attempt to acquire high-quality
security? There have been (at least) two separate types of approach to
this. One has been to assume that suggested that the pair of parties,
who are seeking to exchange a strong secret key, already share a short or
low entropy secret information such as a password. The second approach
assumes the existence of a low bandwidth empirical channel that is not
susceptible to spoofing. Based on the either assumption, the parties can
agree on a strong shared secret from scratch.

The first method, which is based on shared password, has been studied
intensively in the last decade. One typical example is Bluetooth [5] , which
has been found insecure due to off-line PIN crunching attack by Jakobsson
in [16]. After that people in the cryptography community came up with
various formal frameworks presented in [2–4, 7, 8] by Bellare, Pointcheval,
Rogaway, Canetti, and Krawczyk and others that focus on preventing
off-line dictionary attack. That means the only way that an attacker can
find out whether his random guess of the password is correct or not is
by interacting with the legitimate player. It leads the protocol to be only
vulnerable to a random guess that is successful with a probability of 1/H
where H is the space size of the password. Sharing the password has
the advantage of simplifying the problem of bootstrapping security as
well as security analysis. In contrast, it has completely abstracted away
the process in which the private information is exchanged between the
two parties and therefore does not provide a complete solution for this
problem. Even worse, it might have ignored weaknesses that might be
present in the methods of initial key exchange.

Taking a different approach that makes use of the empirical channel,
in [9–12] Roscoe, Creese, Goldsmith, Zakiuddin and others attempted to
form a secure network for both two parties and multi-party scenarios.
However, as shown below, their scheme is vulnerable to a combinatorial
attack, due to the birthday paradox. There has been also other work that
concentrates on the application that involves two parties, presented in [15,
19, 6, 1, 14] by Hoepman, Vaudenay, Balfanz, Gehrman, Mitchell, Nyberg
and many others.



2.1 Combinatorial Attack on Security Bootstrapping Protocol
for ad-hoc Group

The following protocol was originally proposed in [11]:

1. ∀A −→N ∀A′ : A, pk(A), NA

2. ∀A −→N ∀A′ : {all Messages 1d, N ′
A}pkA′

3a. A displays : hash({all Messages 2d}), number of processes
3b. ∀A −→E ∀A′ : users compare hashes and check numbers
4. ∀A −→N ∀A′ : hash′({all Messages 2d})

Here, ∀A means that a message is sent or received by all parties in the
group G who attempt to achieve a secure link between their laptops or
PDAs. pk(A) stands for an uncertificated public key for A. The protocol
uses two types of channel:

– −→N , the normal Dolev-Yao network where all messages transmit-
ted between the laptops in this channel can be overheard, deleted or
modified by the intruder.

– Whereas −→E indicates the low bandwidth empirical channel, typi-
cally implemented by human users, which is similar to the authentic
channel used in [15], and not susceptible to spoofing.

This protocol introduced, implicitly, the first of two principles which
underlie the new protocols we will be describing in this paper:

P1 Make all the parties who are intended to be part of a protocol run em-
pirically agree a cryptographic hash or digest of a complete description
of the run.

Once that agreement has occurred then, unless there is a hash anomaly –
different nodes in the group computing the same hash value from different
antecedents – then all the parties agree on all the data transmitted during
the protocol. Usually, as in the protocol above, this will bind data to the
various members of the group which, since each of them (including the
owner of each piece of data) is agreeing with this data, must be correct.

The crucial part of this protocol is where all the parties display and
compare hashes in Messages 3a and 3b. Since these hash values are com-
pared manually by human effort, and not by computer, the length of the
hash can only be up to a few digits or characters. Thus it is not hard for an
intruder, in a limited amount of time, to search for a collision that might
cause the parties to agree on different secret information; and thereby to
force an anomaly in the sense described above.



The attack can be described as follows: the intruder will run two
parallel sessions with two disjoint subsets S1 and S2 of the group G of N
parties. During the two parallel runs, the intruder impersonates all parties
of subset S1, by modifying messages sent from subset S1 with different
public keys where she knows the corresponding secret keys, to talk to
parties in the other subset, S2, and vice versa. Therefore, any one in group
G is still thinking that s/he is running the protocol with the other (N−1)
parties. The intruder only allows messages to be passed unaltered within
each subset, but when a message is intended to go across the boundary
between the two subsets its content will be changed appropriately.

If S1 = {P1, P2}, S2 = {P3, P4, P5}, and {N ′
1, N

′
2, N

′
3, N

′
4, N

′
5} are

the original nonces randomly created by all the parties in Messages 2
then {N ′′

1 , N ′′
2 , N ′′

3 , N ′′
4 , N ′′

5 } are the nonces generated by the adversary, in
whatever time it has, such that:

hash(N ′
1, N

′
2, N

′′
3 , N ′′

4 , N ′′
5 ) = hash(N ′′

1 , N ′′
2 , N ′

3, N
′
4, N

′
5)

This can be done by picking the nonces N ′′
1 , N ′′

3 , N ′′
4 randomly and then,

based on the birthday paradox, the intruder can search for values of N ′′
2

and N ′′
5 such that the hashes come out to be equal to each other.

If we are to attain our goal of optimising the amount of security ob-
tained from a given amount of empirical communication (essentially hash
width) we need to eliminate not only birthday attacks but also ones in
which the intruder is able to achieve something if a basic combinatorial
search for a value v such that hash(a, v) = b succeeds, where a and b
are fixed. In other words we need to attain security in the case where the
hash function that the humans compare is not collision resistant.

2.2 Other peer-to-peer Key Exchange Protocols

In [1, 14], Balfanz, Gehrmann, Mitchell and Nyberd proposed two pro-
tocols for key exchange. Both of the schemes, however, require a large
number of bits to be communicated over the authenticated channel and
to be compared manually by using human effort. Taking a further step,
in [15, 19, 6], Hoepman, Vaudenay, and Čagalj proposed protocols that
can get around the problem of bandwidth of authenticated channel. They
all share many similarities: for example, all of them concentrate on the
case where there are two parties a peer-to-peer network. In addition, they
contain the idea of pre-committing two parties to some random secrets
by sending the corresponding cryptographic hash, in [15], or the output
of the commitment scheme, in [19, 6], to each other at the start of the
protocol.



In [15], Hoepman required each party to compute and manually com-
pare short authenticated strings that are transmitted over the empirical
channel:

1. A −→N B : longhash(gx)
B −→N A : longhash(gy)

Where x and y are randomly picked by A and B
2. A −→E B : shorthash(gx)

B −→E A : shorthash(gy)
3. A −→N B : gx

B −→N A : gy

A and B then share the key k = gxy

This is not optimal in the amount of work required by the humans im-
plementing the empirical channel, since the same amount of security (i.e.
improbability of a successful attack) can be obtained in several ways by
them comparing a single string of the same length. We will demonstrate
two of these later: a further has been devised by Vaudenay [19], and
adapted by [6]. Vaudenay and Čagalj require a commitment scheme that
is at least as secure as a standard cryptographic hash function.2 By this we
mean that it must be computationally infeasible to find, with greater than
infinitesimal probability, collisions, or inverses to the “commit” values. It
should therefore be assumed that these values are as hard to compute as,
and have as many bits as, a strong cryptographic hash.

1. A −→N B : m, c
Where c ‖ d = commit(m,RA), and RA is a random nonce of A.

2. B −→N A : RB

3. A −→N B : d
B computes RA = open(m, c, d)

4. A −→E B : RA ⊕RB

Note that the final value compared in this protocol is the XOR of the
short entropies devised by A and B. In particular it does not depend
functionally on the message m being sent; in other words it does not
follow our principle P1. The guarantee of authenticity of m that this
protocol delivers is as a consequence of:

2 We note that there is an error in the specification of the commitment scheme
in Vaudenay, since the security specification there fails to bind it to the message
m, as was obviously intended. The definition there is satisfied by commit(m, r) =
Hash(N, r) = c, and open(m, c) = (N, r), for N a fresh nonce.



– The fact that this exchange guarantees the value for RA that B has
discovered from the commit scheme is the one that A intended.

– The way the commit scheme has strongly bound the message m to
RA at a point where RA is itself unknown to any attacker.

We will see later that this indirect binding of m to the final agree-
ment makes this protocol relatively expensive relative to others we will
introduce.

In this paper, we shall extend the idea of [9–12] in constructing an
arbitrary-sized secure network, but without the trustworthiness of the
entire network. We also believe that the degree of security obtained is
essentially optimal for the amount of empirical (human) communication
required.

In the mean time, we also try to reduce disadvantages of [15, 19, 6]
with respect to efficiency when it comes to implementing the commitment
scheme and computing the long and short hashes, or digests.

3 Some Protocols for Bootstrapping Groups

We will introduce our protocols in order they were discovered. The ones
presented in this section are based on one discovered by Roscoe in June
2005.3

Both in this section and the next we will assume the existence of a
set of processes that are connected by a standard Dolev-Yao network and
also by non-spoofable empirical channels. By and large we will consider
the symmetric case where there is an empirical channel between each
(directed) pair of nodes, and where we are seeking to authenticate each
node to every other. However we will also, in this section, consider the
asymmetric case in which there is a particular node I to which there are
empirical channels from the others, and who wishes to have authenticated
connections to the others.4 In each case we will assume that each node
A has some information INFOA that it wants to have authenticated to
other members of the group: this might include (i) name and addressing
information, (ii) its uncertificated public key or Diffie-Hellman token gxA ,
(iii) contextual information to help identify it, such as its location or
human owner, and (iv) certificates relating to its functionality. Nothing
in this information should be secret.
3 In the notation of this section, that was HCBK3.
4 A model for the asymmetric case is a human user trying to connect his or her laptop

to a number of wireless devices, each of which have some display that the human
can see.



INFOA might be attached to A permanently or for the long term;
alternately some of it might be relevant to this particular run only. The
goals or our protocols will always consist at least in part of authenticating
pairs (A, INFOA) as members of the network.

It is usual in describing authentication protocols to demand the fol-
lowing: If a party A believes it has completed a run of the protocol with
a second party B, then in fact B has been running the protocol with A,
and A and B agree on the underlying variables of the run. This is on the
assumption that A, B and any trusted third party that plays a role in the
protocol are trustworthy, even though all other parties and the network
may be corrupt.

This leaves a slightly grey area for protocols building groups of more
than 2: should we or should we not be content if the presence of a cor-
rupt party in a group means that communications that result between
trustworthy members of the group are themselves compromised? In some
of the circumstances where we may wish to use ad hoc group formation
protocols it would be much better if the protocols were tolerant of cor-
rupt members. We will therefore be careful about our assumptions on this
front.

It is obvious that any protocol which creates a shared secret is at least
partially compromised by the presence of a corrupt participant. However
protocols which merely authenticate public-key-like information to nodes
are not globally compromised in the same way: they could be said to be
establishing a local PKI.

In this section we will assume that there is one participant I in the
protocol whom all agree is trustworthy. This could be because all partic-
ipants are known to be trustworthy, because I has some special status
amongst them, or because I is the only one requiring authentication. I
will be called the “initiator”, and the other nodes will be termed “slaves”.
We will first give a protocol that is designed for the case where there are
empirical channels both from all nodes to I and from I to all nodes.
(It will be obvious that in some aspects the protocol might work more
naturally if there were empirical channels between all nodes.)

In the following description S represents a typical slave node, A a
typical node (either A or S), longhash is a strongly collision-resistant and
inversion-resistant hash function and digest is a digest function producing
as many bits as we expect the humans to compare. init(I, A) is true if
I = A and false otherwise.



0. I →N ∀S : I
1. ∀A →N ∀A′ : (A, INFOA)
2a. I →N ∀S : longhash(NI)
2b. ∀S →E I : committed
3. I →N ∀S : NI

4a. ∀A displays : digest(NI , all Messages 1), init(I, A)
4b. ∀A →E ∀A′ : Users compare and check presence of I

The meanings of these messages are as follows:

– Message 1 publishes the information that all the nodes want to have
attached to them, via the insecure channel. Therefore they do not
know upon receiving it that it is accurate.

– Message 2a has I devise a nonce NI with sufficient entropy that
longhash(NI), which it publishes here, has no more than an infinites-
imal likelihood of any combinatorial attack on it succeeding.

– Message 2b has all the slaves communicate to I that they have
received Message 2a and are therefore committed to their final digest
value (though none of them know it yet).

– Message 3 has I publish the nonce NI after it has received commit-
ments from all members of the group over the empirical channels. All
slaves now have the duty to check if the values of Messages 2a and 3
are consistent.

– Message 4a has all the nodes compute what should be the same
digest value.

– Message 4b has them compare these values: this could be done either
through the single point of contact at I or more generally. Once a node
knows that all have agreed this value it has completed the protocol
and can enter group mode. It also guarantees that one of the nodes
doing the agreeing has been playing the initiator role.

The following analysis proves this protocol achieves its aim subject to
one further assumption that we will state below.

1. If, in Message 4, the agreement between digest values implies the
agreement of the antecedents of the digest in all the nodes, then
the protocol has clearly achieved the aim of authenticating all the
INFOAs to the corresponding names A, for each such A has agreed
to this digest value.

2. However this message does not preclude the possibility that the group
formed might contain more parties than the humans intend: an in-
truder can join the group on the →N communications and remain



silent on the →E communications. This would not do any harm pro-
vided that the participants do not assume that all the members of the
protocol run are trustworthy: rather, trust has to be deduced in some
other way. If there were an untrustworthy party (whether or not part
of the overt group G), it could claim INFO or a name that really
belonged to one of the other parties. That party could then make the
run abort.
If it is assumed that all parties are trustworthy, then a worthwhile
addition to the protocol is to have each node display the number (and
perhaps, in a small group) the identities of the participants as an
addition to Message 4a. Each user would then check if this information
was as expected before proceeding to check the digest.

3. We can infer that our protocol is only attackable if it is feasible for
an intruder to make different members of the group digest different
combinations of values to the same digest value in Message 4. This
is not impossible, since the intruder can partition G into two parts,
and feed both of them different sets of values (building them up to
the right size, and with the right names, if the checks in the past
paragraph are implemented). It would then act as a silent “initiator”
in one of these subgroups. Picking a random value for the nonce this
node introduces will give it a 1/H chance of the two digest values
agreeing, where H is the size of the range of the digest function.5

Our hope is that it is impossible for an attacker to have a better
chance than this. To demonstrate this we analyse the positions the
various nodes are in when they first become committed to their final
digest value.

4. I is committed when, following its acceptance of Messages 1, it creates
the nonce NI .
A slave S is effectively committed once it has accepted Message 2a,
even though at that stage it cannot know what the digest value is.
For it has all information other than NI , and it has longhash(NI),
meaning that there is no better than an infinitesimal chance that it
will accept a different N ′

I in Message 3.
5. So let us examine the state the network is in just before I publishes

NI in Message 3. The trustworthy node I is the only one that actually
knows enough to compute the final digest – in particular no intruder
can know the value hI that I will compute in Message 4a. Further-

5 We will analyse the probabilities of digest function collisions in some detail in Section
5.1.



more, I knows – and therefore we know – that each slave S has been
committed to some final digest value hS .
Some or all of the hS may be different from hI , and even equal ones
may be based on different antecedents. But there is no constructive
way in which our intruder could have manipulated any set of different
antecedents that some S has heard so that hS = hI , for the simple
reason that the intruder does not know hI and cannot guess it with
more than 1/H likelihood of success.

6. It follows that if, in Message 4, the various nodes go on to compare
precisely these values then the intruder has no better than the 1/H
chance that we have aimed for.

7. There is still one potential avenue of attack open: can the intruder
change the mind of one or more participants about the final digest
value so that it equals the others. The only way it could do this would
be to make them abandon this run and bring them to the point in a
subsequent run where they are ready to agree the final digest.
This would be impossible with the initiator. I is the final determiner of
its own hash value by constructing NI . So re-starting it would not give
greater than 1/H chance of achieving any particular value. Also, and
conclusively, the initiator expects to get empirical signals in Message
2b from the slaves, and these would not be available from the slaves.
On the other hand, if a slave S could be re-started after hI was known,
then the intruder could perform a combinatorial search for a value
N ′

I which would yield the digest value hI (with the combination of
INFO′

A of which he wants to persuade S), then a potential attack is
open provided the second empirical Message 2b from S to I can be
blocked. This would lead to an attack. We therefore make the following
specification for the implementation of the protocol:

The implementation must be designed so that agreement is im-
possible between final digest values other than those whose com-
mitment has been signalled by the Messages 2b that I received.

The most obvious way of achieving this is via timing limits: an upper
bound on the time between I sending Message 3 and agreeing Message
4, and a lower bound between I receiving a Message 2b from S and
S sending another Message 2b. One could also use run numbers that
are included in empirical communications, but of course that would
add to the empirical effort.
On the assumption that the above is achieved, we conclude that the
nodes will never seek to agree final digest values to which they were
committed later than the issue of Message 3 by I. Therefore our pro-



tocol achieves its goal of limiting the chance of a successful attack to
at most 1/H.

We will call the above protocol HCBK1, standing for Hash Commit-
ment Before Knowledge, the principle on which it works. Recall its goal:
to agree a set of information of the form {(A, INFOA) | A ∈ G} amongst
the members of G, and hence authenticate each such INFOA belonging
to a trustworthy A to the node that is declaring it.

We will call the protocol in which each node checks that the number of
participants corresponds to the size of G HCBK2, and note that provided
all members of G are trustworthy, it guarantees that no further node is
present in the run of the protocol.6 (It is in fact sufficient for one node,
say I, to do this check)

If each INFOA contains a way of sending A data privately, say a pub-
lic key (which need not be certificated or long term) or a Diffie-Hellman
token, then we could replace the broadcast Message 3 by some means
of propagating NI securely. This could be a separate message from I to
each S, or some tree of propagation amongst the S rooted at I. Upon
successful completion of the protocol the group would then have a shared
secret, namely NI . Since it is vital that a shared secret is not shared
with untrustworthy nodes, variants of this form are only useful on the
assumptions that (a) all members of G are trustworthy and (b) that the
number of participants is trustworthy as in HCBK2. Clearly this repre-
sents a class of potential variant protocols, but we can name them all
under the heading of HCBK3.

The fact that these variants all create a shared secret is a consequence
of the correctness of HCBK2: the different means of propagation of NI is
irrelevant since in HCBK2 this was essentially in the hands of the intruder
anyway. That means that, following successful completion, all the aims
of HCBK2 have been achieved. This means that we can look back at how
NI was propagated, and if it was in fact sent only in ways that (as we
no know) members of G could understand, then we know that no-one
outside the group knows it. In other words it is a shared secret.

Recall that these protocols depend crucially on the initiator I being
trustworthy: a corrupt initiator could use a birthday attack essentially
like the one we described earlier.

One situation where this is definitely not an issue is when the slave de-
vices themselves have no need of security, as when the user of the initiator
6 If there were an untrustworthy party present, it could pretend empirically to be

running the protocol while actually some other corrupt party performed the messages
over →N .



is seeking to connect his or her laptop to a number of wireless periph-
eral devices. That person must be sure that the connection is precisely to
those devices that are trusted because of their context, labelling etc. In
that case there is no need for empirical channels from the initiator to the
slave devices. All we require is that these devices can signal the initiator
(probably via some display that the initiator’s user can see) to convey
Message 2b and the digest value from Message 4.

This would work for all three of the variants described above: HCBK1,
2 and 3. We will call the resulting, simplified protocols AHCBK1,2 and
3, on the grounds that they are definitely asymmetric. (The original pro-
tocols are neither properly symmetric, thanks to the role of the initiator,
nor asymmetric, since their overall goals are symmetric.)

4 Symmetrised Group Protocol

The protocol we present in this section was devised by the authors in
February 2006.

The protocols in the previous section all rely crucially upon I being
trustworthy: what are we to do if there is no node that is uniformly
trusted or it is hard to select one, but we still want a local PKI which
authenticates the INFOAs of all trustworthy nodes? What we would
like to achieve instead, is that a successful run of the protocol correctly
authenticates all the trustworthy parties to each other irrespective of what
the others may have done.

In order to do this we identify the following second principle, derived
from the design of HCBK:

P2 Suppose a party A knows it is committed to a specific final hash or
digest value h, and furthermore has invented a piece of fresh informa-
tion f which is known to A but nobody else, and which is one of the
antecedents of h. Then none of the information that A has been sent
could have been designed to force its computation of h to be a specific
value.

In HCBK A is the initiator and f is the nonce NI . That protocol relies
on much more subtle reasoning in respect of the slave nodes, as shown by
our reasoning in the previous section and the principle of Messages 2 and
4 being aligned that we had to adopt. If the slave nodes had been able to
follow P2, there would have been no need for this.

Our second sort of protocol is designed so that all nodes can rely on
P2. Therefore each node will now need some value, either taken from



its INFOA or made up specially for this purpose, which is fresh and
unpredictable. Let us call this value hkA (noting that it may well be a
nonce) and the remainder of INFOA will be called INFO′

A. The protocol
is now:

1. ∀A −→N ∀A′ : A, INFO′
A, longhash(hkA)

2. ∀A −→N ∀A′ : hkA

3. ∀A −→E ∀A′ : users compare digest(hk∗, {INFO′
A|A ∈ G})

where hk∗ is the XOR of all the hkA’s for A ∈ G

The following notes explain these messages.

– Message 1: introduces the information, INFO′, each party wants
to authenticate and a long hash of its hk. After this message each
node should have all the information it requires about the other nodes
except for the values hkA, and furthermore should be committed to
each of these values in the sense that when told the hkA’s it will be
able to check each one.
At the point when the sending and receiving of this message is com-
plete, it follows that every node A is committed to some final digest
value hA, knows one of the antecedents of this final digest (hkA) that
no-one else does, but does not yet know hA. We see that P2 applies.

– Message boundary: There has to be some moment at which a node
decides it is finished inputting new Message 1’s. This might be deter-
mined by some timeout, or some message sent from one of the nodes
(empirically or over the general network). It is clearly in nodes’ inter-
est that they all make correct decisions on this, for otherwise they will
not agree. One can imagine them attempting to synchronise by agree-
ing on a hash of the Message 1’s they know about over the Dolev-Yao
channel: that might well serve a useful purpose since it would guard
against involving humans in empirical communication when there is
no point.
Whatever mechanism they choose does not matter provided it does
not involve them revealing hk values to each other. For it is absolutely
vital that none of them accepts any further Message 1 after any of
these values are revealed.

– Message 2: Each node broadcasts its unguessable hash key to all
other nodes once it is committed to its final digest value. Having
received all these hash keys, each node can check the correctness of
all the long hashes received from Messages 1. If there is any thing
unmatched regarding the long hash values, the node will abort and
presumably tell the rest of the group that this has happened.



Essentially these broadcasts expand the hk parts of the Messages 1
into something the nodes can understand.

– Message 3: has the members of G display and compare the value
of digests through the empirical channel. Notice that, like both the
previous protocols we have considered, this digest follows P1 and
includes the whole data of the protocol.

4.1 Protocol Analysis

We shall call this the SHCBK protocol, for Symmetrised Hash Commit-
ment Before Knowledge. The final result is that the members of G are
authenticated to each other as the owner of the information they have
introduced. We can analyse the protocol as follows:

1. Before its Message 2 is sent, every node has N long hashes that are
computed from the N different unguessable hash keys, but trustwor-
thy node A has not revealed its own hash key to the group. Due to the
Dolev-Yao model of the network, the intruder can modify Messages 1
to transmit its own long hashes to other parties, but he has never got
any idea of what value of the final digest of any node still receiving
Message 1’s is going to be at this stage. Therefore, the intruder cannot
constructively manipulate the long hashes in Messages 1 for his/her
own purposes. This is essentially the effect of P2.

2. Once a node A has received all Messages 1, the value of the final digest
has been completely determined. However, no other party can know
what A’s view of the final digest will be.

3. Assuming that trustworthy parties A and B have agreed on the value
of digest in Message 3, then there are two possibilities:
– If A agrees all the antecedents of the digest with B then all is well,

since this data is certain to include all correct data about A and
B.7

– Otherwise, the intruder has caused A and B to have different an-
tecedents that lead to the same digest. However, since each of A
and B was committed to its digest before anyone else could have
known this value (or any relationship between the two of them)
the best the intruder can do is to commit them blind, having no
better than a 1/H chance of success. Here, H is the number of
digest values.

7 If an intruder has introduced extra false information about either A or B, then that
node will be in a position to spot this at this stage or earlier and therefore refuse to
proceed.



We conclude that, at best, the intruder has a 1/H of any attack suc-
ceeding if there are at least two trustworthy nodes present. Further-
more, if the attack does not succeed then all trustworthy nodes T
share their views of all INFOA’s, which are, in turn, correct for all
A ∈ T .

4. The above analysis still applies even if there are corrupt participants
in the protocol. The fact that they send values that contribute to
the final digests of every node means corrupt participants can cause
trustworthy ones to disagree, but since they have no way of knowing
the digests at the point of sending these values means that there is no
strategy for them to force agreement other than running the protocol
properly.

Calling the basic protocol SHCBK1, it can be extended by a count of
nodes to create SHCBK2 for the case where all nodes are assumed to be
trustworthy.

5 Implementation

In this section, we are going to discuss how to design a good digest func-
tion as well as comparing our protocols against Vaudenay’s scheme.

5.1 Computing the Digests

There are some important points we wish to make about the computation
of the digest values. Let us first consider the non-symmetrised protocols.
Then we have to compute the digest of one nonce and N collections of
INFOA.

The first thing to observe is that the nodes are actually asked to digest
a set of (A, INFOA). This is on the grounds that it would not necessarily
be possible for a node to distinguish between identical (A, INFOA) sent
by different nodes, and re-sends by a single node A, and since the nodes
may obviously pick up the Messages 2 in different orders. It would be
normal to require stronger separateness conditions on the (A, INFOA)
than just that they were distinct: for example one would normally require
that all the names A and public keys (if in INFOA) were distinct.

So we might expect all the nodes, or at least I, to perform these
integrity checks, and for all for them to sort the pairs into the same order
before digesting them. In the following we will assume that this sorting
approach is taken, and refer to the list of (A, INFOA)s as INFOS.



Our second comment relates to the randomising effects of the digests.
It would be a great mistake to compute digest(NI , INFOS) as some func-
tion of NI and digest(INFOS), which it might be tempting to do. This is
because an intruder could then – during the exchanges of Message 1 – ma-
nipulate the sets INFOSA heard by the different nodes A provided they
will all compute the same digest(INFOSA). The fact that the intruder
cannot predict at this stage what the final digests will be (not knowing
NI) would be irrelevant, since it would know they will all calculate the
same value. As a result, what we need to compute is the keyed digest of
INFOS with respect to key, NI , denoted as digestNI

(INFOS).
What we actually require is that for essentially all pairs of distinct

values INFOS1 and INFOS2, the probability of

digestNI
(INFOS1) = digestNI

(INFOS2)

as NI varies, is never significantly different from 1/H (H = 2b being the
number of distinct digest values). More precisely, it must be intractable
to compute distinct INFOS1 and INFOS2 that respectively contain
specific (A, INFOA) and (B, INFOB) such that the above relationship
does not hold. This is the only property that our parameterised family of
digest functions must have.

It is this idea, which distinguishes the idea of being a digest from that
of being a cryptographic hash function. The latter is usually expected to
have the properties of being collision free and non-invertible. Neither of
these concepts make any sense at the typical length of digest we will be
using. In any case, these properties neither imply nor are implied by the
specification above.

In order to achieve the above specification, we need to have the prob-
ability of digestNI

(M)[i] = digestNI
(M ′)[i] be essentially equal to 1

2 for
i = 1, . . . , b when M 6= M ′, and that the probabilities for different i are es-
sentially independent. This means that a change in any non-zero number
of bits of M must have a distinct random effect on every bit of the out-
put. Let consider the following idealised framework: for i = 1, . . . , b and
j = 1, . . . , B suppose that Ri,j are independent uniform boolean-valued
random variables, based on NI

8. If we define hbi =
⊕B

j=1(Ri,j∧Mj), where
Mj is the jth bit of the input M , then digestNI

(M) = [hb1, . . . , hbb]. For-
mulated like this the function indeed seems to be closer to a digest than
a hash.
8 For them to be truly independent NI would have to have far more bits than it

actually does. In practice we should aim to have them only subtly dependent, and
in ways that are impossible to predict without knowledge of NI .



We can see that the bit di of digestNI
(M)⊕ digestNI

(M ′) is equal to⊕
Mj 6=M ′

j
Ri,j , which has the same distribution as Ri,j whenever M 6= M ′.

Thus our idealised framework meets our specification completely. As a
result, in order to get a good digest, we need to get close to this model.
One possible solution is described below, based on multiplication.

Let us divide INFOS and NI into b-bit blocks [m1, . . . , mt= B
b
] and

[n1, . . . , nk=K
b
]. We then generate pseudo random b-bits blocks ri based on

hk9. If we define S =
⊕b

i=1(mi×ri)10, we finally set digestNI
(INFOS) =

S1 ⊕ S2, where S1 and S2 are two halves of S.
We could move closer to our idealised model by increasing the amount

of calculation, for example by replacing a single multiplication of mi by
several of functions of mi. Further work is required to decide if this is
worthwhile.

For the symmetrised protocols, each party A creates its own random
unguessable data hkA, and therefore the value that corresponds to the
random nonce in the non-symmetrised protocols might be the XOR of all
hash keys. And the rest of the algorithm is the same with the previous
case.

For the purposes of computation above one would almost certainly
wish to round b up to the length of a whole number (usually 1 or 2) of
half words. The final value for the humans to compare would then be
truncated.

5.2 Efficiency

It seems reasonable to measure the efficiency of protocols in this class in
two ways: the amount of empirical, or human, effort required to complete
them; and the amount of processing required at the nodes.

The major item of work for the humans is probably the sending and
receipt of the final digest value, and the effort required to check equality.
In the case where a user can broadcast empirically to all other nodes
(as with a set of people in a room), the most efficient way of performing
this check is for one person to announce his/her value h0 and the rest
to check that their values all equal h0. Depending on circumstances they
might then each have to announce definite equality, or only announce
inequality.
9 Any high quality pseudo-random generator could be used here, One possibility is

feedback shift register seeded with hk, or several seeded with parts of hk, this can
be implemented extremely fast in hardware.

10 The integer multiplications mi × ri lead S to have 2b bits.



It seems clear, as argued in [19] and [17], that it is impossible to
bound the intruder’s chance of success to 2−k by comparing (explicitly
or implicitly) less than k bits of information. Given pre-knowledge of the
size of the group, the size check in protocols labelled 2 and 3 is essentially
free; it seems impossible to account for the difficulty of performing it in
other circumstances (though in the protocols with an initiator it simply
means that the number of Message 2b’s received by I corresponds with
the number of nodes’ INFOs that are digested).

It therefore seems that all our protocols are essentially optimal in
the amount of security they provide for a given amount of human effort,
except that in the non symmetrised cases there is the work involved in
the sending and receipt of Message 2b, which is a constant and certainly
less than the effort required for Message 4. We will see shortly that this
represents one side of an interesting trade-off.

Let W and B be the number of words and respectively bits required
to hold a long hash value: Vaudenay suggests perhaps 160 bits, so we
assume W = 5. He also suggests that 15 or 16 are reasonable choices for
b, the width of the digest, and we will adopt that too. We also assume that
nonces and other strong cryptographic values have the same length B.
Aside from the protocols labelled 3, the only processing effort required in
implementing our protocols is the computation of long hashes and digests.
In order to assess the complexity of our protocols we have to have a model
of the complexity of computing hashes and digests. It is clear that the
cost of computing the k-bit hashk(M) increases linearly with the length
of M . It also seems clear that it will increase significantly with k, and a
simple model in which each word of a running temporary value of length
k is combined with each input word suggests our overall model might
be k × length(M), as indeed does the idealised model presented in the
previous section. Therefore we will adopt that assumption in the following
analysis. Since well-known hash algorithms tend to be fixed width, and
vary significantly in their individual costs, it is hard to be too definite
about this rule. Our analysis of SHA-256 shows it to have a cost perhaps
20 times that of the digest algorithm we described above, based on the
random number generator quoted in the footnote earlier.

It follows that the total processing cost of the non-symmetrised pro-
tocols labelled less than 3, with a group of size N and where the total
size of all the INFOs is M , is, at every node W ×W + M = 25 + M .

In the symmetrised case there is more work to do since now each
node has to check N − 1 long hashes and create one. Therefore the above



quantity increases to N ×W ×W +M = 25N +M This, of course, is the
other side of the trade-off mentioned above.

Vaudenay’s protocol, in its basic form, relates only to the transmission
of a message from one party to another. In order to compare it with ours
we need either to restrict our protocols to this function or to expand
Vaudenay’s so that it achieves the broadcast of a message from each
member of a group to each other. We can do both of these things.

We will assume that the commit scheme used in [19] to commit a
message of length M and r of length ≤ 32 takes max(M,W ) (either to
generate or check) since it seems to require randomisation that introduces
additional nondeterminism to that introduced by r equivalent to adding
a hidden variable of length B− b. We will assume, for ease of calculation,
that M ≥ W .

With W = 5 it follows that for transmission of a single message of size
M this protocol requires, at each of the two nodes, processing of order
W ×M = 5M . Our symmetrised protocol does this in 25 + M .

We observe that Vaudenay’s protocol can be extended to a group
protocol that achieves the same goal as our schemes: each node has to
commit once and open (or decommit) N − 1 times, and no digest is
required. (The users will finally compare the XOR of one short random
string per node.) If M is the total size of all the INFOs in our protocols,
then the equivalent message that each party in Vaudenay’s group version
commits to will be of length M

N . In order for the commit scheme to have
an equal level of security as our long hash, the lengths of both the random
data of the input of the commit scheme and its output need to be W . As
a result, the processing cost of each party in Vaudenay’s group version
is approximately N ×W × (M

N ) = M ×W = 5M . This will normally be
significantly more expensive than our protocols.

It seems clear that our protocols are the more efficient in terms of
computational power because we followed P1: we have only had to bind
the messages cryptographically to the level required for human interac-
tion. Vaudenay chose to bind the messages to random values earlier, which
would have been subject to combinatorial attack had he not done so with
more complex cryptography. The probability of a successful attack on
either his protocol or ours is essentially 2−b.

6 Conclusion and Future Work

In this paper, we have analysed the strengths and weaknesses of a number
of protocols that form a secure network using the empirical channel. We



further extend these protocols to propose two group protocols that resist
combinatorial attack and work in different levels of trustworthiness. In
addition, both of them are less expensive in computing power compared
to [19].

We have exposed some clear principles which underlie our protocols
and demonstrated their correctness. We hope that they will find use in a
wide variety of applications.

We have introduced the concept of a local PKI, that is in effect the
result of the run of one of our protocols, since they bind information
such as public keys, identities and context together in an authenticated
way. It is natural to ask how one can extend this analogy to allow for
adding nodes, forming the union of two such groups etc. This of course
raises interesting questions of how trust based on confidence in particular
(initiator) nodes or perhaps subgroups of G can extend in transitive ways.
This will be a topic for future research.

It is natural to ask how protocols of this form fit into the standard
models and analysis tools for cryptographic protocols. The answer is that
our protocols are rather outside the standard models for two orthogonal
reasons. The first is that they are group protocols with an arbitrary num-
ber of participants: most methods are only fully developed for protocols
with a small fixed number. The second is that they are intended to counter
a much stronger attacker model than exists in the standard models: one
who can perform combinatorial searches. We are developing a modified
version of the standard CSP model for protocols that incorporates such
a strong attacker and expect to report on that in a subsequent paper.

References

1. D. Balfanz, D. Smetters, P. Stewart, and H. Wong. Talking to strangers: Authen-
tication in Ad Hoc Wireless Networks. Proc. 9th Annu. Network and Distributed
System Security Symp 2002, San Diego, California, USA, 2002.

2. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. Advances
in Cryptology - Crypto 1993, LNCS vol. 773, Springer-Verlag, pp. 232-249, 1993.

3. M. Bellare, R. Canetti and H. Krawczyk. A Modular Approach to the Design and
Analysis of Authentication and Key Exchange Protocols. 30th STOC, 1998

4. M. Bellare, D. Pointcheval and P. Rogaway. Authenticated Key Exchange Secure
against Dictionary Attacks. Advances in Cryptology - Eurocrypt 2000, LNCS vol.
1807, Springer-Verlag, pp. 139-155, 2000.

5. www.bluetooth.com/developer/specification/specification.asp

6. M. Čagalj, S. Čapkun, and J. Hubaux. Key agreement in peer-to-peer wireless
networks. Proceeding of the IEEE, Special Issue on Security and Cryptography,
vol. 94, no. 2, February 2006.



7. R. Canetti and H. Krawczyk. Analysis for Key-Exchange Protocols and Their Use
for Building Secure Channels. Advances in Cryptology - Eurocrypt 2001, LNCS vol.
2045, Springer-Verlag, pp. 453-474, 2001.

8. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally Com-
posable Password-Based Key Exchange. Advances in Cryptology - Eurocrypt 2005,
LNCS vol. 3494, Springer-Verlag, pp. 404-421, 2005.

9. S. J. Creese, M. H. Goldsmith, R. Harrison, A. W. Roscoe, P. Whittaker, and I.
Zakiuddin. Exploiting empirical engagement in authentication protocol design. In
D. Hutter and M. Ullmann, editors, Proceeding of 2nd International Conference
on Security in Pervasive Computing (SPC′05) volume 3450 on LNSC, Boppard,
Germany, April 2005. Springer.

10. S. J. Creese, M. H. Goldsmith, A. W. Roscoe, and M. Xiao. Bootstrapping multi-
party ad-hoc security. In Proceeding of IEEE Security Track, 2006, to appear.

11. S. J. Creese, M. H. Goldsmith, A. W. Roscoe, and I. Zakiuddin. The attacker in
ubiquitous computing environments: Formalising the threat model. In T. Dimi-
trakos and F. Martinelli, editors, Workshop on Formal Aspects in Security and
Trust, Pisa, Italy, September 2003. IIT-CNR Technical Report.

12. S. J. Creese, M. H. Goldsmith, A. W. Roscoe, and I. Zakiuddin. Security properties
and mechanisms in human-centric computing. In P. Robinson, H, Vogt, and W.
Wagealla, editors, Privacy, Security and Trust within the Context of Pervasive
Computing, Kluwer International Series in Engineering and Computer Science.
Springer, 2004. Proceedings of Workshop on Security and Privacy in Pervasive
Computing, Wien, April 2004.

13. Gavin Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol
using FDR.Tools and Algorithms for the Construction and Analysis of Systems,
LNCS vol. 1055, Springer Verlag, pp. 147-166, 1996.

14. C. Gehrmann, C. Mitchell, and K. Nyberg. Manual Authentication for Wireless
Devices. RSA Cryptobytes, vol. 7, no. 1, pp. 29-37, 2004.

15. Jaap-Henk Hoepman. Ephemeral Pairing on Anonymous Networks. In d. Hutter
and M. Ullmann, editors, 2nd International Conference on Security in Pervasive
Computing (SPC′05) volume 3450 on LNSC, pages 101-116, Boppard, Germany,
April 2005. Springer.

16. M. Jakobsson and S. Wetzel. Security Weaknesses in Bluetooth. CT-RSA 2001,
LNCS vol. 2020, Springer-Verlag, pp. 176-191, 2001.

17. A. W. Roscoe. Human-centred computer security. See
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/113.pdf,
2005.

18. F. Stajano and R. Anderson. The resurrecting duckling: Security issues for ad-hoc
wireless networks. Security Protocols 1999, LNCS vol. 1976, Springer-Verlag, pp.
172-194, 1999.

19. S. Vaudenay. Secure Communications over Insecure Channels Based on Short
Authenticated Strings.Advances in Cryptology - Crypto 2005, LNCS vol. 3621,
Springer-Verlag, pp. 309-326, 2005.


