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Abstract—Accurate occupancy information of indoor envi-
ronments is one of the key prerequisites for many pervasive
and context-aware services, e.g. smart building/home systems.
Some of the existing occupancy inference systems can achieve
impressive accuracy, but they either require labour-intensive
calibration phases, or need to install bespoke hardware such
as CCTV cameras, which are privacy-intrusive by default.
In this paper, we present the design and implementation
of a practical end-to-end occupancy inference system, which
requires minimum user effort, and is able to infer room-level
occupancy accurately with commodity WiFi infrastructure.
Depending on the needs of different occupancy information
subscribers, our system is flexible enough to switch between
snapshot estimation mode and continuous inference mode, to
trade estimation accuracy for delay and communication cost.
We evaluate the system on a hardware testbed deployed in a
600m2 workspace with 25 occupants for 6 weeks. Experimental
results show that the proposed system significantly outperforms
competing systems in both inference accuracy and robustness.

I. INTRODUCTION

Occupancy awareness has become a fundamental build-

ing block for various ubiquitous services, and attracted

a lot of interest from both academia and industry. For

instance, building automation systems [7] rely on instant

occupancy to dynamically adjust the heating, ventilation

and air-conditioning (HVAC) facilities to reduce energy

consumption while improving user comfort. Workplace co-

ordination systems [13] leverage the room-level presence

and availability of users to enable social interactions and

foster potential collaborations. Furthermore, smart homes

learn the behaviour pattern of users from their occupancy

over the long term, which is the key for many applications

such as activity recognition, elderly monitoring and breach

detection. There has been a solid body of work on inferring

occupancy in indoor environment. Early systems use passive

infrared (PIR) sensors [2] and magnetic reed switches [17]

to detect motion or door open/shut events. However, those

sensors only provide binary information and are inherently

noisy, and thus are not suitable for accurate inference. Other

systems [9] use only the historical occupancy data to infer

live occupancy, but they need long-term calibration to work.

On the other hand, systems using information-rich sensors,

such as Kinect [11] or cameras [8], are very accurate in

tracking human movement, but are privacy-intrusive and

not suitable for many environments such as homes and

hospitals. In addition, transmitting and processing visual data

is typically expensive, which requires significant amount of

computation and communication resources. Recently, WiFi

infrastructure in buildings has been considered for the task

of occupancy inference [15, 4]. For example, [15] harvests

beacons emitted from nearby WiFi access points (APs),

and is able to determine room-level occupancy information.

However, it needs to install a dedicated app on mobile

devices and constantly perform WiFi scans, which requires

extra user effort and would drain the battery quickly. The

system in [4] considers a different approach, which infers

user occupancy by looking at the connections between

mobile devices and APs. If a device is connected to an AP,

the system then assigns the occupant to the area near that

particular AP. However, in practice a device is not always

connected to the closest APs, which significantly limits its

inference accuracy.

In this paper, we make occupancy inference in large

indoor space practical and efficient. We propose a novel non-

intrusive Wireless Occupancy Inference (WiPin) system,

which infers accurate occupancy information with minimum

user effort and existing WiFi infrastructure. The idea is that

when a user is present in a familiar indoor environment such

as her office, the smart devices carried by her (i.e. mobile

phones or wearable devices) tend to connect and exchange

information with nearby WiFi APs, with or without explicit

control of the user. For instance, the user may browse news

on web or watch videos on Youtube occasionally, while the

smartphone themselves would pull emails and update tweets

at certain intervals. Such wireless traffic can be effectively

captured by the APs, where our system further analyses the

received packets to infer occupancy and identify the users

through MAC addresses of their devices at the same time.

To balance efficiency and accuracy, the proposed WiPin

system consists of two modules, a lightweight front-end

which runs on the resource-constrained WiFi APs, and a

back-end that resides on the cloud. The front-end senses

the live WiFi packets emitted from the user devices, and

estimates the current occupancy in real-time, which can be

directly fed to the subscribers. In the cases where inference

accuracy is the predominant factor, the back-end module

of WiPin is activated, which fuses the estimated snapshot
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Figure 1: Architecture of the proposed WiPin system. 1. front-end nodes; 2. back-end server; 3. occupancy information

subscribers. WiPin includes two major components; snapshot occupancy estimation runs on the front-end nodes while

continuous occupancy inference runs on a back-end server.

occupancy with historical occupancy data, to infer much

finer-grained occupancy and cope with challenging events,

e.g. when users change rooms without bringing their phones.

In this way, WiPin dynamically tasks the front-end and back-

end, to cater for the needs of different subscribers, e.g.

building automation systems typically require crisp response

to control heating/cooling/lighting, while activity recognition

applications would prefer accurate occupancy information,

but are more delay tolerant.

Concretely, the technical contributions of this paper are:

• We build WiPin, a practical end-to-end occupancy in-

ference system, which uses commodity WiFi hardware,

requires minimum user effort and is able to robustly

infer room-level occupancy.

• We design an efficient snapshot occupancy estimation

algorithm, which can determine the occupancy of users

solely based on the signal strength of their mobile

devices, and runs in real-time on resource-constrained

wireless routers.

• We propose a continuous occupancy inference approach

to further improve the estimated occupancy, by taking

the temporal correlations between snapshot occupancy,

and historical occupancy data into account.

• We implement the proposed WiPin system in a hard-

ware testbed, and evaluate its performance over 6
weeks. Extensive experiments show that WiPin is su-

perior to the competing systems in both accuracy and

robustness.
The rest of the paper is organised as follows. Sec. II

provides an overview of the proposed WiPin system. Sec. III

presents the proposed snapshot occupancy estimation algo-

rithm, while Sec. IV discusses the continuous occupancy

inference approach. Sec. V evaluates our system in real

world, and the related work is covered in Sec. VI. Sec. VII

concludes the paper and discusses directions of future work.

II. SYSTEM OVERVIEW

To be practically useful, the WiPin system is designed

to satisfy the following criteria: a) it should require mini-

mum effort from the occupants, and should not seek their

persistent participation, e.g. installing dedicated apps or

running daemon processes on their devices; and b) it should

be flexible, and is able to seek the best trade-off between

inference accuracy and delay. To this end, we build WiPin

as a special wireless distribution system, where the com-

mercial WiFi routers are also sensor nodes to sniff wireless

traffic generated from the occupants’ mobile devices. Fig. 1

illustrates the architecture of the proposed WiPin system.

Front-end: At runtime, the WiFi routers log the Received

Signal Strength (RSS) of the captured packets, together with

the associated device identifiers (i.e. MAC addresses). The

data is then forwarded to the front-end of the proposed

WiPin system. In our implementation, the front-end runs

at the sink node, which estimates the snapshot occupancy

based on the RSS measurements, i.e. the current number of

occupants within a zone, e.g. a room or working area.

Back-end: In the cases where higher quality occupancy

information is needed, the estimated snapshot occupancy is

forwarded to the back-end for further inference. The back-

end caches the stream of estimated snapshot occupancy,

and infers the continuous occupancy by exploiting their

temporal correlations. When historical occupancy data is

available, WiPin also incorporates such prior to further

improve occupancy inference.

Now we are in a position to present the proposed

approaches of snapshot occupancy estimation as well as

continuous occupancy inference.

III. SNAPSHOT OCCUPANCY ESTIMATION

Let us assume an indoor environment can be divided

into M zones, where a zone can represent an individual

room, or a specific area in large open space. For simplicity,

we assume that each zone is associated with a WiFi AP
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Figure 2: {a}. WiFi RSS by different mobile devices at the

same location (each curve is averaged out from multiple

measurements; {b}. Visualization of RSS matrix of 5 an-

chors: 1 sink node (S) and 4 remote nodes (R1-R4), where

−8dBm is the offline calibrated value for self-sensed RSS.

(referred to as anchors hereafter), whose location is known

beforehand. Note that although such configuration requires

dense infrastructure, it will become standard in the near

future, since the next generation WiFi 802.11ad operates

on 60GHz, whose communication range is much smaller.

Therefore in this case, the problem of estimating occupancy

(i.e. determining which zone a use is in) is equivalent with

assigning the devices of the occupants to the nearby anchors

based on their proximity.

As discussed in the previous section, the proposed WiPin

system estimates the snapshot occupancy in real-time given

the current observed RSS measurements. However, it is

well known that in practice, RSS measurements can vary

significantly under environmental dynamics, which makes

occupancy estimation inaccurate. To address this problem,

WiPin considers a two-step estimation approach, where it

firstly performs an initial estimation step by clustering the

occupants devices based on their RSS signatures, and then it

reconciles the current assignment to remove possible outliers

caused by environmental dynamics, e.g. signal blockage.

A. Initial Estimation

RSS Normalisation: In practice, for a given anchor, the

observed RSS measurements of different devices can vary

significantly, even when the devices are fixed at the exact

same position (see Fig. 2{a}). This may jeopardise occu-

pancy estimation, since such variation in RSS will introduce

significant errors during clustering. To address this issue,

WiPin uses the ordinary Procrustes analysis method [23]

to normalise the RSS measurements among heterogeneous

devices, by exploiting the fact that their RSS variations

across different anchors tend to be similar (see the shapes

of the lines are very similar in Fig. 2{a}).
Zone Assignment: At a fixed timestamp, for a given

devices, let o be the vector of normalised RSS measure-

ments, where o = [o1, ..., oM ], and oi is the observed

RSS (of the mobile devices) from the i-th anchor. Given

o, the task of zone assignment is to find the anchor that

is closest to the devices, i.e. assigning this occupant to

a particular zone (assuming one to one mapping between

anchors and zones). A naive approach could be proximity-

based, i.e. just picking up the anchor with strongest RSS.

However, this is very unreliable in the presence of wireless

signal variations. The state of the art systems (e.g. [15])

consider a fingerprinting-based approach, which cope with

the enviornmental dynamics by periodically surveying and

re-calibrating the radio map of the indoor space.

WiPin considers a different approach, which uses the

anchors as the references, to adaptively evaluate the “base-

line” of RSS measurements. The key observation here is

that an anchor of the WiPin system also generates wireless

traffic when operating, which can be overheard by others

in the same way as that of the occupants’ mobile devices.

Therefore, we can compute the pairwise RSS measurements

between anchors (as visualised in Fig. 2{b}). Let ri =
[r1, ..., rM ] be the reference RSS vector of the i-th anchor,

where rj , 1 ≤ j ≤M is the RSS measurement made by the

j-th anchor. In other words, ri is essentially the “expected”

device signal strength values of the i-th zone, observed

by all anchors. In this way, the problem of assigning a

device to a zone can be cast into that of finding the anchor

whose reference RSS vector ri is the closest to the RSS

measurements o of that device:

f(o) = argmin
i

D(ri,o) (1)

where D(·, ·) is a distance metric (in our case we consider

the Euclidean distance), and f(·) is a function that assigns

the devices to a zone. Therefore, at the current timestamp,

the RSS measurements of all devices assigned to the i− th
zone can be represented as:

Ψi := {o ∈ R
1×M |f(o) = i} (2)

where the population of the i-th zone is the cardinality of the

set |Ψi|. Note that our approach is inherently robust to RSS

variations, since the reference RSS vectors ri are subject to

the same signal variation as the RSS measurements of the

occupants’ devices.

B. Mis-assignment Mitigation

The zone assignment function f essentially assigns the

device to the anchor (of a zone) that shares the most similar

RSS values. However in practice, such assignment may be

inaccurate, i.e. the anchor may not be in the same zone

with the device. For instance, as shown in Fig. 3, Alice is

an occupant in zone 1 but is assigned to zone 2, since the

observed RSS measurements of her devices is more similar

with the reference RSS vector of anchor B. In this case,

although anchor A is the physically closest one to Alice,

the line-of-sight (LOS) path between the her and anchor A

is blocked by another occupant, which results in significant

RSS attenuation and causes f to make the wrong decision.

In the following text, we explain how the proposed WiPin
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Figure 3: An occupant Alice in zone 1 is misclassified to

zone 2 due to signal attenuation. Shaded circles represent

the equal-range clusters formed by her peers. Among these

centroids of clusters, Alice is closest to the one of zone 1.

system is able to a) for the i-th zone, detect such mis-

assignment events; and b) re-assign the devices to the correct

zone.

Detect Mis-assignment: Recall that in the initial estima-

tion, WiPin computes a set of RSS measurements Ψ for each

zone. We define the mean of RSS measurements for a given

zone as:

ō =
1

|Ψ|

|Ψ|∑

j=1

o
j (3)

Intuitively, ō specifies the centroid RSS measurements of the

given zone, and the distance between a RSS measurements

vector oj and ōi indicates how well the j-th occupant can

be clustered into the current zone. If a device with oj that

is very far away from the computed centroid, it is very

likely to be mis-assigned to that zone, i.e. it is an outlier.

To detect such outliers, let us first define the assignment

error of a given occupant j as a random variable ej , where

ej = oj−o. Then the assignment error for a given zone can

be represented as e = [e1, ..., e|Ψ|], where |Ψ| is the total

number of occupant currently assigned to this zone.

Ideally if there is no mis-assignment, the assignment

error (i.e. residual) e for a given zone should be bounded.

Formally, we require the following restricted residual (RR)

constraint to hold for every zone:

P (‖e‖ ≥ ξ + ε) ≤ η (4)

Here ξ is the confidence threshold, ε is a slack variable, and

η ∈ [0, 1] denotes the maximum tolerance. It can be shown

Algorithm 1: Sequential Outlier Detection Algorithm

Input: Ψ - The set of RSS vector defined in (2)

ξ - The confidence threshold

η - The maximum tolerant probability of

deviation

ε - The slack variable

Output: Ψoutlier - All the outliers

Ψ̂i - The inliers of Ψi

1 Ψoutlier ← ∅

2 for each zone i ∈ {1, 2, . . . ,M} do

3 Ψ̂i ← Ψi // Initialize Ψ̂i

4 while |Ψ̂i| > 2 do

// Check RR by Equ. (5)

5 if
‖Σee+ē

T
ē‖

(ξ+ε)2 > η
M

then

6 q ← argmax
o
j

‖ej‖ // Outlier

detection

7 Ψ̂i ← Ψ̂i \ {q} // Set difference

8 Ψoutlier ← Ψoutlier ∪ {q} // Set

union

9 else

10 break

11 return Ψoutlier, [Ψ̂1, ..., Ψ̂M ]

that a sufficient condition for Eq. (4) to hold is [19]:

‖Σee + ēT ē‖
(ξ + ε)2

≤ η

M
(5)

where ē and Σee are the mean and covariance of e respec-

tively.

Algo. 1 shows how the proposed WiPin system applies

the above Eq. (5) to each zone, and detects the outliers.

The idea is that we iteratively move the occupants whose

RSS measurements are “far away” from the centroid of

the current assigned zone to the outlier set, until the RR

constraint holds on the inlier set. The complexity of Algo. 1

is cubic in the worst case, but in practice, we found it is

very efficient since RR constraint tends to converge in just

a few iterations. Note that different ξ and η may affect the

performance of WiPin, e.g. smaller ξ and η means WiPin

may produce more outliers.

Re-assign Outliers: Given the outliers Ψoutlier, WiPin re-

assigns them to different zones with a probabilistic mem-

bership function. Concretely, for a given RSS measurement

o, the likelihood that it belongs to zone i is:

µi(o) =

{
1 o ∈ Ψ̂i

‖o−ō
i‖

∑
M
i=1

‖o−ōi‖
o ∈ Ψoutlier

(6)

where ōi is the mean RSS measurement of the i-th zone.



Then the number of occupants in zone i can be evaluated

as
∑

µi(o).

IV. CONTINUOUS OCCUPANCY INFERENCE

The snapshot occupancy estimation algorithm discussed in

the previous section is extremely efficient, and runs in real-

time on commodity WiFi routers. However, it only considers

the data captured at single timestamps, and assumes the

occupants should carry their mobile devices with them all

the time. In practice this may not always be the case,

e.g. an occupant might go out for lunch but forget to

bring her phone. To cope with such challenging scenarios,

the proposed WiPin system also considers a continuous

occupancy inference approach, which exploits the temporal

correlation of the sequence of estimated snapshot occupancy,

and incorporates historical data to improve inference perfor-

mance.

Let us assume at each timestamp t (t = 1 : T within

one day), the frond-end of WiPin generates a collection of

snapshot occupancy estimation (i.e. number of occupants)

zt = [z1t , .., z
i
t, z

M
t ] for all M zones. On the other hand,

we also assume that we possess certain historical occu-

pancy information [h1′ , ...,hT ′ ], where ht′ is the historical

occupancy of the indoor environment at time t′, obtained

through a previous offline calibration phase. Note that here

we assume the historical timestamps t′ can be mapped

uniquely to the current t, i.e. they represent the same time

of the day (e.g. 12pm on Monday), but during different

weeks. Intuitively, the historical occupancy represents the

“expected” occupancy status of the building learned from the

past. With a slight abuse of notation, we denote the historical

occupancy of the environment as [h1, ...,hT ] hereafter. Let

st be the actual occupancy at t, which is unknown. Then

the task is to infer the sequence the real occupancy S =
[s1, ..., sT ], given the observations [z1, ..., zT ] and historical

[h1, ...,hT ]. In the following text, we first explain who the

proposed WiPin system extracts informative features from

the raw observations, and then show how it reliably infers

the latent states, i.e. the real occupancy with the extracted

features.

Feature Functions: WiPin considers the following fea-

ture functions. f1(st, zt) and f2(st,ht) checks how the

current observed occupancy zt and the corresponding his-

torical occupancy ht support the latent state st. On the

other hand, feature functions f3(st, µ([zt−w, ..., zt+w]) and

f4(st, σ([zt−w, ..., zt+w]) evaluates the comparability be-

tween the state st and a window of 2w observations

[zt−w, ..., zt+w], where µ(·) and σ(·) return the mean and

standard deviation of the measurements, respectively. Fi-

nally, function f5(st−1, st, [zt−w, ..., zt+w]) models the cor-

relation between the observed occupancy during [t−w, t+w]
and the state transitions, which is defined as:

f5 = ln
1

1 + σ
√
2π
− (zt − zt−1)(st − st−1)

1 + 2σ2
(7)

Figure 4: Testbed of the proposed WiPin System.

where σ computes the standard deviation of the measure-

ments.

State Inference: Given the feature functions, the proposed

WiPin system considers a state inference approach based

on Conditional Random Fields (CRFs) [16]. In practice,

CRFs are discriminative models, which directly capture the

conditional dependencies between states and observations.

Such correlation can be factored as the product of potentials:

p(s1:T |z1:T ,h1:T ) = c−1 ·
T∏

t=2

Φ(st−1, st, z1:T ,h1:T ) (8)

where c is a normalising constant. The potentials Φ is the

log-linear combination of the above defined feature functions

f = [f1, ..., f5], and Φ = exp{w · f}. w is the relative

weights between feature functions, and is learned from the

data. Finally, our system uses Viterbi decoding to compute

the most likely state sequence given the observations and

historical data, which is:

s∗1:T = argmax p(s1:T |z1:T ,h1:T ) (9)

V. EVALUATIONS

A. Experimental Setup

Experiment Site: We built a 600 m2 testbed in an office

environment, which can be partitioned into 7 zones, as

shown in Fig. 4. In the testbed, we deploy 8 commercial

off-the-shelf WiFi routers, which forms a star network with

the sink node placed in the centre.

Data Acquisition: We recruited 25 volunteers to participate

our 6-weeks experiments (there are in total 42 occupants

working in the testbed). During this period, the mobile

devices of all participants were configured to use WiPin to

connect to the Internet. To understand the real occupancy,

we considered three different modalities: a) surveillance

video clips from the CCTV cameras; b) manual occupancy

logging; and c) passive infra-red (PIR) sensors fitted on

desks. Ground truth is evaluated by majority voting [21]

over data collected from these modalities.
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B. Competing Approaches

Snapshot Estimation: For snapshot estimation, we com-

pare it with two competing approaches: Connection based-

The WiFi connection based approach is similar to the one

adopted in [4], in which WiFi connection logs of APs are

used to estimate occupancy levels. Adaptive-fingerprinting

based- This method can be seen an enhanced version of the

WiFi fingerprinting method [15], in which they offline cal-

ibrated WiFi fingerprints as references for online matching.

To mitigate the effects of environmental dynamics, we use

real-time RSS index of anchors as dynamic fingerprints.

Continuous Inference: To validate the superiority of CRFs

in continuous inference, we compare it with a SVM [20].

Considering the inference is a multi-class problem while

basic SVMs only give binary solutions, we employ an

one-against-all method [14] to fuse multiple SVMs binary

decisions to a multi-class result.

C. Evaluation Methods

Parameter Learning: To train the CRFs and SVM, we

partitioned the 30 days of RSS measurements and occupancy

data into training and testing sets. 5-fold cross validation

is performed on the training data spanning a period of 25
days, randomly picked out from the permutated dataset.

Hyper-parameters of WiPin, e.g., thresholds of Algo. 1

regularization weights of classifiers, are derived from grid

searching on the basis of validation accuracy.

Performance Metrics: In order to comprehensively quantify

the accuracy of WiPin, 5 metrics are adopted in total.

1) NRMSE: we use the normalized root mean squared error

(NRMSE) [6] to measure the overall accuracy. Given the

time series of estimated zonal occupancy s1:T and ground

truth data g1:T , the NRMSE between s1:T and g1:T is

defined as

NRMSE(g1:T , s1:T) =
‖g1:T − s1:T ‖/

√
T

max(g1:T )−min(g1:T )

where max(·) and min(·) takes the max/minimum value

of the time series. Same as [5], we study the 2) mean,

3) standard deviation and 4) 95% percentile of ℓ1 errors

respectively. We propose a new metric 5) worst-case ratio

that quantifies the system robustness. The worst case of

occupancy inference is when a zone is occupied by at least

1 people but the system estimates empty occupancy. The

proportion of such errors in instances is referred as worst-

case ratio, which is crucial for real-world implementations.

D. Experiment Results

Front-end: Tab. I summarizes the accuracy of different

front-end implementations. It’s noteworthy that snapshot

estimation outperforms its two competing opponents by 37%
and 27% respectively in terms of NRMSE. Meanwhile, its

robustness is justified by 95% percentile error and worst-case

ratio. Moreover, as shown in Fig. 5, the worst (max) error of

the snapshot estimation approach is only 4.66, which is also

lower than Connection and Adaptive-fingerprint approaches

(5 and 6 respectively). It indicates that by re-labeling

outliers, WiPin is able to improve tentative estimations.

Note that WiPin achieves this directly on the front-end.

The Connection based approach is suffering form the AP

handover problem that phones may stick their connections

to a router till it loses signal reception totally. Therefore,

errors will be introduced since the connected router for a

device is not necessary the nearest one. In addition, RSS

is a more agile indicator for device mobility, hence the

Adaptive-fingerprint based approach performs better than the

Connection one (see Fig. 5).

Back-end: SVM and CRFs further reduced the errors of

best front-end estimations by 34% and 52% (see Fig. 5 and

Tab. I). Notably, the exact classification rate is not increased

much by CRFs and SVM, however they restrict deviations

thereby to enhance accuracy and robustness compared with

snapshot estimation. It indicates that continuous inference

is a more desirable way to interpret occupancy dynamics.

Beyond this, we also found that CRFs are more suitable

for continuous inference in WiPin. SVM converges within 3
persons while CRFs converges within 2 persons for 95% of

cases. Except for worst-case ratio in which SVM is slightly

better, CRFs comprehensively outperform SVM in terms of

all other metrics. Shown in Fig. 8, SVM roughly captured

the trends of occupancy transitions. However its predictions

change abruptly sometimes and may give false alarms even
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various predictions of Public Office (B).

Metric
Connection

based
Adaptive-

Finger.
Snapshot

Estimation
Conti. Infer.

-SVM
Conti. Infer.

-CRFs

NRMSE 0.271 0.250 0.197 0.130 0.094

Mean ℓ1

error total
1.615 1.381 1.055 0.775 0.560

Std. dev.
ℓ1 error

1.412 1.211 0.998 0.894 0.661

95% percen.
ℓ1 error

4 4 3 3 2

Worst-case
ratio

1.07 9.5 7.8 4.2 4.8

Table I: Specific Performance Comparison of all metrics.

in obviously unoccupied periods. This is because SVM does

not exploit the intrinsic structure among outputs but predicts

on separate samples. In contrast, CRFs are able to provide

smooth predictions and identify some critical periods, e.g.,

work hours and off-duty hours. Although such smoothness

in CRFs occasionally results in skips of sharp transitions

from the ground truth data. It seems like that CRFs act like

another filter posed on the SVM’s results by considering the

structure in the sequence.

Impact of query interval: WiPin is designed to provide

system subscribers with accurate occupancy levels when

they have different query intervals. To examine this, we

downsample measurements of interval sizes from 5 minutes

to 20 minutes and investigate its performances. As shown

in Fig. 6, the accuracy of continuous inference decreases

slightly with the increase of interval length. This is because

temporal correlations between occupancy samples decay

with the increase of delay length, which blurred the chain

structure in outputs. However, when analyzing the error

distributions, we found that though the exact classification (0
error cases) rates fluctuate, most errors quickly converge to

1 person for all the interval lengths. As a result, the degree

of declining brought by longer delay lengths is limited, and

WiPin is still able to infer relatively accurate results. Consid-

ering that commonly query intervals of occupancy systems

are below 20 minutes [5], WiPin is able to accommodate

subscribers with various needs in practice.

Computational Cost: We evaluate the overheads of differ-

ent methods in WiPin. Specifically, we measure the CPU

time when the number of mobile devices is of around 80%
capacity in each monitored zone. The result in average

is shown in Fig. 7. For front-end occupancy estimation

implemented on the router, connection based and adaptive

fingerprints are superior to snapshot estimation in terms of

computational efficiency. However, the overhead of snapshot

estimation is far below the 1-second updating interval which

incur very limited delay in processing. When it comes to

continuous inference, CRFs outperforms SVM by ∼ 50%.

The computation bottleneck of SVM lies in that it has to use

multiple binary SVMs to give multi-class predictions, while

CRFs infer the state directly with Viterbi algorithm.

VI. RELATED WORK

Occupancy Sensing A major distinction among occupancy

inference systems lies in different sensors adopted in the

system. Popular sensors for occupancy detection include

PIR motion sensors [1], magnetic reed switches [17] and

CO2 sensors [5]. Nevertheless, due to the sensor intrinsic

limitation, it’s difficult for them to detect occupants when

they are relatively motionless. To address this problem,

POEM [8] combined the ceiling mounted camera and motion

sensors to largely improve the occupancy detection accuracy

(94%) in a power-efficient way. In the context of radio

based sensing, Sentinel [4] leverages the requests received

by the RADIUS server and is able to output near real-time

occupancy. Sentinel takes the initiative to leverage the ex-

isting WiFi infrastructure and requires minimal calibration.

However, such WiFi connection based systems suffer from

AP handover problem especially in personal networks. Ariel

[15] requires intrusive app installation, and its accuracy is

affected by environmental dynamics.

In contrast, the proposed system makes use of the ex-

isting WiFi infrastructure and sniffs the RSS packets in a

non-intrusive way. No applications are required for usage.

Moreover, WiPin is self-contained and cost-efficient to be

accessed by various occupancy information subscribers.

State Inference Model based inference techniques are well

established for occupancy prediction [10, 9] and most of

them are developed on the basis of Markov chain theory. The

states to be inferred are vectors in which each component

represents the number of occupants in each zone. How-

ever, these methods solely depend on historical information,

which blinds the system to solve the issue incurred by

deviations of online occupancy from historical calibration.

WiPin hybridizes real-time measurements and offline cal-

ibrations thereby better efficacy is achieved. Moreover, we

deeply investigate the patterns among measurements and

adopt utility theory to boost system robustness to outliers.

To our best knowledge, it’s the first time that an occupancy

inference system like WiPin integrates risk-sharing concepts.



Fingerprinting-based Indoor Positioning Mobile device

based wireless localization approaches typically calibrate

and build radio map offline and estimate locations by online

fingerprint matching [3, 22]. Not only the fingerprints survey

is labor-intensive [12] but the developed radio map gradually

becomes obsolete along with environment changing [18].

However, WiPin does not require fingerprinting calibration

process at all. The adaptiveness of anchors makes WiPin

free of war-driving site surveys and re-calibrations.

VII. CONCLUSIONS

In this paper, we design WiPin, a robust occupancy

inference system based on commercial WiFi hardware.

The proposed system contains a front-end and a back-end,

where the front-end runs directly on the WiFi routers,

and estimates the snapshot occupancy of the indoor

environment in real-time. On the other hand, when accuracy

is the primary concern, our system is able to exploit

the temporal correlations between the estimated snapshot

occupancy, and incorporate historical data to improve

inference accuracy, at the cost of certain fixed delay.

We implemented and tested the proposed WiPin system

on a real-world testbed, and experimental results show

that: a) The front-end of our system outperforms the

existing approaches significantly, by reducing the inference

error up to 37%; b) when the back-end is activated, it

is able to further double the inference accuracy; c) our

system is robust to environmental changes and works well

under different parameter settings, without incurring much

computational overhead; d) in certain cases, the proposed

system is accurate enough to infer room-level positions

of individual occupants. For future work, we plan to

improve WiPin, so it is able to cope with certain extreme

cases, e.g. when the first occupant arrives without her phone.
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