
MFPS 2016

Reducing complex CSP models to traces via
priority

David Mestel1 A.W. Roscoe2

Department of Computer Science, University of Oxford

Abstract

Hoare’s Communicating Sequential Processes (CSP) [6] admits a rich universe of semantic models. In this
paper we study finite observational models, of which at least six have been identified for CSP, namely traces,
failures, revivals, acceptances, refusal testing and finite linear observations [11]. We show how to use the
recently-introduced priority operator ([12], ch.20) to transform refinement questions in these models into
trace refinement (language inclusion) tests. Furthermore, we are able to generalise this to any (rational)
finite observational model. As well as being of theoretical interest, this is of practical significance since the
state-of-the-art refinement checking tool FDR3 [4] currently only supports two such models.

Keywords: CSP, denotational semantics, priority

1 Introduction

A number of different forms of process calculus have been developed for the mod-

eling of concurrent programs, including Hoare’s Communicating Sequential Pro-

cesses (CSP) [6], Milner’s Calculus of Communicating Systems (CCS) [7], and the

π-calculus [8]. Unlike the latter two, CSP’s semantics are traditionally given in

behavioural semantic models coarser than bisimulation.

In this paper, we study finite linear-time observational models for CSP; that is,

models where all observations considered can be determined in a finite time by an

experimenter who can see the visible events a process communicates and the sets of

events it can offer in any stable state. While the experimenter can run the process

arbitrarily often, he or she can only record the results of individual finite executions.

Thus each behaviour recorded can be deduced from a single finite sequence of events

together with the sets of events accepted in stable states during and immediately

after this trace.

At least six such models have been considered for CSP, but the state-of-the

art refinement checking tool, FDR3 [4], currently only supports two, namely traces

1 Email: david.mestel@cs.ox.ac.uk
2 Email: bill.roscoe@cs.ox.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:david.mestel@cs.ox.ac.uk
mailto:bill.roscoe@cs.ox.ac.uk

D. Mestel, A.W. Roscoe

and failures (it also supports the failures-divergences model, which is not finite

observational).

We present a construction which produces a context C such that refinement

questions in the failures model correspond to trace refinement questions under the

application of C. We are able to generalise this to show (Theorem 5.4) that a similar

construction is possible not only for the six models which have been studied, but

also for any sensible finite observational model (where ‘sensible’ means that the

model can be recognised by a finite-memory computer, in a sense which we shall

make precise).

We first briefly describe the language of CSP. We next give an informal de-

scription of our construction for the failures model. To prove the result in full

generality, we first give a formal definition of a finite observational model, and of

the notion of rationality. We then describe our general construction. Finally we

discuss performance and optimisation issues.

2 The CSP language

We provide a brief outline of the language, largely taken from [11]; the reader is

encouraged to consult [12] for a more comprehensive treatment.

Throughout, Σ is taken to be a finite nonempty set of communications that are

visible and can only happen when the observing environment permits via hand-

shaken communication. The actions of every process are taken from Σ∪{τ}, where

τ is the invisible internal action that cannot be prevented by the environment.

Note that the usual treatment of CSP permits sequential composition by including

another un-preventable event X to represent termination; this adds slight compli-

cations to each model and we omit it for simplicity. It could be added back without

any significant alteration to the results of this paper.

The constant processes of CSP are

• STOP which does nothing—a representation of deadlock.

• div which performs (only) an infinite sequence of internal τ actions—a represen-

tation of divergence or livelock.

• CHAOS which can do anything except diverge.

The prefixing operator introduces communication:

• a→ P communicates the event a before behaving like P .

There are two forms of binary choice between a pair of processes:

• P u Q lets the process decide to behave like P or like Q: this is nondeterministic

or internal choice.

• P 2 Q offers the environment the choice between the initial Σ-events of P and Q.

If the one selected is unambiguous then it continues to behave like the one chosen;

if it is an initial event of both then the subsequent behaviour is nondeterministic.

The occurence of τ in one of P and Q does not resolve the choice (unlike CCS

+). This is external choice.

We only have a single parallel operator in our core language since all the usual

2

D. Mestel, A.W. Roscoe

ones of CSP can be defined in terms of it as discussed in Chapter 2 etc. of [12].

• P ‖
X

Q runs P and Q in parallel, allowing each of them to perform any action in

Σ \ X independently, whereas actions in X must be synchronised between the

two.

There are two operators that change the nature of a process’s communications.

• P \ X, for X ⊆ Σ, hides X by turning all P ’s X-actions into τs.

• P [[R]] applies the renaming relation R ⊆ Σ × Σ to P : if (a, b) ∈ R and P can

perform a, then P [[R]] can perform b. The domain of R must include all visible

events used by P . Renaming by the relation {(a, b)} is denoted [[a/b]].

There is another operator that allows one process to follow another:

• PΘAQ behaves like P until an event in the set A occurs, at which point P is shut

down and Q is started. This is the throw operator.

The final CSP construct is recursion: this can be single or mutual (including

mutual recursions over infinite parameter spaces), can be defined by systems of

equations or (in the case of single recursion) in line via the notation µ p.P , for a

term P that may include the free process identifier p. Recursion can be interpreted

operationally as having a τ -action corresponding to a single unwinding. Denation-

ally, we regard P as a function on the space of denotations, and interpret µ p.P as

the least fixed point of this function.

We also make use of the interleaving operator |||, which allows processes to

perform actions independently and is equivalent to ‖
∅

, and the process RUN X , which

always offers every element of the set X and is defined by RUN X = 2
x∈X

x →
RUN X .

2.1 Priority

The prioritisation operator is discussed in detail in Chapter 20 of [12]. It allows

us to specify an ordering on the set of visible events Σ, and prevents lower-priority

events from occuring whenever a higher-priority event or τ is available.

The operator described in [12] as implemented in FDR3 [4] is parametrised by

three arguments: a process P , a partial order ≤ on the event set Σ, and a subset

X ⊆ Σ of events that can occur when a τ is available. We require that all elements

of X are maximal with respect to ≤. Writing initials(P) ⊆ Σ ∪ {τ} for the set

of events that P can immediately perform, and extending ≤ to a partial order on

Σ∪{τ} by adding y ≤ τ ∀ y ∈ Σ\X, we define the operational semantics of prioritise

as follows:

P
a−→ P ′ ∧ ∀ b 6= a.a ≤ b⇒ b /∈ initials(P)

prioritise(P,≤, X)
a−→ prioritise(P ′,≤, X)

(a ∈ Σ ∪ {τ}).

Note that prioritise is not compositional over denotational models other than

the most precise model FL, so we think of it as an optional addition to CSP rather

than an integral part of it; when we refer below to particular types of observation

as giving rise to valid models for CSP, we will mean CSP without priority.

3

D. Mestel, A.W. Roscoe

3 Example: the failures model

We first demonstrate our construction using the failures model: we will produce a

context C such that for any processes P,Q, we have that Q refines P in the failures

model if and only C[Q] refines C[P] in the traces model.

3.1 The traces and failures models

The traces model T is familiar from automata theory, and represents a process

by the set of (finite) strings of events it is able to accept. Thus each process is

associated (for fixed alphabet Σ) to a subset of Σ∗ the set of finite words over Σ.

The failures model F also records sets X of events that the process is able to

stably refuse after a trace s (that is, the process is able after trace s to be in a

state where no τ events are possible, and where the set of initial events does not

meet X). Thus a process is associated to a subset of Σ∗ × (P(Σ) ∪ {•}), where

• represents the absence of a recorded refusal set. 3 Note that recording • does

not imply that there is no refusal to observe, simply that we have not observed

stability. The observation of the refusal ∅ implies that the process can be stable

after the present trace, whereas • does not.

In any model M, we say that Q M-refines P , and write P vM Q, if the set

associated to Q is a subset of that corresponding to P .

3.2 Model shifting for the failures model

The construction is as follows:

Lemma 3.1 For each finite alphabet Σ there exists a context C (over an expanded

alphabet) such that for any processes P and Q we have that P vF Q if and only if

C[P] vT C[Q].

Proof. Step 1: We use priority to produce a process (over an expanded alphabet)

that can communicate an event x′ if and only if the original process P is able to

stably refuse x.

This is done by expanding the alphabet Σ to Σ ∪ Σ′ (where Σ′ contains a cor-

responding primed event for every event in Σ), and prioritising with respect to a

partial order which prioritises each x over the corresponding x′. Recall that the

definition of the priority operator means that this also causes τ to be promoted

over the primed events.

We must also introduce an event stab to signify stability without requiring any

refusals to be possible. This is necessary in order to be able to record an empty

refusal set. Let the partial order ≤1 be defined by x′ <1 x ∀x ∈ Σ, and let the

context C1 be defined by

C1[P] = prioritise(P ||| RUN Σ′∪{stab},≤1,Σ).

This process has a state ξ′ for each state ξ of P , where ξ′ has the same unprimed

events (and corresponding transitions) as ξ. Furthermore ξ′ can communicate x′

just when ξ is stable and can refuse X, and stab just when ξ is stable.

3 This is equivalent to the standard presentation in which a process is represented by a subset of Σ∗ and
one of Σ∗ × P(Σ): the trace component is just {s : (s, •) ∈ P}.

4

D. Mestel, A.W. Roscoe

Step 2: We now recall that the definition of the failures model only allows a

refusal set to be recorded at the end of a trace, and is not interested in (so does not

record) what happens after the refusal set.

We gain this effect by using a regulator process to prevent a primed event (or

stab) from being followed by an unprimed event. Let

UNSTABLE =2
x∈Σ

x→ UNSTABLE

22
x∈Σ′∪{stab}

x→ STABLE

STABLE =2
x∈Σ′∪{stab}

x→ STABLE ,

and define C by

C[P] = C1[P] ‖
Σ∪Σ′∪{stab}

UNSTABLE .

A trace of C[P] consists of: firstly, a trace s of P ; followed by, if P can after s

be in a stable state, then for some such state σ0 any string formed from the events

that can be refused in σ0, together with stab. The lemma clearly follows. 2

It is clear that any such context must involve an operator that is not compo-

sitional over traces, for otherwise we would have P vT Q implies C[P] vT C[Q],

which is equivalent to P vF Q, and this is not true for general P and Q (consider

for instance P = a → STOP , Q = (a → STOP) u STOP). It follows that only

contexts which like ours involve priority can achieve this.

4 Semantic models

In order to generalise this construction to arbitrary finite observational semantic

models, we must give formal definitions not only of particular models but of the

very notion of a finite observational model.

4.1 Finite observations

We consider only models arising from finite linear observations. Intuitively, we

postulate that we are able to observe the process performing a finite number of

visible actions, and that where the process was stable (unable to perform a τ)

immediately before an action, we are able to observe the acceptance set of actions

it was willing to perform.

Note that we are unable to finitely observe instability : the most we are able

to record from an action in an unstable state is that we did not observe stability.

Thus in any context where we can observe stability we can also fail to observe it by

simply not looking.

We take models to be defined over finite alphabets Σ, and take an arbitrary

ordering on each finite Σ to be alphabetical.

The most precise finite observational model is that considering all finite linear

observations, and is denoted FL:

5

D. Mestel, A.W. Roscoe

Definition 4.1 The set of finite linear observations over an alphabet Σ is

FLΣ := {〈A0, a1, A1, . . . , An−1, an, An〉 : n ∈ N, ai ∈ Σ, Ai ⊆ Σ or Ai =•},

where the ai are interpreted as a sequence of communicated events, and the Ai

denote stable acceptance sets, or in the case of • failure to observe stability. Let

the set of such observations corresponding to a process P be denoted FLΣ(P).

(Sometimes we will drop the Σ and just write FL(P)).

More formally, FL(P) can be defined inductively; for instance

FL(P 2 Q) := {〈A ∪B〉̂ α, 〈A ∪B〉̂ β : 〈A〉̂ α ∈ FL(P), 〈B〉̂ β ∈ FL(Q)}

(where X ∪ • := • for any set X). See Section 11.1.1 of [12] for further details.

Observe that FL has a natural partial order corresponding to extensions (where

α̂ 〈•〉̂ β and α̂ 〈A〉 are both extended by α̂ 〈A〉̂ β for any set A and any α and β).

Note that for any process P we have that FL(P) is downwards-closed with respect

to this partial order.

4.2 Finite observational models

We consider precisely the models which are derivable from the observations of FL,

which are well-defined in the sense that they are compositional over CSP syntax

(other than priority), and which respect extension of the alphabet Σ.

Definition 4.2 A finite observational pre-model M consists for each (finite) al-

phabet Σ of a set of observations, obsΣ(M), together with a relation MΣ ⊆
FLΣ×obsΣ(M). The representation of a process P inMΣ is denotedMΣ(P), and

is given by

MΣ(P) :=MΣ(FLΣ(P)) = {y ∈ obsΣ(M) : ∃x ∈ FLΣ(P).(x, y) ∈MΣ}.

For processes P and Q over alphabet Σ, if we have MΣ(Q) ⊆MΣ(P) then we say

QM-refines P , and write P vM Q.

(As before we will sometimes drop the Σ).

Note that this definition is less general than if we had defined a pre-model to

be any equivalence relation on P (FLΣ). For example, the equivalence relating sets

of the same cardinality has no corresponding pre-model. Definition 4.2 agrees with

that sketched in [12].

Without loss of generality,MΣ does not identify any elements of obsΣ(M); that

is, we haveM−1
Σ (x) =M−1

Σ (y) only if x = y (otherwise quotient by this equivalence

relation). Subject to this assumption, MΣ induces a partial order on obsΣ(M):

Definition 4.3 The partial order induced by MΣ on obsΣ(M) is given by: x ≤ y

if and only if for all b ∈M−1
Σ (y) there exists a ∈M−1

Σ (x) with a ≤ b.

Observe that for any process P it follows from this definition that M(P) is

downwards-closed with respect to this partial order (since FL(P) is downwards-

closed).

Definition 4.4 A pre-modelM is compositional if for all CSP operators
⊕

, say of

arity k, and for all processes P1, . . . , Pk and Q1, . . . , Qk such that M(Pi) =M(Qi)

6

D. Mestel, A.W. Roscoe

for all i, we have

M
(⊕

(Pi)i=1...k

)
=M

(⊕
(Qi)i=1...k

)
.

This means that the operator defined on processes in obs(M) by taking the

pushforward of
⊕

along M is well-defined: for any sets X1, . . . , Xk ⊆ obs(M)

which correspond to the images of CSP processes, take processes P1, . . . , Pk such

that Xi =M(Pi), and let⊕
(Xi)i=1...k =M

(⊕
(Pi)i=1...k

)
.

Definition 4.4 says that the result of this does not depend on the choice of the Pi.

Note that it is not necessary to require the equivalent of Definition 4.4 for re-

cursion in the definition of a model, because of the following lemma which shows

that least fixed point recursion is automatically well-defined (and formalises some

arguments given in [12]):

Lemma 4.5 LetM be a compositional pre-model. Let C1, C2 be CSP contexts, such

that for any process P we have M(C1[P]) = M(C2[P]). Let the least fixed points

of C1 and C2 (viewed as functions on P(FL) under the subset order) be P1 and P2

respectively. Then M(P1) =M(P2).

Proof. Using the fact that CSP contexts induce Scott-continuous functions on

P(FL) (see [6], Section 2.8.2), the Kleene fixed point theorem gives that Pi =⋃∞
n=0 Cni (⊥). Now any x ∈ M(P1) is in the union taken up to some finite N , and

since finite unions correspond to internal choice, and ⊥ to the process div, we have

that the unions up to N of C1 and C2 agree under M by compositionality. Hence

x ∈M(P2), so M(P1) ⊆M(P2). Similarly M(P2) ⊆M(P1). 2

Definition 4.6 A pre-modelM is extensional if for all alphabets Σ1 ⊆ Σ2 we have

that obsΣ1(M) ⊆ obsΣ2(M), and MΣ2 agrees with MΣ1 on FL(Σ1)× obsΣ1(M).

Definition 4.7 A pre-model is a model if it is compositional and extensional.

In this setting, we now describe the five main finite observational models coarser

than FL: traces, failures, revivals, acceptances and refusal testing.

4.2.1 The traces model

The coarsest model measures only the traces of a process; that is, the sequences

of events it is able to accept. This corresponds to the language of the process viewed

as a nondeterministic finite automaton (NFA).

Definition 4.8 The traces model, T , is given by

obsΣ(T) = Σ∗, TΣ = traceΣ

where trace is the equivalence relation which relates the observation

〈A0, a1, A1, . . . , an, An〉 to the string a1 . . . an.

4.2.2 Failures

The traces model gives us information about what a process is allowed to do, but

it in some sense tells us nothing about what it is required to do. In particular, the

process STOP trace-refines any other process.

7

D. Mestel, A.W. Roscoe

In order to specify liveness properties, we can incorporate some information

about the events the process is allowed to refuse, begining with the failures model.

Intuitively, this captures traces s, together with the sets of events the process is

allowed to stably refuse after s.

Definition 4.9 The failures model, F , is given by

obsΣ(F) = Σ∗ × (P(Σ) ∪ {•}), FΣ = failΣ,

where failΣ relates the observation 〈A0, . . . , an, An〉 to all pairs (a1 . . . an, X), for all

X ⊆ Σ \An if An 6= •, and for X = • otherwise.

4.2.3 Revivals

The next coarsest model, first introduced in [11], is the revivals model. Intuitively

this captures traces s, together with sets X that can be stably refused after s, and

events a (if any) that can then be accepted.

Definition 4.10 The revivals model, R, is given by

obsΣ(R) = Σ∗ × (P(Σ) ∪ {•})× (Σ ∪ {•}), RΣ = revΣ),

where revΣ relates the observation 〈A0, a1, . . . , an−1, An−1, an, An〉 to

(i) the triples (a1 . . . an−1, X, an), for all X ⊆ Σ \An−1 if An−1 6= • and for X = •
otherwise, and

(ii) the triples (a1 . . . an, X, •), for allX ⊆ Σ\An ifAn 6= • and forX = • otherwise.

A finite linear observation is related to all triples consisting of: its initial trace;

a stable refusal that could have been observed, or • if the original observation did

not observe stability; and optionally (part (i) above) a single further event that can

be accepted.

4.2.4 Acceptances

All the models considered up to now refer only to sets of refusals, which in partic-

ular are closed under subsets. The next model, acceptances (also known as ‘ready

sets’), refines the previous three and also considers the precise sets of events that

can be stably accepted at the ends of traces.

Definition 4.11 The acceptances model, A, is given by

obsΣ(A) = Σ∗ × (P(Σ) ∪ {•}), AΣ = accΣ,

where accΣ relates the observation 〈A0, a1, . . . , an, An〉 to the pair (a1 . . . an, An).

4.2.5 Refusal testing

The final model we consider is that of refusal testing, first introduced in [9]. This

refines F and R by considering an entire history of events and stable refusal sets.

It is incomparable to A, because it does not capture precise acceptance sets.

Definition 4.12 The refusal testing model, RT , is given by

obsΣ(RT) = {〈X0, a1, X1, . . . , an, Xn〉 : n ∈ N, ai ∈ Σ, Xi ⊆ Σ or Xi =•}
RT Σ = rtΣ,

8

D. Mestel, A.W. Roscoe

where rtΣ relates the observation 〈A0, . . . , an, An〉 to 〈X0, . . . , an, Xn〉, for all Xi ⊆
Σ \Ai if Ai 6= •, and for Xi = • otherwise.

4.3 Rational models

We will later on wish to consider only models M for which the correspondence

between FL-observations andM observations is decidable by a finite memory com-

puter. We will interpret this notion as saying the the relation MΣ corresponds to

the language accepted by some finite state automaton. In order to do this, we must

first decide how to convert elements of FLΣ to words in a language. We do this

in the obvious way (the reasons for using fresh variables to represent the Ai will

become apparent in Section 5).

Definition 4.13 The canonical encoding of FLΣ is over the alphabet Ξ := Σ ∪
Σ′′ ∪ Sym, where Σ′′ := {a′′ : a ∈ Σ} and Sym = {〈, 〉, ‘,’, •}. 4 It is given by the

representation in Definition 4.1, where sets Ai are expressed by listing the elements

of Σ′′ corresponding to the members of Ai in alphabetical order. We denote this

encoding by φΣ : FLΣ → Ξ∗.

We now define a model to be rational (borrowing a term from automata the-

ory) if its defining relation can be recognised (when suitably encoded) by some

nondeterministic finite automaton.

Definition 4.14 A modelM is rational if for every alphabet Σ, there is some finite

alphabet Θ and a map ψΣ : obsΣ(M)→ Θ∗, such that there is a (nondeterministic)

finite automaton A recognising {(φΣ(x), ψΣ(y)) : (x, y) ∈MΣ}, and such that ψΣ

is order-reflecting (that is, ψΣ(x) ≤ ψΣ(y) only if x ≤ y), with respect to the prefix

partial order on Θ∗, and the partial order induced by MΣ on obsΣ(M).

What does it mean for an automaton to ‘recognise’ a relation?

Definition 4.15 For alphabets Σ and T , a relation R ⊆ Σ∗ × T ∗ is recognised by

an automaton A just when:

(i) The event-set of A is left.Σ ∪ right.T , and

(ii) For any s ∈ Σ∗, t ∈ T ∗, we have sRt if and only if there is some interleaving

of left.s and right.t accepted by A.

Note that recognisability in the sense of Definition 4.15 is easily shown to be

equivalent to the common notion of recognisability by a finte state transducer given

for instance in [16], but the above definition is more convenient for our purposes.

Note also that FL itself (viewing FLΣ as the diagonal relation) is trivially rational.

Lemma 4.16 The models T ,F ,R,A and RT are rational.

Proof. By inspection of Definitions 4.8–4.12. We take Θ = Σ∪Σ′∪Σ′′∪Sym, with

Σ′′ and the expression of acceptance sets as in the canonical encoding of FL, and

refusal sets expressed in the corresponding way over Σ′ := {a′ : a ∈ Σ}. 2

4 Note that this somewhat unsatisfactory notation denotes a set of four elements: the angle brackets 〈 and
〉, the comma , and the symbol •.

9

D. Mestel, A.W. Roscoe

Note that not all relations are rational. For instance, the ‘counting relation’

mapping each finite linear observation to its length is clearly not rational. We do

not know whether the additional constraint of being a finite observational model

necessarily implies rationality; however, no irrational models are known. We there-

fore venture the following conjecture:

Conjecture 4.17 (Rationality of finite observational models) Let M be a

finite observational model. Then M is rational.

5 Model shifting

We now come to the main substance of this paper: we prove results on ‘model

shifting’, showing that there exist contexts allowing us to pass between different

semantic models and the basic traces model. The main result is Theorem 5.4,

which shows that this is possible for any rational model.

5.1 Model shifting for FL

We begin by proving the result for the finest model, FL. We show that there

exists a context CFL such that for any process P , the finite linear observations of P

correspond to the traces of CFL(P).

Lemma 5.1 (Model shifting for FL) For every alphabet Σ, there exists a con-

text CFL over alphabet T := Σ ∪ Σ′ ∪ Σ′′ ∪ {done}, and an order-reflecting map

π : FLΣ → T ∗ (with respect to the extension partial order on FLΣ and the pre-

fix partial order on T ∗) such that for any process P over Σ we have T (CFL[P]) =

pref(π(FL(P))) (where pref(X) is the prefix-closure of the set X).

Proof. We will use the unprimed alphabet Σ to denote communicated events from

the original trace, and the double-primed alphabet Σ′′ to denote stable acceptances.

Σ′ will be used in an intermediate step to denote refusals, and done will be used to

distinguish ∅ (representing an empty acceptance set) from • (representing a failure

to observe anything).

Step 1: We first produce a process which is able to communicate events x′i, just

when the original process can stably refuse the corresponding xi. Define the partial

order ≤1= 〈x′ <1 x : x ∈ Σ〉, which prevents refusal events when the corresponding

event can occur.

Let the context C1 be given by

C1[X] = prioritise(X ||| RUN Σ′ ,≤1,Σ).

Note that the third argument prevents primed events from occurring in unstable

states.

Step 2: We now similarly introduce acceptance events, which can happen in

stable states when the corresponding refusal can’t.

Similarly define the partial order ≤2= 〈x′′ <2 x′ : x ∈ Σ〉, which prevents

acceptance events when the corresponding refusal is possible. Let the context C2 be

defined by

C2[X] = prioritise(C1[X] ||| RUN Σ′′ ,≤2,Σ).

10

D. Mestel, A.W. Roscoe

Step 3: We now ensure that an acceptance set inferred from a trace is a complete

set accepted by the process under examination. This is most straightforwardly done

by employing a regulator process, which can either accept an unprimed event or

accept the alphabetically first refusal or acceptance event, followed by a refusal or

acceptance for each event in turn. In the latter case it then communicates a done

event, and returns to its original state.

The done event is necessary in order to distinguish between a terminal ∅, which

can have a done after the last event, and a terminal •, which cannot (observe that

a ∅ cannot occur other than at the end). Finally, we hide the refusal events.

Let a and z denote the alphabetically first and last events respectively, and let

succ x denote the alphabetical successor of x. Define the processes

UNSTABLE = 2
x∈Σ

x→ UNSTABLE

2 a′ → STABLE (a) 2 a′′ → STABLE (a)

STABLE (x) = x′ → STABLE (succ x) 2 x′′ → STABLE (succ x) (x 6= z)

STABLE (z) = done → UNSTABLE ,

and let

CFL[X] =

(
C2[X] ‖

Σ∪Σ′∪Σ′′
UNSTABLE

)
\ Σ′.

Step 4: We now complete the proof by defining the function π inductively as

follows:

π(ŝ 〈•〉) = π(s)

π(ŝ 〈x〉) = π(s)̂ 〈x〉
π(ŝ 〈A = {x1, . . . , xk}〉) = π(s)̂ 〈x′′1 . . . x′′kdone〉,

where without loss of generality the xi are listed in alphabetical order.

It is clear that this is order-reflecting, and by the construction above satisfies

T (CFL[P]) = pref(π(FL(P))). 2

This result allows us to translate questions of FL-refinement into questions of

trace refinement under CFL, as follows:

Corollary 5.2 For CFL as in Lemma 5.1, and for any processes P and Q, we have

P vFL Q if and only if CFL[P] vT CFL[Q].

Proof. Certainly if FL(Q) ⊆ FL(P) then T (CFL[Q]) = pref(π(FL(Q))) ⊆
pref(π(FL(P))) = T (CFL[P]) and so CFL[P] vT CFL[Q].

Conversely, suppose there exists x ∈ FL(Q) \ FL(P). Then since FL(P)

is downwards-closed, we have x � y for all y ∈ FL(P). Since π is order-

reflecting, we have correspondingly π(x) � π(y) for all y ∈ FL(P). Hence

π(x) /∈ pref(π(FL(P))), so pref(π(FL(Q))) * pref(π(FL(P))). 2

11

D. Mestel, A.W. Roscoe

5.2 Model shifting for rational observational models

We now have essentially all we need to prove the main theorem. We record a folk

result, that any NFA can be implemented as a CSP process (up to prefix-closure,

since trace-sets are prefix-closed but regular languages are not):

Lemma 5.3 (Implementation for NFA) Let A = (Σ, Q, δ, q0, F) be a (non-

deterministic) finite automaton. Then there exists a CSP process PA such that

pref(L(A)) = pref(T (PA)).

Proof. Trivial construction. See Chapter 7 of [10]. 2

Theorem 5.4 (Model shifting for rational models) For every rational model

M, there exists a context CM such that for any process P we have T (CM[P]) =

pref(ψ(M(P))).

Proof. Let A be the automaton recognising (φ×ψ)(M) (as from Definition 4.14),

and let PA be the corresponding process from Lemma 5.3.

We first apply Lemma 5.1 to produce a process whose traces correspond to the

finite linear observations of the original process, prefixed with left: let CFL be the

context from Lemma 5.1, and let the context C1 be defined by

C1[X] = CFL[X][[left.x/x]].

We now compose in parallel with PA, to produde a process whose traces corre-

spond to the M-observations of the original process. Let C2 be defined by

C2[X] =

((
C1[X] ‖

{|left|}
PA

)
\ {|left|}

)
[[x/right.x]].

Then the traces of C2[X] are precisely the prefixes of the images under ψ of the

observations corresponding to X, as required. 2

By the same argument as for Corollary 5.2, we have

Corollary 5.5 For any rational model M, let CM be as in Theorem 5.4. Then for

any processes P and Q, we have P vM Q if and only if CM[P] vT CM[Q].

6 Implementation

We demonstrate the technique by implementing contexts with the property of Corol-

lary 5.5; source code may be found at [1].

For the sake of efficiency we work directly rather than using the general construc-

tion of Theorem 5.4. The context C1 introduces refusal events and a stab event,

which can occur only when the corresponding normal events can be refused. This

implements the refusal testing model, and the context CF which allows only nor-

mal events optionally followed by some refusals (and stab) implements the failures

model.

This is however suboptimal over large alphabets, in the typical situation where

most events are refused most of the time. FDR3’s inbuilt failures refinement check-

ing is able to compare acceptance sets (checking that the acceptances of the spec-

12

D. Mestel, A.W. Roscoe

ification are a subset of those of the implementation), which are typically smaller

than the refusal sets.

The context C’ introduces acceptance events which can occur only in stable

states where the corresponding refusal cannot, and then blocks all refusals. The

problem then is: how to check that the acceptances of the specification are a subset

of those of the implementation, despite the fact that trace refinement checks for

inclusion the other way?

The answer is to use priority to prevent the stab event from happening while

acceptances are still available, so that CFImpl’ is able to communicate only its

precise acceptance sets. We then form CFSpec’ by parallel composition with RUN

for all the acceptance events, so that CFSpec’ can communicate any supersets of its

acceptance set.

Similar constructions with slightly different restrictions on the permissible se-

quences of events produce efficient processes for the revivals and refusal testing

models. For the acceptances model, we just want to check for inclusion of the im-

plementation’s acceptance sets in those of the specification, so the context CFImpl’

works for both the specification and the implementation; finite linear observations

works similarly with failures replaced by refusal testing.

6.1 Testing

We test this implementation by constructing processes which are first distinguished

by the failures, revivals, refusal testing and acceptance models respectively (the

latter two being also distinguished by the finite linear observations model). The

processes, and the models which do and do not distinguish them, are shown in

Table 1 (recall the precision hierarchy of models: T ≤ F ≤ R ≤ {A,RT } ≤
FL). The correct results are obtained when these checks are run in FDR3 with the

implementation described above.

Specification Implementation Passes Fails

a→ div a→ STOP T F
((a→ div) 2 div) u STOP a→ div F R
(a→ div) u (div4(a→ STOP)) a→ STOP R,A RT ,FL
(a→ STOP) u (b→ STOP) (a→ STOP) 2 (b→ STOP) R,RT A,FL

Table 1
Tests distinguishing levels of the model precision heirachy. 4 is the interrupt operator; see [12] for details.

6.2 Performance

We assess the performance of our simulation by running those examples from Table

1 of [5] which involve refinement checks (as opposed to deadlock- or divergence-

freedom assertions), and comparing the timings for our construction against the

time taken by FDR3’s inbuilt failures refinement check (since F is the only model

for which we have a point of comparison between a direct implementation and

the methods developed in this paper). Results are shown in Table 2, for both the

original and revised contexts described above; the perfomance of the FL check is also

shown. As may be seen, performance is somewhat worse but not catastrophically

13

D. Mestel, A.W. Roscoe

so. Note however that these processes involve rather small alphabets; performance

is expected to be worse for larger alphabets.

Inbuilt F CF CF’ FL

Input File |S| |∆| T (s) |S| |∆| T (s) |S| |∆| T (s) |S| |∆| T (s)

inv 21M 220M 23 21M 220M 78 21M 220M 125 21M 220M 145

nspk 6.9M 121M 22 6.3M 114M 73 4.1M 72M 55 5.4M 97M 92

swp 24M 57M 16 30M 123M 61 43M 76M 107 42M 93M 131

Table 2
Experimental results comparing the performance of our construction with FDR3’s inbuilt failures

refinement check. |S| is the number of states, |∆| is the number of transitions, T is the time (in seconds),
and M indicates millions.

6.3 Example: Conflict detection

We illustrate the usefulness of richer semantic models than just traces and failures

by giving a sample application of the revivals model. Suppose that we have a process

P consisting of the parallel composition of two sub-processes Q and R. The failures

model is able to detect when P can refuse all the events of their shared alphabet, or

deadlock in the case when they are synchronised on the whole alphabet. However,

it is unable to distinguish between the two possible causes of this: it may be that

one of the composands is able to refuse the entire shared alphabet, or it may be

that each accepts some events from the shared alphabet, but the acceptances of Q

and R are disjoint. We refer to the latter situation as a ‘conflict’. The absence of

conflict (and similar situations) is at the core of a number of useful ways of proving

deadlock-freedom for networks of processes running in parallel [14].

The revivals model can be used to detect conflicts. For a process P = Q X‖Y R,

we introduce a fresh event a to represent a generic event from the shared alphabet,

and form the process P ′ = Q′ X′‖Y ′ R′, where Q′ = Q[[{(x, x), (x, a) : x ∈ X}]],
X ′ = X∪{a}, and similarly for R′ and Y ′. Conflicts of P now correspond to revivals

(s,X ∩ Y, a), where s is a trace not containing a.

7 Conclusions

The result of Theorem 5.4 shows that the expressibility of all finite observational

(rational) models can in some sense be simulated by the traces model using the pri-

ority operator. This provides a practical method of testing refinement over models

that FDR does not directly support. While any such model could be implemented

directly in the program itself, we have shown this is not necessary. This also serves

to further demonstrate the power and usefulness of the priority operator (see also

the previous work of the second-named author on the expressiveness of CSP with

priority [13] and on ‘slow abstraction’ [15]).

Note that this type of construction can be used more generally. Firstly, it

seems likely that the construction can be extended to non-finite models; for instance

to reduce failures-divergences tests to traces-divergences, or infinite-traces-failures-

divergences to infinite-traces-divergences.

Secondly, the construction does not use the requirement that a model be com-

positional. This means that it will work for any rational set of observable be-

14

D. Mestel, A.W. Roscoe

haviours, such as the singleton failures semantics presented in [3]. The techniques

described here can also be used to support the Timed Failures model of Timed CSP

in FDR3 [2].

The limitation to rational models is from a theoretical point of view rather

unsatisfactory, although it may be of little practical significance since all known

models (and probably all models one would be likely to come up with) are clearly

rational. However, Conjecture 4.17 remains of interest since a resolution in either

direction would undoubtedly yield insight into the structure of the ‘clouds’ of models

lying above R set out in [11].

Acknowledgements

The authors are grateful to Tom Gibson-Robinson for helpful discussions and prac-

tical assistance with FDR3. This work has been partially sponsored by DARPA

under agreement number FA8750-12-2-0247.

References

[1] www.cs.ox.ac.uk/people/david.mestel/model-shifting.csp.

[2] Philip Armstrong, Gavin Lowe, Joël Ouaknine, and A.W. Roscoe. Model checking timed CSP. In
Andrei Voronkov and Margarita Korovina, editors, HOWARD-60. A Festschrift on the Occasion of
Howard Barringer’s 60th Birthday, pages 13–33. EasyChair, 2014.

[3] Christie Bolton and Jim Davies. A singleton failures semantics for communicating sequential processes.
Formal Aspects of Computing, 18(2):181–210, 2006.

[4] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A.W. Roscoe. FDR3—a
modern refinement checker for CSP. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 187–201. Springer, 2014.

[5] Thomas Gibson-Robinson, Henri Hansen, A.W. Roscoe, and Xu Wang. Practical partial order reduction
for CSP. In NASA Formal Methods, pages 188–203. Springer, 2015.

[6] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1985.

[7] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1982.

[8] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i. Information and
Computation, 100(1):1–40, 1992.

[9] Iain Phillips. Refusal testing. Theoretical Computer Science, 50(3):241–284, 1987.

[10] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1997.

[11] A.W. Roscoe. Revivals, stuckness and the hierarchy of CSP models. The Journal of Logic and Algebraic
Programming, 78(3):163–190, 2009.

[12] A.W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science. Springer, 2010.

[13] A.W. Roscoe. The expressiveness of CSP with priority. In Proceedings of MFPS 2015, 2015.

[14] A.W. Roscoe and Naiem Dathi. The pursuit of deadlock freedom. Information and Computation,
75(3):289 – 327, 1987.

[15] A.W. Roscoe and Philippa J. Hopcroft. Slow abstraction via priority. In Zhiming Liu, Jim Woodcock,
and Huibiao Zhu, editors, Theories of Programming and Formal Methods, pages 326–345. Springer-
Verlag, Berlin, Heidelberg, 2013.

[16] J. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge University Press,
2009.

15

www.cs.ox.ac.uk/people/david.mestel/model-shifting.csp

	Introduction
	The CSP language
	Priority

	Example: the failures model
	The traces and failures models
	Model shifting for the failures model

	Semantic models
	Finite observations
	Finite observational models
	The traces model
	Failures
	Revivals
	Acceptances
	Refusal testing

	Rational models

	Model shifting
	Model shifting for FL
	Model shifting for rational observational models

	Implementation
	Testing
	Performance
	Example: Conflict detection

	Conclusions
	References

