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1 Introduction

In 1988 Bramble and Pasciak [5] introduced a special Preconditioned Conjugate Gradi-
ents (cg ) method to solve the symmetric saddle point problem

[
A BT

B −C

]

︸ ︷︷ ︸
x = b

A

(1.1)

where A is symmetric positive definite and C is positive semi-definite. A block triangular
preconditioner of the form

P =

[
A0 0
B −I

]
where P−1 =

[
A−1

0 0
BA−1

0 −I

]
(1.2)

is used such that the original matrix A preconditioned by P becomes

Â = P−1A =

[
A−1

0 A A−1
0 BT

BA−1
0 A − B BA−1

0 BT + C

]
. (1.3)

which is clearly non-symmetric. However, the block A0 is assumed to be positive def-
inite but further assumptions are in fact necessary. A well known result of Faber and
Manteuffel in [10] states that there exist no optimal short-term recurrence methods for
general non-symmetric matrices. Amazingly, Bramble and Pasciak introduced the inner
product

〈x, y〉H = xTHy (1.4)

where

H =

[
A − A0 0

0 I

]
(1.5)

and showed that A is self-adjoint (symmetric) in this inner product. In fact, A0 has
to be such that A − A0 is positive definite and the Preconditioned cg method can be
used, i.e. the matrix Â is symmetric positive definite in the H-inner product. The
Bramble-Pasciak cg method is widely used in practice and very well analyzed, see
[1–3, 6, 7, 15, 19, 20, 25, 31, 33]. Extensions to the classical Bramble Pasciak case are
known and carefully discussed, see [19, 22, 28]; a Schur complement preconditioner S0

is introduced which under certain conditions still guarantees the positive definiteness of
the system, i.e.

P =

[
A0 0
B −S0

]
and P−1 =

[
A−1

0 0
S−1

0 BA−1
0 −S−1

0

]
. (1.6)

In the original paper [5] some conditions are imposed on the matrix A0 and similar
requirements have to be made for the extensions (cf. [19, 22, 28]). Usually an eigen-

value problem has to be solved in order to ensure that the preconditioned matrix Â is
symmetric and positive definite and

〈x, y〉H
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defines an inner product. The eigenvalue computation can be quite expensive and it
is therefore desired to avoid this. Simoncini recently analyzed the conditions imposed
on A0 and how they can be relaxed, see [28]. Under the assumption that the matrix
A − A0 doesn’t have to be positive definite different it is still possible to use efficient
Krylov subspace solvers. One typical choice would be the ideal transpose-free qmr

(itfqmr ) which is based on the simplified Lanczos method, see [14] and Section 3.3
in this paper. The important point is that less effective general non-symmetric iterative
methods do not have to be used with this structure. In this paper we introduce a new
preconditioner P+ which is similar to the one proposed by Bramble and Pasciak. We
analyze its behaviour for three different Krylov subspace solvers cg [18], minres [23]
and itfqmr [11]: all of these methods have fixed work per iteration. Furthermore,
we study the possibility of combination preconditioning recently proposed by Stoll and
Wathen [30] for the classical and the P+ preconditioners and their corresponding inner
products. Numerical Experiments will be shown in Section 5 using examples from the
ifiss package, see [8].

2 The modified preconditioner

Considering the relation for self-adjointness in an H-inner product

xT ÂTHy = 〈HÂx, y〉 = 〈Âx, y〉H = 〈x, Ây〉H = xTHÂy ∀x, y. (2.1)

The key condition is then seen to be ÂTH = HÂ and this has to be satisfied in order to
be able to employ efficient algorithms, see [21] where the relation to optimal short-term
recurrences is made. The original Bramble-Pasciak cg method fulfills this condition for

Â =

[
A−1

0 A A−1
0 BT

BA−1
0 A − B BA−1

0 BT + C

]

and

H =

[
A − A0 0

0 I

]
.

The obvious drawback of this method is the necessity to scale the matrix A0 such that
the matrix H is not only symmetric but also positive definite. Usually an eigenvalue
problem for A−1

0 A has to be solved which can be very costly, see [16] for a survey of
methods that could be applied.

In contrast, we introduce the preconditioner

P+ =

[
A0 0
−B I

]
and

(
P+

)−1
=

[
A−1

0 0
BA−1

0 I

]
(2.2)

and obtain by left preconditioning with P+

Â =
(
P+

)−1
A =

[
A−1

0 A A−1
0 BT

BA−1
0 A + B BA−1

0 BT − C

]
. (2.3)
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Simple algebra shows that Â is self-adjoint in the inner product induced by

H+ =

[
A + A0 0

0 I

]
. (2.4)

Note that for a positive definite preconditioner A0 the matrix H+ is always positive
definite, i.e.

xT (A + A0)x = xT Ax + xT A0x > 0

due to the positive definiteness of the matrices A and A0. Thus, we are in this case
always equipped with an inner product and not just a symmetric bilinear form whatever
symmetric and positive definite A0 is chosen, and so the appropriate Krylov subspace
method can be used in this inner product. In the context of particular methods, we
will discuss the eigenvalue properties of the preconditioned matrix. We also want to
mention that the Bramble-Pasciak+ configuration is applicable in the presence of a
Schur-complement preconditioner S0. The modified preconditioner then becomes

P+ =

[
A0 0
−B S0

]
and

(
P+

)−1
=

[
A−1

0 0
S−1

0 BA−1
0 S−1

0

]
(2.5)

and the inner product matrix is defined by

H+ =

[
A + A0 0

0 S0

]
. (2.6)

3 Methods for solving the P+-preconditioned sys-

tem

3.1 The Conjugate Gradients method

The cg algorithm is one of the most powerful Krylov subspace methods to solve a linear
system. In [5] Bramble-Pasciak introduce the preconditioning by a block-triangular
matrix that results in a non-symmetric matrix which is symmetric and positive definite
in a non-standard inner product; hence, the cg algorithm is applicable. To justify this,
Klawonn shows in [19] that the matrix

ÂTH =

[
AA−1

0 A − A AA−1
0 BT − BT

BA−1
0 A − B BA−1

0 BT + C

]
(3.1)

can be split into
[

I 0
BA−1 I

] [
AA−1

0 A − A 0
0 BA−1BT + C

] [
I A−1BT

0 I

]
. (3.2)

Now note that because of the positive definiteness of A we can rewrite AA−1
0 A − A as

A1/2(A1/2A−1
0 A1/2 − I)A1/2.
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The positivity is guaranteed if

xT A1/2A−1
0 A1/2x > xT x

which for y = A1/2x further reduces to

yTA−1
0 y > yTA−1y.

Using the last result, we obtain

yTA0y < yTAy. (3.3)

Due to the congruence transformation (3.2) and Equation 3.3 we see that all eigenvalues
are positive. The same has to be shown for the new preconditioner P+. Using Klawonn’s
approach we get for the matrix

ÂTH+ =

[
AA−1

0 A + A AA−1
0 BT + BT

BA−1
0 A + B BA−1

0 BT − C

]
(3.4)

a decomposition of the following type

[
I 0

BA−1 I

] [
AA−1

0 A + A 0
0 −BA−1BT − C

] [
I A−1BT

0 I

]
. (3.5)

This shows that the matrix has negative eigenvalues since −BA−1
0 BT − C is always

negative definite and therefore the reliable applicability of the cg method cannot be
guaranteed. Nevertheless, in practice the results of the cg method applied to this prob-
lem show good convergence behaviour. One remedy could be to use augmented Krylov
subspace methods, see [29]. Another alternative is to use a special implementation of
minres which will be introduced in Section 3.2.

3.2 minres for the saddle point problem

In Section 2 we showed that for a positive definite preconditioner A0 the inner prod-
uct matrix H+ will always be symmetric positive definite. minres (Minimal Residual
Method) was introduced in 1975 by Paige and Saunders in [23] as a method for mini-
mizing the residual over the current Krylov subspace based on the symmetric Lanczos
method. It is typically the method of choice for symmetric indefinite systems. Since the
preconditioned matrix Â is symmetric in the inner product induced by H+, we can use a
version of the classical Lanczos method to generate a basis for the Krylov subspace and
then minimize the H+-norm of the residual. The H+-Lanczos method (cf. Algorithm
1) generates an H+-orthonormal basis for the Krylov subspace which can be expressed
in matrix terms as

AVk = VkTk + βkvk+1e
T
k (3.6)
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with

Tk =




α1 β1

β1
. . .

. . .
. . .

. . . βk−1

βk−1 αk


 and Vk = [v1, v2, . . . , vk]

as well as V T
k H+Vk = I. Using the basis Vk and the coefficients stored in Tk we can

Algorithm 1 Algorithm for H+-Lanczos

INPUT : A ∈ R
n,n and b ∈ R

n

OUTPUT : v1, v2, . . . an orthonormal basis for the Krylov subspace

Choose start vector v1R
n with ‖v1‖ = 1.

Set β0 = 0
for k = 1, 2, . . . do

ṽk+1 = Âvk − βk−1vk−1

Compute αk = 〈ṽk+1, vk〉H+

ṽk+1 = ṽk+1 − αkvk

Set βk = ‖ṽk+1‖H+

Set vk+1 = ṽk+1/βk

end for

implement a minres procedure, see Algorithm 2. The following condition holds for

Algorithm 2 Algorithm for H+-minres

INPUT : A ∈ R
n,n and b ∈ R

n

OUTPUT : x ∈ R
n

Compute r0 = b − Ax0 with given x0.
Set v1 = r0/ ‖r0‖
Set β0 = 0
for k = 1, 2, . . . do

Compute vk+1, αk and βk by using the H+-Lanczos method.
Update the matrix Tk.
Modify last column of Tk by using the last two Givens rotations.
Compute and apply kth Givens rotation.
Compute pk−1.
Update solution xk = xk−1 + ak−1pk−1 where ak−1 is the kth entry
of ‖r0‖ (Qke1)k×1 with Qk from the updated QR factorization.

end for
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the residual
‖rk‖H+ = ‖b − Axk‖H+

= ‖b − Ax0 − AVkyk‖H+

= ‖r0 − Vk+1Tk+1yk‖H+

=
∥∥Vk+1(V

T
k+1H

+r0 − Tk+1yk)
∥∥
H+

=
∥∥V T

k+1H
+r0 − Tk+1yk

∥∥
H+

= ‖‖r0‖ e1 − Tk+1yk‖H+

(3.7)

using that Vk+1 is orthogonal in the H+-inner product. Implementation details for
minres can be found in [17]. Applying the H+-minres method can also be justified
by studying the problem in the context of the Faber-Manteuffel theorem. In 1984 Faber
and Manteuffel [10] proved only matrices which are normal(s) in some inner product
admit a (s+2)-term recurrence which minimizes some relevant quantity at each iteration.
In the most common case of 3-term recurrence methods such as cg or minres the
normal(1) condition implies that the eigenvalues of the problem matrix lie on a straight
line in the complex plane. A survey paper by Liesen and Strakos, see [21], gives a
description of the Faber and Manteuffel paper in more accessible linear algebra terms.
Essentially, a matrix M admits an (s + 2)-term recurrence method if the B-adjoint1,
M+ = BMT B−1, can be expressed as a polynomial of degree s in M , i.e.

M+ = ps(M).

The self adjointness relation ÂTH+ = H+Â obviously gives that a polynomial of degree
s = 1 must exist such that the H+-adjoint of Â+ = p1(Â) for the simple polynomial

p1(z) = z, i.e. use M = Â and B = (H+)
−1

.

3.3 The simplified Lanczos method

The non-symmetric Lanczos process (cf. [11, 13, 14, 17, 26]) generates two sequences of
vectors vk and wk that are orthogonal to each other and are generated by

ρk+1vk+1 = Avk − µkvk − νk−1vk−1 (3.8)

for the first sequence and

ζk+1wk+1 = AT vk − µkwk −
νk−1ρk

ζk

wk−1 (3.9)

for the second sequence with µk = wT
k Avk/w

T
k vk and νk = ζkw

T
k vk/w

T
k−1vk−1. There is

more than one way to scale the two vectors in every iteration step. Here, we use ‖vj‖ = 1
and ‖wj‖ = 1. The biorthogonality condition between Wk and Vk gives

Dk = diag(δ1, δ2, . . . , δk) where δj = wT
j vj. (3.10)

1
B is a symmetric positive definite inner product matrix
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Furthermore, we can now write the recursions in terms of matrices and get

AVk = Vk+1Hk (3.11)

as well was

AT Wk = Wk+1Γ
−1
k+1HkΓk+1 (3.12)

where the matrix Γk is defined as follows

Γk = diag(γ1, γ2, . . . , γk) with γj =

{
1 if j = 1

γj−1ρj/ζj if j > 1.
(3.13)

One advantage of the non-symmetric Lanczos process is that Hk is a tridiagonal matrix
which is typically non-symmetric. There are cases where the non-symmetric Lanczos
process can break down which can have different implications. The first case the so-
called lucky breakdown indicates that the solution lies already in the current Krylov
space. In the case of wT

j vj = 0 and neither vj+1 nor wj+1 are zero the so-called serious
breakdown occurs. A remedy is to use look-ahead strategies, see [12,24] for more details.

The non-symmetric Lanczos process can now be simplified using the self-adjointness
of Â in the H+-inner product, i.e.

ATH+ = H+A.

In [13] Freund and Nachtigal observe that for the Lanczos vectors the relation

vj = φj(A)v1 and wj = γjφj(A
T )w1 (3.14)

holds where φ is a polynomial of degree j − 1 the so-called Lanczos polynomial. Using
Equation (3.14) and setting w1 = H+v1, we get

wj = γjφj(A
T )w1 = γjφj(A

T )H+v1 = γjH
+φj(A)v1 = γjH

+vj.

Hence, we can compute the vector wj without multiplying by AT . Instead,

wj+1 = γj+1H
+vj+1 (3.15)

can be used. The parameter γj+1 = γjρj+1/ζj+1 involves ζj+1 which cannot be computed
at that time. Thus the relation (3.15) has to be reformulated to

w̃j+1 = ζj+1wj+1 = γjρj+1H
+vj+1 = γjH

+ṽj+1

which gives us now a computable version of the simplified Lanczos method, see Algorithm
3.
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Algorithm 3 Algorithm for the simplified Lanczos method

INPUT : A ∈ R
n,n and b ∈ R

n

OUTPUT : x ∈ R
n

Choose v1 and compute w1 = H+v1

Compute ρ1 = ‖v1‖ and ζ1 = ‖w1‖
Set γ1 = ρ1

ζ1
for k = 1, 2, . . . do

Compute µk = (wT
k Avk)/(wT

k vK)
Set νk = ζk(w

T
k vk)/(wT

k−1vk−1)
vk+1 = Avk − µkvk − νkvk−1

wk+1 = γkvk+1

Compute ρk+1 = ‖vk+1‖ and ζk+1 = ‖wk+1‖
Set γk+1 = γkρk+1/ζk+1.

end for

3.4 The ideal transpose-free qmr method

In [11] Freund introduced the ideal transpose-free qmr method (itfqmr ) by using
the simplification of the Lanczos method. Freund’s implementation is based on a qmr

-from-bicg procedure and coupled two term recurrence relations, details can be found
in [11, 14]. For simplicity reasons, we introduce the algorithm based on the simplified
Lanczos method and the standard updated QR technique using Equation 3.7. In more
detail, we have

AVk = Vk+1Hk (3.16)

from the non-symmetric Lanczos process and get as a result

rk = Vk+1(‖r0‖ e1 − Hkyk) (3.17)

for the residual. The term (‖r0‖ e1 − Hkyk) is called quasi-residual. Minimizing the
quasi-residual (‖r0‖ e1 − Hkyk) by applying the standard QR technique known from
minres we obtain the Quasi-Minimal Residual (qmr ) method. If we can in the
process of minimizing the quasi-residual omit multiplication with the transpose in the
non-symmetric Lanczos by employing the simplified version we get the ideal transpose-
free QMR method (itfqmr ), see Algorithm 4.

For a better understanding of the convergence behaviour of itfqmr we analyze the
eigenvalues of

Â =
(
P+

)−1
A =

[
A−1

0 A A−1
0 BT

BA−1
0 A + B BA−1

0 BT

]

for the case A0 = A which gives

Â =
(
P+

)−1
A =

[
I A−1BT

2B BA−1BT

]
. (3.18)
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Algorithm 4 Algorithm for ideal transpose-free qmr

INPUT : A ∈ R
n,n and b ∈ R

n

OUTPUT : x ∈ R
n

Compute r0 = B − Ax0

Set v1 = r0 and compute w1 = H+v1

Compute ρ1 = ‖v1‖ and ζ1 = ‖w1‖
Set γ1 = ρ1

ζ1
for k = 1, 2, . . . do

Compute one step of the non-symmetric simplified Lanczos process
Update matrix Tk

Modify last column of Tk by using the last two Givens rotations.
Compute and apply kth Givens rotation.
Compute pk−1.
Update solution xk = xk−1 + ak−1pk−1 where ak−1 is the kth entry
of ‖r0‖ (Qke1)k×1 with Qk from the updated QR factorization..

end for

Given an eigenpair (λ,

[
x
y

]
) of Â we know that

[
I A−1BT

2B BA−1BT

] [
x
y

]
=

[
x + A−1BT y

2Bx + BA−1BT y

]
= λ

[
x
y

]
(3.19)

holds. Equation 3.19 shows that

x + A−1BT y = λx ⇐⇒ Ax + BT y = λAx.

For λ = 1 we get
Ax + BT y = Ax

which gives BT y = 0 and therefore y = 0 under the condition that Bx = 0. Since the
kernel of B is n − m dimensional we have λ = 1 with multiplicity n − m.

For λ 6= 1, we conclude from Equation 3.19 that x = 1
λ−1

A−1BT y. Using this

BA−1BT y =
λ(λ − 1)

λ + 1
y (3.20)

can be obtained. This shows that for an eigenvalue σ of BA−1BT we get

σ =
λ(λ − 1)

λ + 1
. (3.21)

Hence, the eigenvalues of Â become

λ1,2 =
1 + σ

2
±

√
(1 + σ)2

4
+ σ. (3.22)
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Obviously, σ > 0 and therefore we have m negative eigenvalues given by Equation 3.22.
This shows that there are 2m + 1 different eigenvalues and we expect the method to
converge after 2m+1 steps. This also extends the analysis made in Section 3.1 by giving
exact formulas for the eigenvalues of (P+)

−1
A.

A similar analysis for the classical Bramble-Pasciak case was made by Simoncini
in [28].

The indefiniteness of (P+)
−1

A indicates that methods such as H+-minres or it-

fqmr should be used. We will illustrate their convergence behaviour in Section 5 by
applying them to Stokes examples from ifiss .

4 Combination preconditioning with the Bramble-

Pasciak+ setup

In 2007 Stoll and Wathen (cf. [30]) show that different preconditioners P1,P2 and bilinear
forms H1,H2 can be combined to give a new preconditioner P3 and a bilinear form H3.
We quote Lemma 3.5 from [30]

Lemma 4.1 If P1 and P2 are left preconditioners for the symmetric matrix A for which
symmetric matrices H1 and H2 exist with P−T

1 A self-adjoint in 〈·, ·〉H1
and P−T

2 A self-
adjoint in 〈·, ·〉H2

and if

αP−T
1 H1 + βP−T

2 H2 = P−T
3 H3

for some matrix P3 and some symmetric matrix H3 then P−1
3 A is self-adjoint in 〈·, ·〉H3

.

In [30] the theory is illustrated by showing the application to saddle point problems.
The saddle point problem preconditioned by P3 is self-adjoint in the bilinear form de-
fined by H3 and under some conditions for the combination parameters α and β also
defines an inner product. It is also possible to determine these parameters such that the
preconditioned matrix is positive definite in the inner product induced by H3.

Using the results given in [30] we want to analyze the possibility of combining the
classical Bramble-Pasciak configuration with the newly created Bramble-Pasciak+ setup.
Therefore, we have the preconditioners

P1 =

[
A0 0
B −I

]
and P2 =

[
A0 0
−B I

]

and for the inner products

H1 =

[
A − A0 0

0 I

]
and H2 =

[
A + A0 0

0 I

]
.

Instead of α, β ∈ R we use the combination parameters α and 1 − α and get

αP−T
1 H1 + (1 − α)P−T

2 H2 =

[
A−1

0 A + (1 − 2α)I A−1
0 BT

0 (1 − 2α)I

]
.
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If we find a splitting as described in Lemma 4.1 than a new preconditioner and bilinear
form are given. One splitting possibility would be

P−T
3 =

[
A−1

0 A−1
0 BT

0 (1 − 2α)I

]
=⇒ P3 =

[
A0 0
1

(2α−1)
B 1

1−2α
I

]

as the new preconditioner and the bilinear form is then defined by

H3 =

[
A + (1 − 2α)A0 0

0 I

]
.

Note, that for α = 1 we obtain the classical Bramble-Pasciak configuration and α = 0
gives the Bramble-Pasciak+ setup.

We now have to analyze if positivity in the new bilinear form can be achieved and if
the bilinear form is an inner product which can be exploited for short-term recurrence
methods. Hence, the matrix

ÂTH3

with Â = P−1
3 A has to be analyzed. The matrix

ÂTH3 =

[
AA−1

0 A + (1 − 2α)A AA−1
0 BT + (1 − 2α)BT

BA−1
0 A + (1 − 2α)B BA−1

0 BT − (1 − 2α)C

]

can be split as

ÂTH3 =

[
I 0

BA−1 I

] [
AA−1

0 A + (1 − 2α)A 0
0 (2α − 1)BA−1BT − (1 − 2α)C

] [
I A−1BT

0 I

]
.

The number of positive and negative eigenvalues is determined by the eigenvalues of the
matrix [

AA−1
0 A + (1 − 2α)A 0

0 (2α − 1)(BA−1
0 BT + C)

]

which we analyze in more detail. We first consider the case where C = 0 and then it is
easy to see that the block (2α − 1)BA−1

0 BT is positive for α > 1/2. With this choice
for α we have to find conditions such that the block AA−1

0 A + (1− 2α)A is also positive
definite. Similar to the analysis made in Section 3.1, we note the equivalence

A
1

2

(
A

1

2 A−1
0 A

1

2 + (1 − 2α)I
)

A
1

2

and use the field of values so that positive definiteness is expressed by the relation

xT A
1

2 A−1
0 A

1

2 x + (1 − 2α)xT x > 0 ∀x.

The last equation can be rewritten as

xT A
1

2 A−1
0 A

1

2 x > (2α − 1)xT x.
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and if we introduce y = A
1

2 x we get

yTA−1
0 y > (2α − 1)yTA−1y.

Thus, positivity is given if yTA0y < (2α − 1)yTAy which can also be written as

A0 < (2α − 1)A.

In addition we want the matrix H3 to define an inner product which will be satisfied if
the block A + (1 − 2α)A0 > 0 which is equivalent to

1

2α − 1
A > A0.

Again, the case α = 1 gives the Bramble Pasciak configuration and α = 0 shows that
there is no configuration that makes the Bramble-Pasciak+ setup positive definite and
cg reliable applicable. It is still possible to obtain a reliable cg method in the combi-
nation preconditioning case, ie. if

A0 < min

(
(2α − 1)A,

1

2α − 1
A

)

which imposes more restrictions on A0 then Bramble and Pasciak did in [5]. The case
C 6= 0 can be treated equivalently since the block (2α−1)(BA−1

0 BT +C) will be positive
for all α > 1/2 and the above analysis applies.

5 Numerical Experiments

In this section we will show the results of our numerical experiments. The matrices
are coming from the Stokes problem and in particular were generated using the ifiss2

package. The Stokes equation

−O
2u + Op = f

O · u = 0

can be transformed using a weak formulation which can than be treated using the finite
element method, see [9] for details. The linear system governing the finite element
method for the Stokes problem is a saddle point problem

[
A BT

B −C

]

where C 6= 0 for stabilized elements. This matrix is symmetric but indefinite and could
be treated with minres in the first place. But in order to improve the convergence we
have to compare our Bramble-Pasciak+ preconditioner to other suited methods. One

2http://www.maths.manchester.ac.uk/∼djs/ifiss/
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candidate would be the block diagonal preconditioning introduced by Silvester and Wa-
then in [27, 32] where a preconditioner

P =

[
A0 0
0 S0

]
(5.1)

where A0 is a preconditioner for A and S0 is a Schur complement preconditioner and
we can use minres with this type of preconditioner. More details can be found in [4].
In the Bramble-Pasciak+ setup the preconditioned matrix is symmetric in the H+-inner
product. This enables us to use the H+-minres method introduced in Section 3.2.
We will compare this method to the classical minres algorithm for the block-diagonal
preconditioner. In the ifiss implementation the preconditioner S0 is chosen to be the
Gramian matrix of the basis functions, see Chapter 6.2 in [9]. As the right hand side we
chose the row sum of A such that for the solution x the condition xj = 1 should hold.

Example 5.1 The first example comes from the ifiss package where the Stokes prob-
lem for the channel domain is considered. The size of the system matrix A is given by
9539 × 9539 with m = 1089 and n = 8450. The results shown in Figure 1 are obtained
by using the H+-minres method and the classical Preconditioned minres as given
in [27,32], ie. A0 = A and S0 the Gramian. The red (dashed) curve is showing the results
of the Preconditioned minres with a block-diagonal preconditioner. The correspond-
ing residual is given in the 2-norm. The blue (solid) line shows the 2-norm residuals
computed by the H+-minres algorithm. Figure 2 shows the same results as Figure 1
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Figure 1: Results for H+-minres and classical Preconditioned minres .

but with the itfqmr method in addition. The results for the itfqmr with Bramble-
Pasciak+ preconditioning and H+-inner product are shown as black (dash–dotted) line
in Figure 2.
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Figure 2: Additional itfqmr results with Bramble-Pasciak+ preconditioning.

Example 5.2 In this example we use the same matrices as in Example 5.1 where the
dimension of A is 9539. Instead of the exact preconditioner A0 = A we introduce
the Incomplete Cholesky Preconditioner3 where A0 = RT R with R coming from the
Incomplete Cholesky factorization of A. Again in Figure 3, the blue (solid) line shows
the convergence for the H+-minres method and the red (dashed) curve represents the
behaviour for the Preconditioned minres method in the 2-norm. Again the results
for the block-diagonal preconditioned system and the Bramble-Pasciak+ H+-minres

method are quite similar. In Figure 4 we added the 2-norm results for the cg method
with classical Bramble-Pasciak preconditioner and inner product as the black (dash–
dotted) line without checking whether the conditions necessary for A0 are fulfilled.

Example 5.3 The problem matrix A is again of dimension 9539 and comes from the
ifiss package. Furthermore, we are working with setting of the original Bramble-Pasciak
paper, see [5] where only the preconditioner A0 is used without introducing a Schur-
complement preconditioner, ie.

P =

[
A0 0
B −I

]
.

Due to the structure of the inner product matrix

H =

[
A − A0 0

0 I

]

where the block A − A0 can be found on the main diagonal, the exact preconditioner
A0 = A cannot be applied. Thus, we again use a Incomplete Cholesky decomposition of

3For more details see the matlab function cholinc and the references mentioned there.
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Figure 3: Results for minres and H+-minres with Incomplete Cholesky precondi-
tioning.

A to get the preconditioner A0 = RT R. In [28] Simoncini recommends the use of the
simplified Lanczos procedure combined with the qmr method which gives the itfqmr .
Hence, we compare the itfqmr method for the classical Bramble-Pasciak case and for
the new Bramble-Pasciak+ preconditioner with inner product H+. Figure 5 shows the
2-norm results of our computations. The black (dashed) line represents the convergence
behaviour for the itfqmr method with the Bramble-Pasciak preconditioner P and inner
product matrix H. The blue (solid) curve shows the norm of the residual coming from
the itfqmr method with the Bramble-Pasciak+ preconditioner P+ and inner product
matrix H+.

We now show results for the combination preconditioning with the Bramble-Pasciak and
the Bramble-Pasciak+ setup. As shown in Section 4 the parameter α has to be adjusted
in order to guarantee positive definiteness of the preconditioned matrix and also to define
an inner product rather than a bilinear form. For different choices of α different methods
are applicable. In the case of α giving the positivity of Â in an inner product we will
use cg to compute the solution to Equation 5.1. If only the bilinear form becomes an
inner product and Â is not positive definite H+-minres can be applied as explained
in Section 3.2. In the case that neither the matrix Â is positive nor H defines an inner
product we are still able to apply the itfqmr method based on the simplified Lanczos
method.

Example 5.4 In this example the matrix represents the flow over a channel domain and
is of size 2467×2467. Our choice for A0 is again the Incomplete Cholesky decomposition
and S0the Gramian. Figure 6 shows the results for different values of α, where the
fastest convergence is given for α = 2/3 in the blue (solid) curve. The choice for α =
2/3 performs better than original Bramble-Pasciak method reflected by α = 1. For
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Figure 4: Additional classical BP results

comparison we also show the results for the preconditioned minres in the red (dashed)
line. Further values of α are shown, where α = 1 represents the classical Bramble-
Pasciak configuration.

6 Conclusions

In this paper we presented a new preconditioner P+ based on the theory introduced
by Bramble and Pasciak. We introduced an inner product in which the preconditioned
matrix is self-adjoint. We discussed the applicability of different Krylov subspace solver
including a thorough eigenvalue analysis of the preconditioned matrix in the case of
A0 = A. Furthermore, a short proof of the classical Bramble-Pasciak setup was given
based on techniques introduced by Klawonn. The same techniques were used to study
the definiteness of the Bramble-Pasciak+ configuration. A minres algorithm based
on the H+-inner product was introduced. We studied the simplified Lanczos method
and based on it we developed an implementation of itfqmr . We also analyzed the
possibilities of combining the classical and the new Bramble-Pasciak setup to obtain
new preconditioners as shown in [30]. Finally, numerical experiments based upon the
ifiss package were shown and the comparison of the new methods to some well-known
problems was made. The new methods showed similar behaviour to the classical block-
diagonal preconditioned minres approach and in the case where no Schur-complement
preconditioner was used the classical Bramble-Pasciak method in the itfqmr setting
showed very similar behaviour to the new Bramble-Pasciak+ setup implemented with the
itfqmr process. Furthermore, we presented result for the combination preconditioning
technique applied to Bramble-Pasciak+.
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Figure 5: itfqmr results for both classical Bramble-Pasciak and Bramble-Pasciak+

setup.
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