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1 Introduction

Kalman Filtering [7] is a method to make real-time predictions for systems with some
known dynamics. Traditionally, problems requiring Kalman Filtering have been com-
plex and nonlinear. Many advances have been made in the direction of dealing with
nonlinearities (e.g., Extended Kalman Filter [1], Unscented Kalman Filter [6]). These
problems also tend to have inherent state space equality constraints (e.g., a fixed speed for
a robotic arm) or even state space inequality constraints (e.g., maximum attainable speed
of a motor). In the past, less interest has been generated towards constrained Kalman
Filtering, partly because constraints can be difficult to model. As a result, equality
constraints are often neglected in standard Kalman Filtering applications. However, the
benefits of incorporating constraints can outweigh the computational costs associated
with constraining the estimate (e.g., the constrained estimate can be quite different from
the unconstrained estimate and the error covariance matrix can only get tighter since
we are adding information to our model).

We discuss two distinct approaches to generalizing an equality constrained Kalman
Filter. The first approach is to augment the measurement space of the filter with the
equality constraints (i.e., as perfect noise-free measurements) at each iteration. The
second approach is to find the unconstrained estimate from a Kalman Filter and project
it down to the equality constrained space. Both of these approaches have appeared in the
literature in the past (e.g., [9], [8]). We will then show that, under certain conditions, the
first approach and the second approach actually yield the same analytical distribution
for the constrained estimate despite the differing formulations. There is a third well-
known approach to this problem, which is to reduce the state space by the dimension
of the constraints. This can lead to a state space that does not carry much meaning to
the engineer. This approach, while valid, is not discussed in this paper.

Analogous to the way a Kalman Filter can be extended to solve problems containing
non-linearities in the dynamics using an Extended Kalman Filter by linearizing locally
(or by using an Unscented Kalman Filter), linear equality constrained filtering can sim-
ilarly be extended to problems with nonlinear constraints by linearizing locally (or by
way of another scheme). The accuracy achieved by methods dealing with nonlinear con-
straints will naturally depend on the structure and curvature of the nonlinear function
itself.

Equality constrained Kalman Filtering also appears as a subroutine in the more gen-
eral framework of inequality constrained Kalman Filtering. One method for extending
an equality constrained filter to an inequality constrained filter would be to use an active
set method (as in [5]).

2 Kalman Filter

A discrete-time Kalman Filter attempts to find the best running estimate for a recursive
system governed by the following model:
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xk = Fk,k−1xk−1 + uk,k−1, uk,k−1 ∼ N(0, Qk,k−1) (2.1)

zk = Hkxk + vk, vk ∼ N(0, Rk) (2.2)

Here xk represents the true state of the underlying system1 and Fk,k−1 is the matrix
that describes the transition dynamics of the system from xk−1 to xk. The measurement
made by the observer is denoted zk, and Hk is the matrix that transforms a vector from
the state space into the appropriate vector in the measurement space. The noise terms
uk,k−1 and vk encompass known and unknown errors in Fk,k−1 and Hk and are normally
distributed with mean 0 and variances Qk,k−1 and Rk, respectively. At each iteration,
the Kalman Filter makes a state prediction for xk, which we denote by x̂k|k−1. We use
the notation k|k − 1 since we will only use measurements provided until time-step k− 1
in order to make the prediction at time-step k. The state prediction error x̃k|k−1 is
defined as the difference between the true state and the state prediction, as below.

x̃k|k−1 = xk − x̂k|k−1 (2.3)

The covariance structure for the expected error on the state prediction is defined as
the expectation of the outer product of the state prediction error. We call this covariance
structure the error covariance prediction and denote it Pk|k−1.

Pk|k−1 = E

[

(

x̃k|k−1

) (

x̃k|k−1

)′
]

(2.4)

In addition, the filter will provide a state estimate for xk, given all the measurements
provided up to and including time step k. We denote these estimates by x̂k|k. We
similarly define the state estimate error x̃k|k as below.

x̃k|k = xk − x̂k|k (2.5)

The expectation of the outer product of the state estimate error represents the covari-
ance structure of the expected errors on the state estimate, which we call the updated
error covariance and denote Pk|k.

Pk|k = E

[

(

x̃k|k

) (

x̃k|k

)′
]

(2.6)

At time-step k, we can make a prediction for the underlying state of the system by
allowing the state to transition forward using our model for the dynamics and noting
that E [uk,k−1] = 0. This serves as our state prediction.

x̂k|k−1 = Fk,k−1x̂k−1|k−1 (2.7)

If we expand the expectation in Equation (2.4), we have the following equation for
the error covariance prediction.2

1The subscript k means for the k-th time step.
2We use the prime notation on a vector or a matrix to denote its transpose throughout this paper.
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Pk|k−1 = Fk,k−1Pk−1|k−1F
′
k,k−1 + Qk,k−1 (2.8)

We can transform our state prediction into the measurement space, which is a pre-
diction for the measurement we now expect to observe.

ẑk|k−1 = Hkx̂k|k−1 (2.9)

The difference between the observed measurement and our predicted measurement
is the measurement residual, which we are hoping to minimize in this algorithm.

νk = zk − ẑk|k−1 (2.10)

We can also calculate the associated covariance for the measurement residual, which
is the expectation of the outer product of the measurement residual with itself, E [νkν

′
k].

We call this the measurement residual covariance.

Sk = HkPk|k−1H
′
k + Rk (2.11)

We now calculate the Kalman Gain, which lies at the heart of the Kalman Filter. This
tells us how much we prefer our new observed measurement over our state prediction.

Kk = Pk|k−1H
′
kS

−1
k (2.12)

Using the Kalman Gain and measurement residual, we update the state estimate.
If we look carefully at the following equation, we are taking a weighted sum of our
state prediction with the Kalman Gain multiplied by the measurement residual, so the
Kalman Gain is telling us how much to ‘weigh in’ information contained in the new
measurement. We calculate the updated state estimate by

x̂k|k = x̂k|k−1 + Kkνk (2.13)

Finally, we calculate the updated error covariance by expanding the outer product
in Equation (2.6).3

Pk|k = (I − KkHk) Pk|k−1 (2.14)

The covariance matrices in the Kalman Filter provide us with a measure for uncer-
tainty in our predictions and updated state estimate. This is a very important feature
for the various applications of filtering since we then know how much to trust our pre-
dictions and estimates. Also, since the method is recursive, we need to provide an initial
covariance that is large enough to contain the initial state estimate to ensure compre-
hendible performance. For a more detailed discussion of Kalman Filtering, we refer the
reader to the following book [1].

3The I in Equation (2.14) represents the identity matrix of the appropriate dimension. Throughout
the remainder of this paper, we will continue to use I in the same fashion.
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3 Incorporating Equality Constraints by Augment-

ing the Measurement Space

The first method for incorporating equality constraints into a Kalman Filter is to ‘ob-
serve’ the constraints at every iteration as noise-free measurements. To illustrate this, we
augment linear constraints to the system shown in Equations (2.1) and (2.2) as measure-
ments with 0 variance. We will define the constraints in this formulation as Dkxk = δk.

4

Thus, we can re-write the system.

xD
k = Fk,k−1x

D
k−1 + uk,k−1, uk,k−1 ∼ N(0, Qk,k−1) (3.1)

zD
k = HD

k xD
k + vD

k , vk ∼ N(0, RD
k ) (3.2)

Here we use the superscript D notation to denote the new filter with the equality
constraints. The next three equations show the construction of the augmentation in the
measurement space.

zD
k =

[

zk

δk

]

(3.3)

HD
k =

[

Hk

Dk

]

(3.4)

RD
k =

[

Rk 0
0 0

]

(3.5)

The augmented state now forces Dkx
D
k to be equal to δk exactly (i.e., with no noise

term) at every iteration.5 Let us now expand the equations for the Kalman Filter
prediction and update to gain a stronger understanding of how the filter has changed.

The state prediction from Equation (2.7) becomes the following.

x̂D
k|k−1 = Fk,k−1x̂

D
k−1|k−1 (3.6)

The error covariance prediction from Equation (2.8) becomes the following.

P D
k|k−1 = Fk,k−1P

D
k−1|k−1F

′
k,k−1 + Qk,k−1 (3.7)

The measurement prediction from Equation (2.9) can then be written in the following
form.

4We assume these constraints are well defined throughout this paper – i.e., no constraints conflict
with one another to cause a null solution and no constraints are repeated. More specifically, we assume
Dk has full row rank. Note that under these conditions if Dk was a square matrix, the constraints
would completely determine the state.

5With xD
k is constructed in the same fashion as xk.
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ẑD
k|k−1 = HD

k x̂D
k|k−1 (3.8a)

=

[

Hkx̂
D
k|k−1

Dkx̂
D
k|k−1

]

(3.8b)

Similarly, we can express the measurement residual from Equation (2.10) in the
following manner.

νD
k = zD

k − ẑD
k|k−1 (3.9a)

=

[

zk − Hkx̂
D
k|k−1

δk − Dkx̂
D
k|k−1

]

(3.9b)

We expand the measurement residual covariance from Equation (2.11) below.

SD
k = HD

k P D
k|k−1

(

HD
k

)′
+ RD

k (3.10a)

=

[

Hk

Dk

]

P D
k|k−1

[

H ′
k D′

k

]

+

[

Rk 0
0 0

]

(3.10b)

=

[

HkP
D
k|k−1H

′
k + Rk HkP

D
k|k−1D

′
k

DkP
D
k|k−1H

′
k DkP

D
k|k−1D

′
k

]

(3.10c)

The Kalman Gain can now be written as below.

KD
k = P D

k|k−1

(

HD
k

)′ (
SD

k

)−1
(3.11)

In order to further expand this term, we denote
(

SD
k

)−1
in the following block matrix

form.

[

(

SD
k

)−1

a

(

SD
k

)−1

b
(

SD
k

)−1

c

(

SD
k

)−1

d

]

(3.12)

We then expand the Kalman Gain in terms of the block structure of Equation (3.12).

KD
k = P D

k|k−1

[

H ′
k D′

k

]

[

(

SD
k

)−1

a

(

SD
k

)−1

b
(

SD
k

)−1

c

(

SD
k

)−1

d

]

(3.13a)

=
[

P D
k|k−1H

′
k P D

k|k−1D
′
k

]

[

(

SD
k

)−1

a

(

SD
k

)−1

b
(

SD
k

)−1

c

(

SD
k

)−1

d

]

(3.13b)

=
[(

KD
k

)

a

(

KD
k

)

b

]

(3.13c)

Here, we’ve used the following two terms to shorten the expression above.
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(

KD
k

)

a
= P D

k|k−1H
′
k

(

SD
k

)−1

a
+ P D

k|k−1D
′
k

(

SD
k

)−1

c
(3.14a)

(

KD
k

)

b
= P D

k|k−1H
′
k

(

SD
k

)−1

b
+ P D

k|k−1D
′
k

(

SD
k

)−1

d
(3.14b)

Furthermore, the updated state estimate from Equation (2.13) takes the following
form.

x̂D
k|k = x̂D

k|k−1 + KD
k νD

k (3.15)

And the updated error covariance from Equation (2.14) changes in the following way.

P D
k|k = (I − KD

k HD
k )P D

k|k−1 (3.16)

Methods using augmentation in Kalman Filters have appeared for different applica-
tions in the past (e.g., Fixed-Point Smoothing [4], Bias Detection [3]). In order to gain
a stronger understanding of the effects of augmentation in Kalman Filters, it can be
helpful to read and understand these methods, as well.

3.1 Improvement gained over an Unconstrained Filter

For a given iteration, we are interested in the improvement gained by using this method
over a method that does not incorporate equality constraints. In order to do so, we would
like to find the constrained estimated x̂D

k|k in terms of the unconstrained estimate x̂k|k

(and similarly the constrained error covariance matrix P D
k|k in terms of the unconstrained

error covariance matrix Pk|k). Suppose we start with the same previous estimate and
error covariance matrix for both filters.

x̂D
k−1|k−1 = x̂k−1|k−1 (3.17)

P D
k−1|k−1 = Pk−1|k−1 (3.18)

Thus, we consider the benefit of using the new constrained filter over the uncon-
strained Kalman Filter gained in one iteration. We can re-write all the constrained
filter’s equations in terms of the corresponding equations of the unconstrained Kalman
Filter.

Starting with Equation (3.6), we find that the state prediction remains the same over
one iteration.

x̂D
k|k−1

(3.17)
= Fk,k−1x̂k−1|k−1 (3.19a)

(2.7)
= x̂k|k−1 (3.19b)

Similarly, we find the error covariance prediction from Equation (3.7) remains the
same over one iteration.
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P D
k|k−1

(3.18)
= Fk,k−1Pk−1|k−1F

′
k,k−1 + Qk,k−1 (3.20a)

(2.8)
= Pk|k−1 (3.20b)

The measurement prediction from Equation (3.8) is then modified as below.

ẑD
k|k−1

(3.17)
=

[

Hkx̂k|k−1

Dkx̂k|k−1

]

(3.21a)

(2.9)
=

[

ẑk|k−1

Dkx̂k|k−1

]

(3.21b)

We can also easily modify the measurement residual from Equation (3.9).

νD
k

(3.17)
=

[

zk − Hkx̂k|k−1

δk − Dkx̂k|k−1

]

(3.22a)

(2.10)
=

[

νk

δk − Dkx̂k|k−1

]

(3.22b)

And the measurement residual covariance from Equation (3.10) can then be modified
as well.

SD
k

(3.18)
=

[

HkPk|k−1H
′
k + Rk HkPk|k−1D

′
k

DkPk|k−1H
′
k DkPk|k−1D

′
k

]

(3.23a)

(2.11)
=

[

Sk HkPk|k−1D
′
k

DkPk|k−1H
′
k DkPk|k−1D

′
k

]

(3.23b)

As before, we are interested in finding
(

SD
k

)−1
in a block structure. We follow the

methodology described in Appendix A and apply it to Equation (3.23).6

6When finding
(

SD
k

)−1
as described above, we know that A as defined in Appendix A will be

nonsingular since it represents the measurement residual covariance Sk. If this matrix was singular,
this would mean there exists no uncertainty in our measurement prediction or in our measurement, and
thus there would be no ability to filter. Similarly, we know that J as defined in Appendix A must also
be nonsingular, which is equal to DkPk|k−1D

′
k (see Equation (3.23)). This term projects the predicted

error covariance down to the constrained space. For well defined constraints (as described earlier), this
will never be singular – it will have the same rank as Dk.
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(

SD
k

)−1

a

(2.11)
= S−1

k + S−1
k HkPk|k−1D

′
k

(

DkPk|k−1D
′
k − DkPk|k−1H

′
kS

−1
k Hk

Pk|k−1D
′
k

)−1
DkPk|k−1H

′
kS

−1
k (3.24a)

(B.1)
= S−1

k + S−1
k HkPk|k−1D

′
k

(

DkPk|kD
′
k

)−1
DkPk|k−1H

′
kS

−1
k (3.24b)

(B.2)
= S−1

k + K ′
kD

′
k

(

DkPk|kD
′
k

)−1
DkKk (3.24c)

In a similar manner using Equations (2.11), (B.1), and (B.2), we arrive at the fol-
lowing remaining terms in the block structure.

(

SD
k

)−1

b
= − K ′

kD
′
k

(

DkPk|kD
′
k

)−1
(3.25)

(

SD
k

)−1

c
= −

(

DkPk|kD
′
k

)−1
DkKk (3.26)

(

SD
k

)−1

d
=

(

DkPk|kD
′
k

)−1
(3.27)

Applying this to Equations (3.14a), we can find the first part of the Kalman Gain.

(

KD
k

)

a

(3.18)
= Pk|k−1H

′
k

(

SD
k

)−1

a

+ Pk|k−1D
′
k

(

SD
k

)−1

c
(3.28a)

(3.24),(3.26)
= Pk|k−1H

′
kS

−1
k

+ Pk|k−1H
′
kK

′
kD

′
k

(

DkPk|kD
′
k

)−1

DkKk

− Pk|k−1D
′
k

(

DkPk|kD
′
k

)−1
DkKk (3.28b)

(2.12)
= Kk −

(

Pk|k−1 − Pk|k−1H
′
kK

′
k

)

(3.28c)

D′
k

(

DkPk|kD
′
k

)−1
DkKk (3.28d)

(B.3)
= Kk − Pk|kD

′
k

(

DkPk|kD
′
k

)−1
DkKk (3.28e)

Following similar steps using Equations (3.18), (3.25), (3.27), and (B.3), we can
arrive at the other part of the Kalman Gain.

(

KD
k

)

b
= Pk|kD

′
k

(

DkPk|kD
′
k

)−1
(3.29)
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We can then substitute our expressions for KD
k directly into Equation (3.15) to find

a simplified form of the updated state estimate.

x̂D
k|k

(3.17)
= x̂k|k−1 + KD

k νD
k (3.30a)

(3.13),(3.22)
= x̂k|k−1 +

(

KD
k

)

a
νk

+
(

KD
k

)

b

(

δk − Dkx̂k|k−1

)

(3.30b)

(3.28),(3.29)
= x̂k|k−1 + Kkνk

− Pk|kD
′
k

(

DkPk|kD
′
k

)−1
DkKkνk

+ Pk|kD
′
k

(

DkPk|kD
′
k

)−1

(

δk − Dkx̂k|k−1

)

(3.30c)

(2.13)
= x̂k|k − Pk|kD

′
k

(

DkPk|kD
′
k

)−1
Dk

(

x̂k|k − x̂k|k−1

)

+ Pk|kD
′
k

(

DkPk|kD
′
k

)−1

(

δk − Dkx̂k|k−1

)

(3.30d)

= x̂k|k − Pk|kD
′
k

(

DkPk|kD
′
k

)−1

(

Dkx̂k|k − δk

)

(3.30e)

Similarly, we can expand the updated error covariance in Equation (3.16).

P D
k|k

(3.18)
=

(

I − KD
k HD

k

)

Pk|k−1 (3.31a)

(3.13),(3.4)
=

(

I −
(

KD
k

)

a
Hk −

(

KD
k

)

b
Dk

)

Pk|k−1 (3.31b)

(3.28),(3.29)
=

(

I − KkHk + Pk|kD
′
k

(

DkPk|kD
′
k

)−1
Dk

KkHk − Pk|kD
′
k

(

DkPk|kD
′
k

)−1
Dk

)

Pk|k−1 (3.31c)

= (I − KkHk) Pk|k−1 − Pk|kD
′
k

(

DkPk|kD
′
k

)−1
Dk (I − KkHk)Pk|k−1 (3.31d)

(2.14)
= Pk|k − Pk|kD

′
k

(

DkPk|kD
′
k

)−1
DkPk|k (3.31e)

Equations (3.30) and (3.31) give us the improvement gained over an unconstrained
Kalman Filter in a single iteration of the augmentation approach to constrained Kalman
Filtering. We see that the covariance matrix can only get tighter since we are subtracting
a positive semi-definite matrix from Pk|k above.
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4 Incorporating Equality Constraints by Projecting

the Unconstrained Estimate

The second approach to equality constrained Kalman Fitlering is to run an unconstrained
Kalman Filter and to project the estimate down to the constrained space at each iter-
ation. We can then feed the new constrained estimate into the unconstrained Kalman
Filter and continue this process. Such a method can be described by the following min-
imization problem for a given time-step k, where x̂P

k|k is the constrained estimate, x̂k|k

is the unconstrained estimate from the Kalman Filter equations, and Wk is any positive
definite symmetric weighting matrix.

x̂P
k|k = arg min

x

{

(

x − x̂k|k

)′
Wk

(

x − x̂k|k

)

: Dkx = δk

}

(4.1)

The best constrained estimate is then given by

x̂P
k|k = x̂k|k − W−1

k D′
k

(

DkW
−1
k D′

k

)−1 (

Dkx̂k|k − δk

)

(4.2)

If we choose Wk = P−1
k|k , we obtain the same solution as Equation (3.30). This is not

obvious considering the differing approaches. The updated error covariance under this as-

sumption will be the same as Equation (3.31) since P P
k|k = E

[

(

xk − x̂P
k|k

)(

xk − x̂P
k|k

)′
]

and x̂P
k|k = x̂D

k|k. Further this choice of Wk is the most natural since it best describes the
uncertainty in the state.

5 Dealing with Nonlinearities

Thus far, in the Kalman Filter we have dealt with linear models and constraints. A
number of methods have been proposed to handle nonlinear constraints. In this paper,
we will focus on the most widely known of these, the Extended Kalman Filter. Let’s
re-write the discrete unconstrained Kalman Filtering problem from Equations (2.1) and
(2.2) below, incorporating nonlinear models.

xk = fk,k−1 (xk−1) + uk,k−1, uk,k−1 ∼ N(0, Qk,k−1) (5.1)

zk = hk (xk) + vk, vk ∼ N(0, Rk) (5.2)

In the above equations, we see that the transition matrix Fk,k−1 has been replaced
by the nonlinear vector-valued functionfk,k−1 (·), and similarly, the matrix Hk, which
transforms a vector from the state space into the measurement space, has been replaced
by the nonlinear vector-valued function hk (·). The method proposed by the Extended
Kalman Filter is to linearize the nonlinearities about the current state prediction (or
estimate). That is, we choose Fk,k−1 as the Jacobian of fk,k−1 evaluated at x̂k−1|k−1,
and Hk as the Jacobian of hk evaluated at x̂k|k−1 and proceed as in the linear Kalman
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Filter of Section 2.7 Numerical accuracy of these methods tends to depend heavily on
the nonlinear functions. If we have linear equality constraints but a nonlinear fk,k−1 (·)
and hk (·), we can adapt the Extended Kalman Filter to fit into the framework of the
methods described in Sections 3 and 4. We have chosen to omit the specific equations,
as the extension should be apparent.

5.1 Nonlinear Equality Constraints

Since equality constraints we model are often times nonlinear, it is important to make
an extension to nonlinear equality constrained Kalman Filtering for the two methods
discussed thus far. We replace the linear equality constraint on the state space by the
following nonlinear constraint dk (xk) = δk, where dk (·) is a vector-valued function. The
method based on augmenting the constraints presented in Section 3 is trivially extended
by using an Extended Kalman Filter before – i.e., we choose Dk in Equation (3.4) as
the Jacobian of dk evaluated at x̂D

k|k−1.

Incorporating nonlinear equality constraints into the projection method described in
Section 4 requires a more explicit change. If we linearize our constraint, dk (xk) = δk,
about the current state prediction x̂k|k−1, we have the following.

dk

(

x̂P
k|k−1

)

+ Dk

(

xk − x̂P
k|k−1

)

≈ δk (5.3)

Here Dk is defined as the Jacobian of dk evaluated at x̂P
k|k−1, similar to before. This

indicates then, that the nonlinear constraint we would like to model can be approximated
by the following linear constraint

Dkxk ≈ δk + Dkx̂
P
k|k−1 − dk

(

x̂P
k|k−1

)

(5.4)

Then our projected state is given as in Section 4, with Dk defined as above, and δk

replaced by the right hand side of Equation (5.4).

6 Discussion of Methods

Thus far, we have discussed two different methods for incorporating equality constraints
in a Kalman Filter, and we have shown that both are mathematically equivalent under
the assumption that the weighting matrix Wk chosen in Section 4 is chosen to be P−1

k|k . As
such, the projection method is a more general formulation of the augmentation method
described in Section 3. On the other hand, the augmentation method provides a trivial
extension to soft equality constrained Kalman Filtering by increasing the noise modeled
in RD

k to reflect how soft the constraint should be.

7We can also do a midpoint approximation to find Fk,k−1 by evaluating the Jacobian at x̂k−1|k−1

and x̂k|k−1 and then taking the component-wise mean. This has the disadvantage that it is twice as
expensive for finding Fk,k−1, but it should be a much closer approximation. We use this approximation
for the Extended Kalman Filter example later in this paper.
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In implementations, there are some subtle differences. For instance, the first method
requires a minimal adjustment to codes for an existing Kalman Filter or an Extended
Kalman Filter – i.e., we can pass in the augmented matrices and get the constrained
estimate. This is especially advantageous for codes that use variations of the standard
linear Kalman Filter (e.g., an Unscented Kalman Filter). On the other hand, the second
method will require less memory and computation, which can significantly speed up the
filtering when the state space and constraint space are both large. The second method
does not store or compute the ‘cross-correlation’ terms of Equation (3.23), which are
most likely of little interest to the engineer.

There is another more transparent difference between these two methods. In imple-
mentations, we are bound to receive numerical round-off error. While these two methods
are mathematically equivalent, we will not see the exact same result. The round off error
that causes the most problem occurs when the updated error covariance P D

k|k or P P
k|k lose

symmetry or positive definiteness. A way around this is to use the Joseph Form of the
updated error covariance (see [1]) – this will be discussed further in another publication.

7 Conclusions

We’ve presented two approaches for incorporating state space equality constraints into a
Kalman Filter and shown that both result in the same estimate structure under certain
conditions. The projection method should prove to be computationally faster and is also
a generalization that allows different weighting matrices when projecting the estimate.
However, the augmentation method may prove easier in implementations since we can
use an existing Kalman Filter without any code modifications. We can also easily extend
the latter to enforce soft equality constraints, where we allow the constraint to be slightly
blurred by adding a proportionate amount of noise RK

d (Equation (3.5)).

Appendix A An analytic block representation for
(

SD
k

)−1

SD
k as defined in Equation (3.10) is a symmetric saddle point matrix of the form MSPM

below.

MSPM =

[

A B′

B −C

]

(A.1)

In the case that A is nonsingular and the Schur complement J = − (C + BA−1B′) is
also nonsingular in the above equation, it is known that the inverse of this saddle point
matrix can be expressed analytically by the following equation (see e.g., [2]).

M−1
SPM =

[

A−1 + A−1B′J−1BA−1 −A−1B′J−1

−J−1BA−1 J−1

]

(A.2)
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For SD
k , we have the following equations to fit the block structure of Equation (A.1)

(see Equation (3.10)).

A = HkP
D
k|k−1H

′
k + Rk (A.3)

B = DkP
D
k|k−1H

′
k (A.4)

C = −DkP
D
k|k−1D

′
k (A.5)

Under the assumption that both A and J are nonsingular, we can make some sub-

stitutions and express
(

SD
k

)−1
following the notation of Equation (3.12).

Appendix B Some Identities

The following are identities that will prove useful in some of the earlier derivations of
Section 3. The matrices in these identities are used as defined in Sections 2 and 3.

B.1 First Identity

DkPk|k−1D
′
k − DkPk|k−1H

′
kS

−1
k HkPk|k−1D

′
k (B.1a)

(2.12)
= DkPk|k−1D

′
k − DkKkHkPk|k−1D

′
k (B.1b)

= Dk (I − KkHk) Pk|k−1D
′
k (B.1c)

(2.14)
= DkPk|kD

′
k (B.1d)

B.2 Second Identity

In the first step below, we make use of the symmetry of Pk|k−1 and S−1
k .

S−1
k HkPk|k−1D

′
k

(

DkPk|kD
′
k

)−1
DkPk|k−1H

′
kS

−1
k (B.2a)

=
(

Pk|k−1H
′
kS

−1
k

)′
D′

k

(

DkPk|kD
′
k

)−1

DkPk|k−1H
′
kS

−1
k (B.2b)

(2.12)
= K ′

kD
′
k

(

DkPk|kD
′
k

)−1
DkKk (B.2c)

B.3 Third Identity

Pk|k−1 − Pk|k−1H
′
kK

′
k (B.3a)

= Pk|k−1 (I − H ′
kK

′
k) (B.3b)

= (I − KkHk) Pk|k−1 (B.3c)

(2.14)
= Pk|k (B.3d)
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Again, we’ve made use of the symmetry of Pk|k−1 between Equations (B.3b) and
(B.3c).
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