A New Take on Detecting Insider Threats:
Exploring the use of Hidden Markov Models

Tabish Rashid
Department of Computer
Science,
University of Oxford
tabish.rashid@cs.ox.ac.uk

ABSTRACT

The threat that malicious insiders pose towards organisa-
tions is a significant problem. In this paper, we investigate
the task of detecting such insiders through a novel method
of modelling a user’s normal behaviour in order to detect
anomalies in that behaviour which may be indicative of an
attack. Specifically, we make use of Hidden Markov Models
to learn what constitutes normal behaviour, and then use
them to detect significant deviations from that behaviour.
Our results show that this approach is indeed successful at
detecting insider threats, and in particular is able to accu-
rately learn a user’s behaviour. These initial tests improve
on existing research and may provide a useful approach in
addressing this part of the insider-threat challenge.

Keywords

Insider threat; Anomaly detection system; Machine learning

1. BACKGROUND AND RELATED WORK

Organisational computer systems are increasingly threat-
ened by insiders. The Breach Level Index, which tracks
publicly disclosed breaches, shows that almost 40% of data
breaches are attributed to malicious insiders or accidental
loss due to insiders [6]. It is evident that insider threats
now represent a significant portion of the cyber-attacks an
organisation faces, even if we do not take into account the
unreported incidents. In addition, they are often the most
costly type of attack [14] due to the elevated level of trust
and access that an insider is afforded.

As insider threats have become more prevalent, there have
been numerous advances in both industry and research to-
wards attack prevention and detection. At the programme
level, the CERT division at CMU maintains a comprehensive
research directive on insider threats, and are considered pio-
neers in the field [2]. One of the major tools used in explor-
ing insider threat by CERT is System Dynamics diagrams,
which aid in defining relationships between different precur-
sors and factors indicative of an attack. Instead of sepa-

ACM ISBN XXXXXXXXXX.
DOL: http://dx.doi.org/10.1145/2995959.2995964

loannis Agrafiotis
Department of Computer
Science,
University of Oxford
ioannis.agrafiotis@cs.ox.ac.uk

Jason R. C. Nurse
Department of Computer
Science,
University of Oxford
jason.nurse@cs.ox.ac.uk

rately modelling different types of insider attacks as done
in the CERT models, a unifying framework to characterise
insider attacks has been presented in [11]. The framework is
particularly powerful for analysing cases, in order to under-
stand behaviours that may lead to an attack, the reasons for
an attack, the types of attacks that may be launched, and
most importantly, to compare this data across other cases.

The U.S. Department of Homeland Security published a
report in 2014: “Combating the Insider Threat”[4]. The
report is primarily concerned with the behavioural aspects
of the insider threat, and how certain traits can indicate
an increased likelihood of a threat. The authors suggest
that one of the best prevention measures is educating in-
dividuals to report certain behaviours that they observe in
their peers. These “Characteristics of Insiders at Risk of
Becoming a Threat” are vague (Ethical Flexibility, Introver-
sion, etc.) and can often be hard to quantify. In the report
they also provide a short list of behavioural indicators which
could signal an insider threat, such as “Remotely accesses
the network while on vacation, sick or at odd times”, which
are easier to observe. Underscoring all of this advice is the
concept of a baseline of normal behaviour, which is a prereq-
uisite in attempting to observe significant levels of deviation
of a certain behaviour.

Machine learning-based approaches have been central to
work on insider-threat detection. The actions that an em-
ployee takes over a period of time on a system (e.g., logging
on/off, file accesses, etc.) can be modelled as a sequence.
The sequences that are seen often or on a usual basis, can
then be considered as the user’s normal behaviour. Ob-
served actions which do not resemble those normal sequences
can be regarded as anomalous behaviour, which then may
indicate a potential insider threat or at least an event to be
investigated. This is the approach proposed by Parveen and
Thuraisingham [13]. They extend this line of reasoning, and
introduce “concept-drift”, which is the gradual change in a
user’s actions over time. They postulate that this more ac-
curately detects anomalous behaviour, since a user’s actions
often change over time (due to increasing skill or responsi-
bility), and these changes would be regarded as anomalous
in a model which did not account for the drift. This is a sen-
sible assumption to make as it strictly generalises the static
behavioural approach, and also introduces the flexibility and
adaptability that is expected of machine learning.

In addition to using data collected on a user‘s actions, the
literature on characterising the insider threat suggests that
behavioural and personality characteristics are equally (if
not more) important. Brdiczka et al. [1], combine structural

jnurse
Text Box
To be published in proceedings of the 8th ACM CCS International Workshop on Managing Insider Security Threats (MIST)

anomaly detection with psychological profiling, in order to
reduce the rate of false positives compared to using anomaly
detection alone. Under the assumptions that the majority of
users in a data set are not malicious insiders, and that their
common patterns define normalcy, they propose the use of
graph partitioning algorithms in order to discover a user’s
regular patterns.

The assumption that the majority of users are not threats
is common in the literature, as is taking a user‘s common
patterns as normalcy. However, whether it is necessary to
adjust the baseline of normalcy over a period of time is of-
ten contested in the literature. On the one hand it is argued
that a user‘s actions are constantly evolving and that this is
not indicative of anomalous behaviour[13, 12], whereas oth-
ers [18, 3] proceed without adjusting their baseline and still
obtain good results. We are of the opinion that a learning-
based approach which modifies the baseline is advantageous,
and should be pursued whenever possible.

In this paper we attempt to extend existing work and pro-
pose a novel approach to detect insider threats. In particu-
lar, we aim to build on the approach to anomaly detection
via modelling a user’s normal behaviour as a sequence ([13])
through the use of Hidden Markov Models (HMMs) [15].
HMDMs provide algorithms for learning parameters from a
set of observed sequences, and also for predicting the prob-
ability of observing a given sequence. Previous research
has demonstrated how HMMS may be used to design intru-
sion detection systems that either detect attacks on system
calls into the kernel of an operating system [20] or novel
n-grams in computer audit [10] or in more recent research
code-reuse attacks executing maliciously intended instruc-
tion sequences [22]. Thus, they are an ideal candidate for
consideration in our goal of insider-threat detection. We
can use them to learn parameters as more sequences are ob-
served, and also to classify sequences as anomalous (thus
potentially indicative of a concerning insider event) if their
probability of observation is significantly low. To the best of
our knowledge, we are the first articles to consider the use
of this approach to detect insider threats.

The remainder of this article is structured as follows. Sec-
tion 2 presents the research context including the motivation
for using HMMs and the feature set we will consider for our
implementation and experimentation. Next, in Section 3 we
detail our approach and implementation, and discuss algo-
rithms used and how we train our model to detect insider
threats. This is then followed by a report on the validation
exercises and case study conducted in Section 4. Finally we
conclude in Section 5, also presenting limitation of our work
and outlining avenues for future research.

2. RESEARCH CONTEXT

2.1 Overview

As discussed in Section 1, we will approach the problem
of insider-threat detection through the modelling of a user’s
normal behaviour and then searching for anomalies in that
behaviour. A sequence is a natural choice for modelling ac-
tions and events through time, and so the difficulty becomes
one of finding anomalous sequences in a dataset.

Hidden Markov Models (HMM) have been used exten-
sively in areas such as Computational Linguistics and Bioin-
formatics due to their temporal pattern recognition capabili-
ties. They are well suited to capturing sequential behaviour

and have had many successes in the analysis of biological
sequences and recognising patterns in language [15]. HMMs
provide algorithms for learning parameters from a set of ob-
served sequences, and also for predicting the probability of
observing a given sequence. This differs to approaches such
as One-class Support Vector Machines (OCSVM), which are
a type of SVM in which the algorithm attempts to separate
the data points from the origin via a hyperplane of maxi-
mum distance from the origin [16].

Let us consider a simple example in order to illustrate
the difference in functionality of HMMs over other ML tech-
niques such as a One-Class Support Vector Machine (SVM)
when sequential patterns in data is of importance. Assume
data consisting of 19 sequences which are generated by re-
peating {1,0,0, 1} between 1 and 4 times, as well as a single
sequence which repeats {1,0,2,1} 2 times. We intend for
this dataset to represent basic actions carried out over a
time period. The fictional user performs normal actions for
16 time steps, then an anomalous action (indicated by the
2) followed by 3 more normal actions. Thus, the anomalous
sequence is the 17" sequence in the dataset.

Hidden Markov Model

-Log Probability

\'L 15
Week

(a) The negative logarithm probability of the model generating each sequence (thought of as actions
in a given time step). We can clearly see a large spike, indicating that the model thinks the 17
sequence is very unlikely compared to the rest.

One Class SVMs

+ + + o+ + +

False Positive %

02 04 06 08 1
Nu

(b) The false positive rate for a One-Class SVM for a range of Nu (An upper bound on the
percentage of elements in the dataset which can be classified as anomalous. i.e. Setting Nu=0.1
means we can only classify 10 of our dataset as anomalous) values. A red cross indicates the
anomalous sequence was not flagged, and a green plus indicates that it was flagged as anomalous.

Figure 1: The results of running the HMM and One-
Class SVM on our example dataset

In order to make use of a One-Class SVM we must pad
our sequences to all be of length 16 (interpreted as 16 dimen-
sional vectors by the SVM, which is the maximum length of
a sequence in our dataset). We would then train the SVM
on the entire dataset as a whole, and ask it to classify in-
stances as anomalous (—1) or normal (+1). Conversely, for
the HMM we would train it on the first instance, and then
feed it the remaining sequences one by one and ask it to pre-
dict their log likelihood, and also to learn from them. This
therefore represents a somewhat more intelligent approach
when sequence in which actions occur are of importance.

Figure 1 shows the results of running both models. It is
evident from Figure 1 that the HMM is superior, not only
because it clearly identifies the anomalous sequence but also

since it is much better suited to handling temporal infor-
mation. The SVM has no concept of a temporal relation
between the sequences, nor does it handle variable length
sequences well. We have considered only One-Class SVMs
as they are representative of fixed-length vector based ap-
proaches such as k-Nearest Neighbours (e.g., [9]). This is a
very simple example, and so we would expect perfect per-
formance from an anomaly detection method that can cope
with significantly more complicated examples.

2.2 Feature set for Insider Threat Detection

Based on the literature related to characterising insider
threats, anomalous behaviour is a good indicator of an at-
tack [4]. Thus, we require suitable features that allow us to
model a user’s normal behaviour as well as capture charac-
teristics which once observed are indicative of insider threat.
These could be deviations in the features used to describe
the insider threat profile of a user. Hence, it is useful to iden-
tify different actions a user can take (logging on, accessing a
file, sending an email, etc.) that allow their behaviour to be
modelled based on how insiders act and use them as our fea-
tures. Amongst those high-level features, we can then break
them down further to give us a more detailed description of
a user’s behaviour. For instance, we can consider the case
of a computer logon, and break that down into: remote lo-
gon, logon out of hours, logon on the weekend/holiday, etc.
Since our chosen approach is based on modelling a user’s
behaviour we can only consider actions that a user takes as
features.

This precludes us from making use of information about a
user, such as their psychometric scores, their job title, salary,
performance reviews, etc. One could imagine augmenting
our behavioural based approach with an approach that uses
a user’s contextual information as described in Brdiczka et
al. [1]. Nonetheless, the features described above allow us to
capture different types of insider threat, such as Intellectual
property theft (log in activity, file activity and email usage
or usb usage are features which are deemed important) or
sabotage (login activity and deletion of files activity are im-
portant).

Our approach is intended to be very modular, and can
be used with any feature set. However, in order to test our
model we must select a particular dataset to use. Here we
make use of the CERT Insider Threat Dataset [8], which
is a synthetic dataset compromising of mainly log files de-
scribing a user’s computer-based activity, since it is the only
such comprehensive dataset available publicly. The features
we have chosen are quite general, and could be used across
many domains to model user behaviour. However, we have
chosen them with regard to the dataset we are using, which
constrains the features we can use (e.g., we cannot use a fea-
ture to denote an employee entering the building since we
do not have that information).

For the purposes of our experiments we will consider 2
feature sets based on the CERT Dataset. The Simple set
(7 features) is as follows: Logon (User logged onto a com-
puter/unlocked a computer); Logoff (User logged off a com-
puter); File (User copied a file to a removable drive); Email
(User sent an email); Website (User visited a website); Con-
nect (User inserted a removable drive); Disconnect (User
removed a removable drive).

The Comprehensive set (16 Features) is as follows: Week-
day Logon (User logged onto a computer on a weekday be-

tween 8am and 5pm); Afterhours Weekday Logon (User
logged onto a computer not between 8am and 5pm on a
weekday); Weekend logon (User logged onto a computer dur-
ing the weekend); Logoff (User logged off a computer); File
exe (User copied an exe file to a removable drive); File jpg
(User copied a jpg file to a removable drive); File zip (User
copied a zip file to a removable drive); File txt (User copied
a txt file to a removable drive); File doc/pdf (User copied a
doc or pdf file to a removable drive); Internal Email (User
sent an email where all recipients are company email ad-
dresses); External Email (User sent an email where there
is an external address); Website (User visited a website);
Weekday Connect (User inserted a removable drive on a
weekday between 8am and 5pm); Afterhours Weekday Con-
nect (User inserted a removable drive not between 8am and
5pm on a weekday); Weekend Connect (User inserted a re-
movable drive on the weekend); Disconnect (User removed
a removable drive).

The features considered are designed to provide anoma-
lous behaviour indicative of an insider threat, thus defer-
ring from any normal intrusion system which may correlate
events relevant to malicious activity in general. We are pur-
suing the task of insider threat detection by making the
assumption that anomalous behaviour on the part of a user
is indicative of an insider threat. As insiders, we refer to any
users who have legitimate access in any system of the organ-
isation. There are many scenarios in which this assumption
does not hold, such as employees organising a surprise birth-
day party for a colleague, or a sudden deadline. The case of
contractors or employees who attack shortly after beginning
their employment is also an area in which our model is weak,
since we do not have sufficient time to model their normal
behaviour.

3. APPROACH AND IMPLEMENTATION

In this section we will explain the algorithms and proce-
dures used for testing our model on the CERT Dataset. Fig-
ure 2 shows a graphical overview of the processing approach
and pipeline we use, and the remainder of this section is
dedicated to describing each stage in it. The pipeline is de-
signed to be very modular and thus we can easily swap out
components without affecting it as a whole. For instance,
we could change the features we feed into our model, or
we could change our model completely without having to
change the other components.

3.1 Feature Extraction

The CERT Dataset contains many log files which describe
a particular kind of activity for all users (users being the
same as employees), for instance http.csv contains logs per-
taining to web browsing (website, date accessed, username,
etc.). We load each file, and assign a symbol (a number as
opposed to text for convenience) to each entry based on the
current set of features we are using. After this, we join all of
these files, partition them by each user and then finally sort
them based on the respective timestamps. For each user we
get a list of actions and the time at which they undertook
them. We then group these actions into weeks, which gives
us the final output for the feature extraction phase: for each
week we have a sequence of actions the user took. We have
chosen to group based on weeks in order to allow a user’s
behaviour to change throughout the week (e.g., fewer emails
sent on a Friday afternoon) whilst keeping the sequence sizes

For each user:

/1000 Users

Extract features for the user:

+ Week 1: 1,0.2,3,0,4, ...
\ Variable
~ > Week 2: 1.0.3.0.4,.. length

sequences
> Week N: 1.0.4, ..

Run the HMM for the extracted sequences:

P(Week 5)
HMM Learn
P(Week N)
Week N HMM Predict Probability
HMM Learn

4

Flag sequences as anomalies using T:

P(Weeki) < T — > Anomaly

Figure 2: An overview of the pipeline we use to
detect anomalies

relatively short. Experimenting with the time-scale we use is
an interesting avenue of research that we have not explored
in this paper, but reserve for future study. We should note
that the CERT Dataset contains the ground truth for each
user (when they are acting maliciously or not), which allows
us to monitor the success or failure of our experiment.

3.2 Anomaly Detection

Once we have a sequence of actions that each user con-
ducted in a given week, we are able to use our Hidden
Markov Model (HMM). Here we introduce how the HMM is
used, while Section 3.3 explains the details of the algorithms
involved; understanding the these algorithms is key to ap-
preciating how we look to apply HMMs to detect insiders.

To start, the HMM has 3 components which uniquely de-
termine the model: the transition matrix, emission matrix
and the starting state probabilities. We initialise these as
being uniformly distributed with some small perturbations
to break symmetry (Section 3.3.3 contains further details).
We then train the model on the first 5 weeks of a user’s be-
haviour in order for it to have some starting point from which
to detect anomalous sequences. For the remaining weeks we
first predict the probability of our model generating the se-
quence, and then train the model on that sequence. The pro-
cedure is described in Algorithm 1, Figure 3. HMM.Predict ()
is described in Section 3.3.1, and HMM.Train() is described
in Section 3.3.3.

We acknowledge that our current work makes the sig-
nificant assumption that the first 5 weeks do not contain
anomalous behaviour for each user. This assumption can be

Algorithm 1 Processing the extracted sequences.

1: Initialise HMM

2: for first 5 sequences do

3: HMM.TRAIN(sequence, ...)

4: end for

5: for all remaining sequences do

6: sequence probability < HMM.PREDICT(sequence)
7 HMM.TRAIN(sequence, ...)

8: end for

Figure 3: Algorithm 1

violated for a number of reasons (short-time contractors, for
instance). In the future, this could possibly be mitigated by
manually checking these weeks to ensure that they are repre-
sentative of normal behaviour, or, perhaps a model based on
other users (roles) with similar intended behaviour could be
used as the initial parameters. For now however, adopting
the first 5 weeks allows us to have some basis for exploring
the utility of the HMM approach to insider-threat detection.

Once we have run this algorithm for all users we have the
predicted probabilities for each week. We can then set a
threshold T, which we use to classify sequences as anoma-
lous or not. If the probability of the sequence is below the
threshold, we classify it as anomalous. This threshold T is a
critical parameter of our system which must be set carefully.
However, after running Algorithm 1 we can save the proba-
bilities generated and then experiment with many values of
T. One could also imagine a human security analyst increas-
ing T from 0 in order to be presented with more instances
which the system deems anomalous.

3.3 Hidden Markov Models

A Hidden Markov Model (HMM) is a Markov Model, in
which the model outputs a symbol before transitioning to a
new state. Figure 4 shows an ordinary Markov Model and a
Hidden Markov Model. It is called a Hidden Markov Model
because typically we only observe the emitted symbols, and
not the states the model visited (they are hidden from us).

0o 1 0 1

.) 05
04 § ‘:‘\/“ 04 \/
02 TS o07 02 07
1 2 1 2 J—
—_—
02 02 |
} \ |
05 01/ 06 0.1
04 04
03 [x Jm 03 ﬂ /nw
{ 3 |« 3 je—

u;/\w

0 1

Figure 4: An example of a Markov Model (left) and
HMM (right), with the same transition probabili-
ties, but where the HMM outputs symbols {0, 1}

Below we will refer to the state the model is in at timestep
¢ as X;, and the symbol emitted by the model at timestep 7 as
Y;. The mechanics of the model are described via 3 distinct
quantities, which uniquely define the Hidden Markov Model:

Transition Probabilities

P(Xis1 =2'|Xi = x) (1)

The probability of transitioning from state x to state x’ at
timestep i. In order to be a Markov process we further have

the condition that:

P(X7;+1 = :L'/|Xi = :C) = P(X’L = .’L'I|Xi_1 = :L') (2)

This ensures that transitions are time invariant and hence
only depend on the current state (this implies the Markov
property). In order to be a well-defined process we also have
that:

Vx € States : Z

V! €States

Emission Probabilities

PY; =y|X; =x) (4)

The probability of emitting symbol y, given that you are

in state x at time step ¢. Once again we maintain time
invariance to ensure the Markov property:

P(Y; =ylXi =) = P(Yie1 = y[Xi1 =) (5)

At every state we must ensure the probabilities of emitting
a symbol form a valid probability distribution.

Vx € States : Z

VyeSymbols
Starting Probabilities

PYi=ylXi=z)=1 (6)

The probability of the first state being state . These must
form a distribution over the set of states:

Y PXo=x)=1 (8)

Yz States

Once we have a HMM and a sequence of Symbols, there
are 3 types of questions we can ask:

e What is the probability of a given observed sequence
with respect to our model?

e What is the most likely sequence of states the model
visited when generating a given observed sequence?

e What are the parameters of our model that maximise
the probability of observing a given observed sequence?

For the purposes of anomaly detection we will make use of
algorithms designed to answer questions 1 and 3. Question
2 can be answered using the Viterbi Algorithm [5], but we
will not make use of it in this paper.

3.3.1 Probability of an observed sequence

To calculate the probability of an observed sequence Y =
Yoy1 - . . yr1 with respect to our model, we partition over all
sequences of hidden states of length ¢: The probability of
the first state being state x. These must form a distribution
over the set of states:

P(Y) =) P(Y|X)P(X))
X

where X = xox1 ...2rr1 with x; € States. A naive imple-
mentation calculating the sum as shown above is O(TN™)
where N = |States|, however, P(Y') can be calculated more

efficiently using the Forward Algorithm which provides an
O(NT?) runtime.

Due to the limitations of floating point arithmetic, partic-
ularly underflow, we run into significant problems when cal-
culating the intermediate values for our calculations. Since
all values involved are smaller than 1, they can very quickly
tend to 0, which then renders subsequent calculations erro-
neous due to loss of precision or even underflow to 0. To
combat this we use the logarithm of the probabilities in-
stead of the actual probabilities, which is standard practice
used in numerical calculations involving probabilities. We
thus return logP(Y) instead of P(Y). The full details of
this approach for calculating logP(Y) can be referenced in
Stamp [17].

3.3.2 Maximise likelihood of a sequence

The task of finding the parameters of an HMM (tran-
sition, emission and starting probabilities) that maximise
the likelihood of observing a given sequence can be accom-
plished using the Baum-Welch Algorithm [21]. This is an
iterative algorithm that improves the likelihood of a model
generating a given sequence on every iteration, i.e., given
Y = yoyi...yr1 on every iteration we have that:

P(Ylenew)P(Yleold) (10)

where 0 represents the parameters of our model.

However, we are not guaranteed to reach a global max-
imum and in practise we are very likely to reach a local
maximum which is not close to the global maximum. In
addition, due to the iterative nature of the algorithm we
cannot be sure if we have even reached a local maximum or
not. In order to work around these problems we make use
of random restarts and use thresholds to determine conver-
gence (|Ziy1 — xi| < €threshola = converged). Once again
we must make concessions for floating point arithmetic, the
full details of which are described in Stamp [17].

3.3.3 Training the model

Here we describe the algorithm we use to train our HMM;
an overview can be seen in Figure 5. The function Baum-
WeLcH(..) refers to running a single iteration of the Baum-
Welch algorithm on the model and sequence provided, re-
turning to us the new proposed model.

Essentially the algorithm uses random restarts in order
to find other maxima that are potentially better than the
first one we may encounter. The parameter A € [0, 1], which
we will refer to as the inertia, is used to linearly interpo-
late between the new proposed model and the old model.
A higher inertia means that we will keep more of the old
model. Inertia is an important parameter in our model,
and as such it is important to set it correctly. We will ex-
plore different values for the inertia in Section 4. It is also
intended that €convergence < €restart. Throughout the algo-
rithm 6 refers to the parameters of the model: the transi-
tion, emission and starting probabilities. The function Ran-
DOMPARAMETERS () produces random values for each quantity,
sampled uniformly from (0, 1), and then normalised appro-
priately to ensure valid distributions.

4. VALIDATION

The CERT Dataset is comprised of many smaller datasets,
which all represent independent logs for 1000 users over
some time-framework. We have chosen to use Dataset 4.2,

Algorithm 2 Train the Hidden Markov Model
1: function TRAIN(sequence, maz_iters, €convergence €restart, AT _Testarts, A)
2 Ooig ¢ Omoder
: old_score, best_score < —oo

3;

4 Done «+ False

5 while not Done do

6; Onew < BAUM-WELCH(sequence, 0514)
7: new_score +— PREDICT(sequence; Opew)
8 if new_score > best_score then

9: Ovest < Onew

10: best_score « new_score

11: end if

12: if iterations > mazx _iters then

13: Done < True

14: else if new_score — old_score < €restart then
15: if restarts < maz_restarts — 1 then

16: restarts < restarts + 1

17: 0014 ¢ RANDOMPARAMETERS()

18: old_score < —o0

19: else if restarts = maz restarts — 1 then
20: restarts < restarts + 1

21: Ootd Obest

22: old_score < —o0

23: else if new_score — old_score < €convergence then
24: Done « True

25: else

26: old_score < new_score

27 Oold < Onew

28: end if

29: else

30: old_score +— new_score

31: Ootd < Onew

32: end if

33: iterations « iterations + 1

34: end while
35 Omodet = Mmodet + (1 — A)best
36: end function

Figure 5: Algorithm 2

one of these datasets, for running all of our experiments.
This is because it contains many more instances of insider
threats compared to the earlier datasets (70 compared to
less than 4). This allows us to measure metrics such as the
false-positive rate and the true-positive rate without large
steps in our results (i.e., we can measure the true-positive
rate in 2% or less increments compared to 33%, 50% or
even 100% increments). In addition, it also provides more
varied instances of attacks, since each user would exhibit
their behaviour in non-identical ways. The dataset is con-
sidered to be dense, with “an unrealistically high amount”
(r4.2/readme.txt) of malicious activity by the creators [8].
However, this should not influence our results compared to
a lighter dataset, since each user is treated independently of
every other user by our system.

Reflecting on the dataset selected, there are files with user
logon data, psychometric data, browsing history, file access
data, email data, device usage data and LDAP data. We
are provided a list of insiders for every dataset, so that we
can determine our performance. The features we are using,
as discussed in Section 2.2, only make use of: logon.csv,
http.csv, file.csv, email.csv and device.csv. We do
not use the LDAP records or psychometric.csv (we do not
make use of a user’s psychometric scores since they do not
help us to model their day-to-day behaviour directly).

As we present our results below, we make use of Receiver
Operating Characteristic curves (or ROC curves). These
curves are used to plot the true-positive (correct) rate against
the false-positive rate for the different possible points in a
diagnostic test. In order to produce the ROC curves, we use
a process of threshold varying. After obtaining the log prob-
abilities for each sequence from our model, we set a value for
the threshold and then check each sequence one-by-one and
classify them as anomalous if logP(sequence) > Threshold.
We then increase the threshold and repeat until no sequences

are classified as anomalous. In the subsection next, we de-
tail and discuss our results, and then move to consider a case
study.

4.1 Results

We run Algorithm 1 as described in Section 3.2 to ob-
tain our list of potential insiders. We use Algorithm 2 with
the following parameters: TRAIN(sequence, maz_iters = 20,
€convergence = 0.01, €restart = 0.1, max_restarts = 5, X any
value within the space [0.5,0.8])*. For the Hidden Markov
Model we use 10 states.

Figure 6 shows the results of running our model with those
parameters. We can see that the different feature sets differ
only slightly. These differences are small enough to be at-
tributed to the differences introduced via the random num-
ber generator running many models in parallel. The stochas-
ticity of the scheduler results in the models calling the ran-
dom number generator in a different order, which affects the
initial initialization as well as the call to RANDOMPARAMETERS
in Algorithm 2. This could also be a side-effect of the syn-
thetic nature of the dataset, and hence the granularity of our
features could show noticeable differences in a more natural
dataset.

Simple vs. Comprehensive Features

1
0.8 1

X]

o]

Q1

= 0.6 1

=]

] 4

o]

E]

o 041

°]

5]

E 4

0.21 Simple, 0.5 Inertia —
i Comprehensive, 0.5 Inertia—
] Simple, 0.8 Inertia
] Comprehensive, 0.8 Inertia—
0 1 t t 1 1

0 0.2 04 0.6 0.8 1

False Paositive %

Figure 6: ROC Curve showing the differences be-
tween the Simple and Comprehensive feature sets
for an inertia of 0.5 and 0.8

In addition to varying the feature set we use, we can also
consider varying the number of states we use for our model.
Figure 7 and Table 1 show the results of varying the num-
ber of states in the HMM. We used the same parameters
as for Figure 6 with the exception of: max_iters = 50,
max_restarts = 10 and A = 0.5. We can see that increas-
ing the number of states shows some slight improvements,
however the computational cost of doing so (combined with
increasing the number of iterations to make it viable) is ex-
tremely high. Thus, we do not explore further the results of
running our models with an increased number of states due
to the processing time required being prohibitive for running

!We assume here that Predict(seq) returns logP(seq).

many experiments. This large computational cost is dimin-
ished if our system is run in an online manner, whereby we
only run it for new data points. However, for the purposes
of our experiments we must run it for the entire dataset (18
months of data) every single time.

Varying States

0.8+
R
o
2
=064
=
= j
a) o
o]
»]
o 04
°]
n
=
0.2
10 States—
20 States—
] 50 States—
0 t t t t !
0 0.2 0.4 0.6 0.8 1

False Positive %

Figure 7: ROC Curve showing the difference be-
tween running the model with 10, 20 and 50 states

States | Area Under Curve (AUC)
10 States 0.755
20 States 0.784
50 States 0.797

Table 1: AUC for each of the runs

An extremely important parameter in our model is the
inertia, A. In Figure 6 we saw a significant difference be-
tween A = 0.5 and A = 0.8. Figure 8 and Table 2 show
the results of varying the inertia with the following parame-
ters: TRAIN(sequence, maz_iters = 20, €convergence = 0.01,
€restart = 0.1, max_restarts = 5, X\ and 10 states in our
model. We can clearly see that there is a marked benefit to
decreasing the inertia up till around 0.05. This is a surpris-
ing result because one would expect that an inertia of 0.05
is too low to allow the model to maintain the behaviour of
previous weeks.

Inertia | AUC || Inertia | AUC
0.9 0.535 0.3 0.796
0.8 0.606 0.2 0.805
0.7 0.706 0.1 0.821
0.6 0.756 0.05 0.830
0.5 0.776 0.01 0.829
0.4 0.789

Table 2: The corresponding AUC values

In order to investigate this further we can check the values
for the threshold we use to generate each point on the ROC
curve. Figure 9 shows these values for each inertia value we

Varying Inertia
=

/

e
®
—

o
o
NS

Insiders Identified %
o
s

o
)
NN

0.9
0.8
0.7
0.6
0.5
04|nerl|a
0.3
0.2
0.1
0.05 Inertia—|
0.0

1 Inertia—|

0 f t 1 T 1
0 0.2 0.4 06 0.8 1

False Positive %

Figure 8: ROC Curve showing the effect of varying
the inertia in Algorithm 2

used. A higher threshold corresponds with a lower probabil-
ity (i.e., in order for a sequence to be classified as anomalous,
the model’s probability of generating that sequence must be
lower when using a higher threshold). We observe that a
lower inertia corresponds with a higher threshold for each
point on the ROC curve. This implies that the values pro-
duced by our HMM are more spread out with a lower inertia.
We hypothesise that this decreases the effect of small vari-
ances in our model’s output, and hence allows the anomalous
sequences to be better separated from the other sequences.

Varying Inertia

0.9 Inertia —
0.8 Inertia —
0.7 Inertia
0.6 Inertia
0.5 Inertia —
0.4 Inertia
0.3 Inertia
0.2 Inertia
10000 0.1 Inertia
0.05 Inertia—
0.01 Inertia—

15000 +

Threshold

5000 1

0 0.2 0.4 06 038 1
False Positive %

Figure 9: The value used for the Threshold vs. False
Positive % for each point on the ROC curve

Using an inertia of 0.05 shows good performance on the
dataset. An AUC of 0.830 indicates we are able to success-
fully identify the majority of insider threats, and in addition

the graphs show a 85% identification rate with a false posi-
tive rate of only 20%. If our system was combined with more
signals of insider attacks (as in [1]), as well as more tradi-
tional security monitoring tools (e.g., flag up visits to certain
websites), we hypothesise that potentially much better per-
formance could be achieved. We believe that incorporating
other approaches would provide complimentary indicators
of an insider threat. This is because our approach is de-
signed to capture deviations from a user’s normal behaviour,
whereas those other approaches capture other separate in-
dicators of an attack.

4.2 Case Study

Dataset r4.2 contains 70 malicious insiders who execute
one of three attacks. Now, we consider a brief case study
with a single insider, User MCF0600, in more detail so that
we can better understand how and why our model correctly
classifies them as a threat. The attack carried out by this
user is as follows: User MCF0600 begins to logon after hours,
starts using a removable drive and then begins uploading
data to wikileaks.org.

We will use the Simple feature set to simplify our visualisa-
tion, and run the model with 10 states and the following pa-
rameters: TRAIN(sequence,max,iters = 20, €convergence =
0.01, €restart = 0.1, max_restarts = 5, A = 0.05. Figure 10
shows the model’s probability of generating each week’s ac-
tivities. We see a large spike at Week 39 which corresponds
to the dates 20/9/2010 till 26/9/2010 in the dataset. This
is the exact week which contains the malicious behaviour in
which the user attacks the company by uploading data to
wikileaks.org.

User "MCF0600" Predicted Probabilities
10000 }
8000

6000 1

-Log Probability

4000 1

2000 1

5 10 15 20 25 30 35 40
Week

Figure 10: User MCFO0600’s predicted probabilities
for each week

Figure 11 shows a visualisation of the model at Week
38, which is used to predict the likelihood of the actions
taking place in Week 39. It shows the model learns the
user frequently visits websites, and occasionally sends emails
throughout the day. Notably there is an absence of remov-
able drive usage and the downloading of files. In detail,
the Starting probabilities for each state are concentrated on
State 9 (P(Xo = State9) = 1), represented by the purple
arrow. Similarly, the emission probabilities for each state
are concentrated on a single symbol, hence only that sym-
bol is shown for each state. The transition probabilities are
more varied, hence we only show those > 0.2 otherwise the

diagram quickly becomes too noisy. Note that State 5 is not
shown in the diagram, because there is no significant prob-
ability (> 0.2) of transitioning to it from any other state.

Website «—— 3 2 —> Website

’
0517 0454 t 0520 0478
| 0871 0494 0456 { l

9g5p 7 —0414» 0 —0372» 8 0344 4 —0480» 6 -05188 1

1 | T | | x
' ' | ! ' '

Logon Website Website Email Website Website Logoff

Figure 11: The Hidden Markov Model after week
38 for User MCF0600

More generally, a sample from the first day of the week
with malicious activity is:

[‘Logon’, ‘Connect’, File’, ‘Disconnect’, ‘Connect’, ‘File’,
‘File’, ‘File’, ‘ Disconnect’, .. .].

It is clear that this does not conform to the user’s normal
behaviour due to the marked increased usage of a removable
drive, and the downloading of files. Contrast this sequence
with another normal day for this user which is modelled al-
most perfectly by the model:

[‘Logon’; ‘Website’; ‘ Website’; ‘ Website’; ‘ Email’; [Web-
site’ x T); ‘Logoff’]

From our case study we see promising indicators that our
model effectively learns a user’s behaviour, and then can ac-
curately use that to determine deviations from it. We should
note that it is the features identified from our literature re-
view to be characteristic of insider threats that enable the
HMM algorithms to flag anomalies relevant to insider activ-
ities. Therefore, a deeper understanding of how insiders act
and which characteristics can be identified in their malicious
activities is of significant importance for our detection sys-
tem since they can more accurately profile the behaviour of
an insider. For the needs of the CERT case study and given
the limited number of different types of logs in the dataset,
we emphasised in providing features for detecting suspicious
activity related to intellectual property theft.

S. CONCLUSIONS

In this paper we have examined the problem of insider
threat detection, by framing it as a machine learning task.
Our main contribution is the development and testing of a
novel method of using Hidden Markov Models to learn a
user’s normal behaviour in order to identify deviations from
it, which may be indicative of a threat (or at least behaviour
worth following-up).

From our results we can see that our system is able to
detect insider threats with a reasonable false-positive rate.
Furthermore, our case study of user MCF0600 shows that
the HMM is able to learn a user’s behaviour and determine
when the user deviates from that behaviour. In addition,
the use of a HMM allows us to visualise the model, and thus

to determine what the model deems as normal behaviour
which allows us to understand why a particular sequence of
actions is classified as anomalous. This is extremely perti-
nent information, since there are severe repercussions when
an employee is flagged as a potential threat to an organisa-
tion. By allowing a human security analyst the chance to
investigate the offending behaviour we can provide valuable
insight into why an attack took place, and also to allow false
positives to be identified as such.

5.1 Limitations

In the exploration into the utility of HMM to insider-
threat detection, we have made many assumptions that could
limit the effectiveness of our approach in certain scenarios.
We enumerate the most important of these, and the possible
effect they could have on our system below.

Insider attacks are anomalous: The most significant
assumption we have made is that all insider attacks are ex-
amples of anomalous behaviour. This precludes us from
recognising situations where a user systematically attacks an
organisation over an extended time-framework (e.g., down-
loading sensitive files over months), or situations where our
features are not sufficient to distinguish an attack from a
user’s normal behaviour.

Training on the first 5 weeks: In order to apply our
model, we must first ensure that it is able to distinguish a
user’s normal behaviour from anomalous behaviour. This
then means that we must train on some sample of a user’s
behaviour in order for the model to learn normal behaviour.
Hence we are not looking for insider threats in that training
set, which in our specific case means that we do not consider
that a user might attack in the first 5 weeks. This could
significantly hamper our ability to detect insider threats
amongst short-term users (contractors for instance), which
are a real threat [11].

Features: Our approach is only able to make use of
the information that it is provided, and hence depends on
the features that it is supplied with. This requires domain
knowledge and manual feature engineering and experimen-
tation in order to produce useful features. Our approach
would therefore need to be adapted somewhat depending on
application cases.

Choosing Hyperparameters: As is the case with many
machine learning systems, our approach involves many dif-
ferent hyperparameters which must be set. Our results show
that some of these (the inertia A particularly) have a signifi-
cant effect on the final results of the model, and hence these
must be chosen carefully. This could lead to decreased per-
formance on a real dataset where we would not have the
benefit of knowing a priori who the insiders are. However,
the hyperparameters can be changed whilst running the sys-
tem, or we can initialise them based on results from other
datasets.

5.2 Future Research

Our modular approach to the design of our systems means
that each of the components could be replaced without af-
fecting the others. This allows us to make changes to each
of the individual parts without re-thinking the entire sys-
tem. As this paper aimed to explore the utility of HMMs to
detect insidrer threats, we discuss some areas that would be
interesting for follow-on research below.

In our approach we have grouped a user’s actions into

week long sequences. Experimenting with different time-
frameworks, such as day long sequences, could provide better
performance. Using shorter sequences could allow specific
events to be pinpointed as the source of concern, and could
also allow the model to build a more accurate picture of a
user’s day-to-day behaviour. However, it could also prevent
the model from observing longer-term trends in behaviour
(e.g., on Friday a user sends fewer emails), so would have to
be properly considered.

We have focussed on using a HMM for the task of learning
a user’s behaviour and then outputting how likely a partic-
ular sequence of actions is with respect to the user’s past
behaviour. We could replace the HMM with a more com-
plex model such as a Long Short-Term Memory Recurrent
Neural Network (LSTM) [7], in order to learn a richer rep-
resentation of a user’s behaviour. A LSTM does not make
the Markov assumption, and hence is able to use longer-
term dependencies in order make a more informed decision
about the current action a user might take. This could stem
from the inability of a HMM to use many bits of informa-
tion about the past, without an exponentially large number
of states (a HMM needs around 2k states to model k bits of
information), whereas a LSTM can make use of potentially
all the information it has seen. However, a LSTM could re-
quire significantly more training data in order to be effective;
as with all techniques there are pros and cons.

Our current procedure for determining if a particular se-
quence is anomalous or not is to compare the probability of
our model generating it with a threshold. This requires us
to manually set a threshold value, which is another hyperpa-
rameter of our system that significantly affects the results.
However, we could consider the task of determining which
sequence is anomalous with respect to their probabilities as
an anomaly detection problem itself. Hence, we could apply
frequency-based anomaly detection techniques (e.g., [19]) on
the sequences of probabilities generated by our model. This
allows us to avoid having to manually set a threshold pa-
rameter, and also allows us to be more selective in flagging
up sequences as anomalous. Moreover, it could help in the
case where our model is unable to determine a user’s normal
behaviour accurately (or if the user’s behaviour is erratic).
Since in this scenario the majority of sequences will be un-
likely with respect to the model, we would only want to
classify as anomalous those as that are significantly more
unlikely.

6. REFERENCES

[1] O. Brdiczka, J. Liu, B. Price, J. Shen, A. Patil,

R. Chow, E. Bart, and N. Ducheneaut. Proactive
insider threat detection through graph learning and
psychological context. In IEEE Security and Privacy
Workshops, 2012. DOI: 10.1109/SPW.2012.29.

[2] D. M. Cappelli, A. P. Moore, and R. F. Trzeciak. The
CERT Guide to Insider Threats: How to Prevent,
Detect, and Respond to Information Technology
Crimes. Addison-Wesley Professional, 1st edition,
2012.

[3] Y. Chen and B. Malin. Detection of anomalous
insiders in collaborative environments via relational
analysis of access logs. In Proceedings of the first ACM
conference on Data and application security and
privacy, pages 63-74. ACM, 2011.

[4]

[9]

[10]

[12]

[13]

Department of Homeland Security (DHS). Combating
the insider threat, 2014. https://www.us-

cert.gov /sites/default /files /publications/Combating
the Insider Threat_0.pdf.

G. D. Forney. The viterbi algorithm. Proceedings of
the IEEE, 61(3):268-278, 1973.

Gemalto. Breach level index|data breach database &
risk assessment calculator, 2016.
http://www.breachlevelindex.com/.

S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735-1780, 1997.
Insider Threat Tools — The CERT Division, n.d.
https://www.cert.org/insider-threat/tools/.

Y. Liao and V. R. Vemuri. Use of k-nearest neighbor
classifier for intrusion detection. Computers &
Security, 21(5):439-448, 2002.

C. C. Michael and A. Ghosh. Two state-based
approaches to program-based anomaly detection. In
Computer Security Applications, 2000. ACSAC’00.
16th Annual Conference, pages 21-30. IEEE, 2000.
J. R. C. Nurse, O. Buckley, P. A. Legg, M. Goldsmith,
S. Creese, G. R. Wright, and M. Whitty.
Understanding insider threat: A framework for
characterising attacks. In IEEE Security and Privacy
Workshops (SPW). IEEE, 2014. DOL:
10.1109/SPW.2014.38.

P. Parveen, N. McDaniel, V. S. Hariharan,

B. Thuraisingham, and L. Khan. Unsupervised
ensemble based learning for insider threat detection.
In Privacy, Security, Risk and Trust (PASSAT), 2012
International Conference on and 2012 International
Confernece on Social Computing (SocialCom), pages
718-727. IEEE, 2012.

P. Parveen and B. Thuraisingham. Unsupervised
incremental sequence learning for insider threat
detection. In Intelligence and Security Informatics
(ISI), 2012 IEEE International Conference on, pages
141-143. IEEE, 2012.

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

Ponemon Institute. 2015 Cost of Cyber Crime Study,
2015. http://www8.hp.com/uk/en/software-
solutions/ponemon-cyber-security-report/.

L. R. Rabiner. A tutorial on hidden markov models
and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257-286, 1989.

B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J.
Smola, and R. C. Williamson. Estimating the support
of a high-dimensional distribution. Neural
computation, 13(7):1443-1471, 2001.

M. Stamp. A revealing introduction to Hidden Markov
models (San Jose State University), 2015.
http://www.cs.sjsu.edu/faculty /stamp/RUA /HMM.pdf.
E. Ted, H. G. Goldberg, A. Memory, W. T. Young,
B. Rees, R. Pierce, D. Huang, M. Reardon, D. A.
Bader, E. Chow, et al. Detecting insider threats in a
real corporate database of computer usage activity. In
Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 1393-1401. ACM, 2013.

0. Vallis, J. Hochenbaum, and A. Kejariwal. A novel
technique for long-term anomaly detection in the
cloud. In 6th USENIX Workshop on Hot Topics in
Cloud Computing, 2014.

C. Warrender, S. Forrest, and B. Pearlmutter.
Detecting intrusions using system calls: Alternative
data models. In Security and Privacy, 1999.
Proceedings of the 1999 IEEE Symposium on, pages
133-145. IEEE, 1999.

L. R. Welch. Hidden Markov Models and the
Baum-Welch Algorithm. IEEE Information Theory
Society Newsletter, 53(4), 2003.

K. Xu, D. D. Yao, B. G. Ryder, and K. Tian.
Probabilistic program modeling for high-precision
anomaly classification. In 2015 IEEE 28th Computer
Security Foundations Symposium, pages 497-511.
IEEE, 2015.

