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Abstract. We construct a general family of Galerkin methods for the numerical approximation of weak solutions
to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of
polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–
Stokes equations in a bounded domain Ω ⊂ Rd, d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic
extra-stress tensor as right-hand side in the momentum equation. The extra-stress tensor stems from the random
movement of the polymer chains and is defined through the associated probability density function which satisfies a
Fokker–Planck type parabolic equation, a crucial feature of which is the presence of a centre-of-mass diffusion term.
We focus on finitely-extensible nonlinear elastic, FENE-type, dumbbell models. In the case of a corotational drag term
we perform a rigorous passage to the limit as the spatial and temporal discretization parameters tend to zero, and show
that a (sub)sequence of numerical solutions converges to a weak solution of this coupled Navier–Stokes–Fokker–Planck
system.
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1. Introduction. This paper is concerned with the construction and convergence analysis of
Galerkin approximations to weak solutions of a system of nonlinear partial differential equations
that arises from the kinetic theory of dilute polymer solutions. The solvent is an incompressible,
viscous, isothermal Newtonian fluid confined to an open set Ω ⊂ Rd, d = 2 or 3, with boundary
∂Ω. For the sake of simplicity of presentation we shall suppose that Ω has solid boundary ∂Ω; the
velocity field u∼ will then satisfy the no-slip boundary condition u∼ = 0∼ on ∂Ω. The polymer chains
which are suspended in the solvent are assumed not to interact with each other. The conservation
of momentum and mass equations for the solvent then have the form of the incompressible Navier–
Stokes equations in which the elastic extra-stress tensor τ

≈
(i.e., the polymeric part of the Cauchy

stress tensor,) appears as a source term:

Find u∼ : (x∼, t) ∈ Rd+1 7→ u∼(x∼, t) ∈ Rd and p : (x∼, t) ∈ Rd+1 7→ p(x∼, t) ∈ R such that

∂u∼
∂t

+ (u∼ · ∇∼ x )u∼ − ν∆x u∼ +∇∼ x p = ∇∼ x · τ≈ in Ω× (0, T ], (1.1a)

∇∼ x · u∼ = 0 in Ω× (0, T ], (1.1b)
u∼ = 0∼ on ∂Ω× (0, T ], (1.1c)

u∼(x∼, 0) = u∼
0(x∼) ∀x∼ ∈ Ω ; (1.1d)

where u∼ is the velocity field, p is the pressure, and ν ∈ R>0 is the viscosity of the solvent. For the
sake of simplicity we shall assume that there are no body forces present: the presence of a body
force f

∼
∈ L2(R, [H−1(Ω)]d) on the right-hand side of (1.1a) would not cause any particular technical

complications. The extra stress tensor τ
≈

is defined as the second moment of ψ, the probability density
function of the (random) conformation vector of the polymer molecules. As will be seen below, the
Kolmogorov equation satisfied by ψ is a Fokker–Planck type second-order parabolic equation whose
transport coefficients depend on the velocity field u∼.

Polymer solutions exhibit a range of non-Newtonian flow properties: in particular, the stress
endured by a fluid element depends upon the history of deformations experienced by that element.
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Thereby, rheological properties of non-Newtonian fluids are governed by the flow-induced evolution
of their internal microstructure. Following Keunings [27], a relevant feature of the microstructure
is the conformation of the macromolecules, i.e., their orientation and the degree of stretching they
experience. Since the macroscopic stress carried by each fluid element is governed by the distribution
of polymer conformations within that element, from the macroscopic viewpoint it is only the sta-
tistical distribution of conformations that matters. Motivated by this observation, kinetic theories
of polymeric fluids ignore quantum mechanical and atomistic effects, and focus on ‘coarse-grained’
models of the polymeric conformations. Depending on the level of coarse-graining, one may arrive
at a hierarchy of kinetic models. For example, a dilute solution of linear polymers in a Newtonian
solvent can be described in some detail by the freely jointed bead-rod Kramers chain, which com-
prises a number of beads (of the order of 100) connected by rigid linear segments. A coarser model
of the same polymer is the freely jointed bead-spring chain, a Rouse chain, consisting of a smaller
number of beads (of the order of 10) connected linearly by entropic springs. A coarser model still
is the dumbbell model which involves two beads connected by an elastic spring [7]; the elastic force
F∼ : D ⊆ Rd → Rd of the spring connecting the two beads is defined by a (sufficiently smooth)
spring potential U : R≥0 → R≥0 through

F∼ (q
∼
) = H U ′( 1

2 |q∼|
2) q
∼
, q

∼
∈ D, (1.2)

where H ∈ R>0 is a spring constant. The elongation (or conformation) vector q
∼
, whose direction

and length define the direction and length of the polymer chain represented by the dumbbell, is
assumed to be confined to a balanced convex open set D ⊂ Rd; the term balanced means that 0∼ ∈ D,
and −q

∼
∈ D whenever q

∼
∈ D. Typically, D is an open d-dimensional ball of fixed radius

√
b,

b > 0, or an ellipse with fixed half-axes, or the whole of Rd. Our analytical results in this paper are
concerned with the physically realistic case when D is bounded, although we shall also comment on
the idealized situation when D = Rd.

The governing equations of the dumbbell model considered here are (1.1a–d), where the elastic
extra-stress tensor τ

≈
is defined by the Kramers expression:

τ
≈
(x∼, t) = k µ

(∫
D

q
∼
q
∼

> U ′
(

1
2 |q∼|

2
)
ψ(x∼, q∼, t) dq

∼
− ρ(x∼, t) I≈

)
; (1.3)

here k is the Boltzmann constant and µ is the absolute temperature. Further,

ρ(x∼, t) =
∫

D

ψ(x∼, q∼, t) dq
∼
, (1.4)

signifies density, and the probability density function ψ(x∼, q∼, t) is a solution to the Fokker–Planck
equation

∂ψ

∂t
+ (u∼ · ∇x)ψ +∇∼ q · ((∇≈ x u∼) q

∼
ψ) = ε∆xψ +

1
2λ
∇∼ q · (∇∼ q ψ + U ′ q

∼
ψ). (1.5)

Here λ ∈ R>0 and ε ∈ R>0 are fixed positive real numbers, called the relaxation time and the centre-
off-mass diffusion coefficient, respectively. We refer to [3] for the derivation of the model; see also
the recent paper of Schieber [42] for a justification of the presence of the x∼-dissipative centre-of-mass
diffusion term ε∆xψ on the right-hand side of (1.5).

In classical derivations of bead-spring models the centre-of-mass diffusion term is routinely
omitted from the Fokker–Planck equation, on the grounds that it is several orders of magnitude
smaller than the other terms in the equation. Indeed, Bhave, Armstrong, and Brown [6] estimate
it to be typically in the range of about 10−9 to 10−7. However, as has been emphasized in [3],
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the omission of the term ε∆xψ from (1.5) in the case of a heterogeneous solvent-velocity u∼(x∼, t)
is a mathematically counterproductive model-reduction. When ε∆xψ is absent, (1.5) becomes a
degenerate parabolic equation exhibiting hyperbolic behaviour with respect to (x∼, t). Since the
study of weak solutions to the coupled problem requires one to work with velocity fields u∼ that
have very limited Sobolev regularity (typically u∼ ∈ L∞(0, T ;L∼

2(Ω)) ∩ L2(0, T ;H∼
1
0(Ω))), one is then

forced into the technically unpleasant framework of hyperbolically degenerate parabolic equations
with rough transport coefficients [1]. The resulting difficulties are further exacerbated by the fact
that, when D is bounded, a typical spring force F∼ (q

∼
) for a finitely-extensible model, such as the

FENE (finitely-extensible nonlinear elastic) model for example, where

U(s) = − b
2

ln
(

1− 2s
b

)
, s ∈ [0, b

2 ),

explodes as q
∼

approaches ∂D; see Section 2.2 below. Parabolic PDEs with unbounded coefficients
are studied, for example, in the monographs of Cerrai [12] and Lorenzi and Bertoldi [33]. We note
in passing that, on letting b → +∞, the FENE potential converges to the (linear) Hookean spring
potential U(s) = s while D then becomes the whole of Rd, — corresponding to a mathematically
simple(r) albeit physically unrealistic scenario in which a polymer chain can have arbitrarily large
elongation.

An early effort to show the existence and uniqueness of local-in-time solutions to a family of
bead-spring type polymeric flow models is due to Renardy [41]. While the class of potentials F∼ (q

∼
)

considered by Renardy [41] (cf. hypotheses (F) and (F′) on pp. 314–315) does include the case of
Hookean dumbbells, it excludes the practically relevant case of the FENE model (see Section 2.2
below). More recently, E, Li, and Zhang [18] and Li, Zhang, and Zhang [29] have revisited the
question of local existence of solutions for dumbbell models.

Constantin [14] has considered the Navier–Stokes equations coupled to nonlinear Fokker–Planck
equations describing the evolution of the probability distribution of the particles interacting with the
fluid. He showed global existence of smooth solutions if inertial effects are neglected. The necessary
relationship (eq. (2.14) in [14]) for the existence of a Lyapunov function in the sense of Theorem 2.2
of [14] does not hold for the polymer models considered in the present paper.

Otto and Tzavaras [38] have investigated the Doi model (which is similar to a Hookean model,
except that D = S2) for suspensions of rod-like molecules in the dilute regime. For certain parameter
values, the velocity gradient vs. stress relation defined by the stationary and homogeneous flow is
not rank-one monotone. They considered the evolution of possibly large perturbations of stationary
flows and proved that, even in the absence of a microscopic cut-off, discontinuities in the velocity
gradient cannot occur in finite time.

In the case of Hookean dumbbells, and assuming ε = 0, the coupled microscopic-macroscopic
model described above yields, formally, on taking the second moment of q

∼
7→ ψ(q

∼
, x∼, t), the fully

macroscopic, Oldroyd-B model of visco-elastic flow (cf. Section 2.2 below). On the other hand, when
ε > 0, it results in a macroscopic model which can be thought of as a dissipative Oldroyd-B model.
In this sense, the Hookean dumbbell model has a macroscopic closure: it is the Oldroyd-B model
when ε = 0, and a dissipative version of Oldroyd-B (cf. (2.16) below) when ε > 0. Lions and
Masmoudi [31] have shown the existence of global-in-time weak solutions to the Oldroyd-B model in
the simplified corotational case in which the symmetric part of the velocity gradient ∇

≈ x u∼ featuring
in the macroscopic counterpart of the drag term ∇∼ q · ((∇≈ x u∼) q

∼
ψ) in assumed to vanish. At the level

of the Fokker–Planck equation (1.5), corotationality corresponds to replacing the velocity gradient
∇
≈ x u∼ in the drag term by its skew-symmetric part. The argument of Lions and Masmoudi [31] is
based on exploiting the propagation in time of the compactness of the solution and the DiPerna–
Lions [16] theory of renormalized solutions to linear hyperbolic equations with nonsmooth transport
coefficients. It is not known if an identical global existence result for the Oldroyd-B model also
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holds in the absence of the crucial assumption that the drag term is corotational. In a more recent
paper, [32], using similar techniques, Lions and Masmoudi continued this line of investigation and
considered a coupled Navier–Stokes–Fokker–Planck model, again with a corotational drag term,
though this time with FENE-type nonlinear spring potentials. Again, they established the existence
of a global weak solution; see also the related preprint by Masmoudi [36].

We note in passing that in contrast with the case of Hookean dumbbells, the FENE model does
not have an exact closure at the macroscopic level, though Du, Yu, and Liu [17] and Yu, Du, and Liu
[48] have recently considered the analysis of approximate closures of the FENE model. Previously,
El-Kareh and Leal [19] had proposed a macroscopic model, with added dissipation in the equation
which governs the evolution of the conformation tensor A

≈
(x∼, t) :=

∫
D
q
∼
q
∼

>ψ(x∼, q∼, t) dq
∼

in order to
account for Brownian motion across streamlines; the model can be thought of as an approximate
macroscopic closure of a FENE-type microscopic-macroscopic model with centre-of-mass diffusion.

Barrett, Schwab, and Süli [2] established the existence of global-in-time weak solutions to the
coupled microscopic-macroscopic model (1.1a–d) and (1.5) with ε = 0, an x∼-mollified velocity-
gradient in the Fokker–Planck equation and an x∼-mollified probability density function ψ in the
Kramers expression, — admitting a large class of potentials U (including the Hookean dumbbell
model as well as general FENE-type models); in addition to these mollifications, u∼ in the x∼-convective
term (u∼ · ∇∼ x )ψ in the Fokker–Planck equation was also mollified. Unlike Lions and Masmoudi [31],
the arguments in [2] did not require the assumption that the drag term was corotational in the FENE
case. The Helmholtz–Stokes mollification Sαu∼, with mollification lengthscale α, of the velocity field u∼
that was considered in [2] was stimulated by the Leray-α model of the incompressible Navier–Stokes
equations (the viscous Camassa–Holm equations), proposed by Foias, Holm, and Titi [22]. In [2] the
motivation for introducing the mollification was of purely technical nature: the need to rigorously
justify the passage to the limit in the proof of existence of a weak solution, based on a compactness
argument. Surprisingly (cf. [3]), the derivation (from first principles) of the coupled Navier–Stokes–
Fokker–Planck model does, in fact, result in a mollification of ψ in the Kramers formula for the
extra-stress tensor as well as of the velocity gradient in the Fokker–Planck equation, just as in
[2], albeit the mollifiers turn out to be directional Friedrichs mollifiers rather than Helmholtz–Stokes
mollifiers. In classical derivations of the model the mollifiers are approximated by identity operators,
on the grounds that the functions to which they are applied are smooth enough to justify such a
model-reduction; absurdly, in the proof of existence of weak solutions to the resulting reduced model,
the mollifiers then have to be reinstated since the requisite smoothness hypotheses which were used
to justify the model-reduction are absent. In the present paper the mollifiers have been, nevertheless,
replaced by identity operators. The rigorous mathematical justification of this model-reduction was
given in our paper [3]: we showed there that in the case of the corotational model, with ε > 0,
weak solutions of the Friedrichs-mollified model converge to weak solutions of the associated model
in which the Friedrichs mollifiers have been replaced by identity operators.

In a recent paper Jourdain, Lelièvre, and Le Bris [26] studied the existence of solutions to the
FENE model in the case of a simple Couette flow; by using tools from the theory of stochastic differ-
ential equations, they established the existence of a unique local-in-time solution to the FENE model
in two space dimensions (d = 2) when the velocity field u∼ is unidirectional and of the particular form
u∼(x1, x2) = (u1(x2), 0)>. The notion of solution for which existence is proved in the paper of Jour-
dain, Lelièvre, and Le Bris [26] is mixed deterministic-stochastic in the sense that it is deterministic
in the ‘macroscopic’ variable x∼, but stochastic in the ‘microscopic’ variable q

∼
. In contrast, our notion

of solution (cf. Section 2 below) is deterministic both macroscopically and microscopically, since the
microscales are modelled here by the probability density function ψ(x∼, q∼, t). As has been noted in
[2], the choice between these different notions of solution has far-reaching consequences on compu-
tational simulation: mixed deterministic-stochastic notions of solution necessitate the use of Monte
Carlo-type algorithms for the numerical approximation of polymer configurations, as proposed in
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the monograph of Öttinger [39] and, for example, in the paper of Jourdain, Lelièvre, and Le Bris
[25]; whereas weak solutions in the sense considered in the present paper can be approximated by en-
tirely deterministic (e.g. Galerkin-type) schemes, as was done, for example, in Lozinski, Chauvière,
Fang, and Owens [34]; see also [35]. Having said this, the probability density function ψ depends
on 2d + 1 independent variables, the components of x∼ and q

∼
and on t, so the implied computa-

tional cost is nontrivial; see, however, the recent papers by Süli [44] and Schwab, Süli, and Todor
[45] concerning the sparse finite element approximation of high-dimensional transport-dominated
diffusion equations. For a detailed survey of recent developments concerning stochastic and deter-
ministic numerical techniques for kinetic models of polymers we refer to Chapter 11 in the book of
Owens and Phillips [40], the monograph of Öttinger [39] and to Section 4 in the review article of
Li and Zhang [30]. As has been noted by the authors of [30], numerical algorithms based on the
kinetic theory of complex fluids have been vigorously developed since the 1970s; however, since both
stochastic and deterministic numerical techniques for kinetic polymer models are computationally
intensive, the numerical simulation of polymeric fluids via kinetic models represents a formidable
computational task. Notwithstanding the computational cost, multiscale models of this type avoid
potentially crude closure approximations and are therefore more accurate than classical macroscopic
models. Hence, the development and analysis of numerical algorithms for kinetic models of dilute
polymers represent mathematical challenges of considerable practical importance.

In this paper, we shall be concerned with the construction and convergence analysis of a general
class of Galerkin methods for a corotational Navier–Stokes–Fokker–Planck dumbbell model with
centre-of-mass diffusion. The paper is organized as follows. Section 2 is devoted to the statement
of the problem. After listing our structural assumptions on the admissible class of nonlinear spring
potentials, we define, in Section 3, a family of Galerkin-type methods for the coupled Navier–Stokes–
Fokker–Planck system, under very general assumptions on the finite-dimensional spaces used for
the purpose of spatial discretization; our hypotheses admit a wide range of Galerkin subspaces,
including, in particular, classical conforming finite element spaces (cf. Remark 3.5 for details).
We show the existence and uniqueness of the associated numerical solution, and then pass to the
limit as the spatial discretization parameter h and the time step ∆t tend to zero; we use a weak-
compactness argument to show that a subsequence of the sequence {(u∼∆t

h , ψ̂∆t
h )}h>0,∆t>0 of numerical

approximations to the velocity field u∼ and the scaled probability density function ψ̂ = ψ/M , where
M is the normalized Maxwellian M(q

∼
) = C0 exp(−U( 1

2 |q∼|)) with the (positive) constant C0 chosen

so that
∫

D
M(q

∼
) dq
∼

= 1, converges to a weak solution (u∼, ψ̂) of the coupled Navier–Stokes–Fokker–
Planck system. This passage to the limit is performed under minimal assumptions on the data,
and it therefore also provides a new proof of global existence of weak solutions to the corotational
FENE model with centre-of-mass diffusion. Our mathematical machinery is less involved than
the propagation-of-compactness argument used in the recent work of Lions and Masmoudi [32]
mentioned above; in addition, the definition of the sequence of approximating solutions is completely
constructive in the sense that it is based on a fully-discrete and practically implementable Galerkin
method. To the best of our knowledge this is the first rigorous result concerning the convergence of
a sequence of numerical approximations to a weak solution of the coupled Navier–Stokes–Fokker–
Planck model. The convergence analysis of finite element approximations to the coupled Navier–
Stokes–Fokker–Planck system with centre-of-mass diffusion in the general noncorotational case is
the subject of our forthcoming paper [4].

2. Polymer Models. We term polymer models under consideration here microscopic-macro-
scopic type models, since the continuum mechanical macroscopic equations of incompressible fluid
flow are coupled to a microscopic model: the Fokker–Planck equation describing the statistical
properties of particles in the continuum. We first present these equations and collect the assumptions
on the parameters in the model.
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2.1. Microscopic-Macroscopic Polymer Models. Let Ω ⊂ Rd be a bounded open set with
a Lipschitz-continuous boundary ∂Ω, and suppose that the set D ⊆ Rd, d = 2 or 3, of admissible
elongation vectors q

∼
in (1.5) is a balanced convex open set. For the sake of simplicity of presentation,

we shall suppose that D is a bounded open ball in Rd or the whole of Rd. Gathering (1.1a–d), (1.3)
and (1.5), we then consider the following initial-boundary-value problem:
(P) Find u∼ : (x∼, t) ∈ Rd+1 7→ u∼(x∼, t) ∈ Rd and p : (x∼, t) ∈ Rd+1 7→ p(x∼, t) ∈ R such that

∂u∼
∂t

+ (u∼ · ∇∼ x )u∼ − ν∆x u∼ +∇∼ x p = ∇∼ x · τ≈(ψ) in Ω× (0, T ], (2.1a)

∇∼ x · u∼ = 0 in Ω× (0, T ], (2.1b)
u∼ = 0∼ on ∂Ω× (0, T ], (2.1c)

u∼(x∼, 0) = u∼
0(x∼) ∀x∼ ∈ Ω; (2.1d)

where ν ∈ R>0 is the viscosity and τ
≈
(ψ) : (x∼, t) ∈ Rd+1 7→ τ

≈
(ψ)(x∼, t) ∈ Rd×d is the symmetric extra-

stress tensor, dependent on a probability density function ψ : (x∼, q∼, t) ∈ R2d+1 7→ ψ(x∼, q∼, t) ∈ R,
defined as

τ
≈
(ψ) = k µ (C

≈
(ψ)− ρ(ψ) I

≈
). (2.2)

Here k, µ ∈ R>0 are, respectively, the Boltzmann constant and the absolute temperature, I
≈

is the
unit d× d tensor,

C
≈

(ψ)(x∼, t) =
∫

D

ψ(x∼, q∼, t)U
′( 1

2 |q∼|
2) q
∼
q
∼

> dq
∼

(2.3a)

and ρ(ψ)(x∼, t) =
∫

D

ψ(x∼, q∼, t) dq
∼
. (2.3b)

In addition, the real-valued, continuous, nonnegative and strictly monotonic increasing function U ,
defined on a relatively open subset of [0,∞), is an elastic potential which gives the elastic force
F∼ : D → Rd on the springs via (1.2).

The probability density ψ(x∼, q∼, t) represents the probability at time t of finding the centre of
mass of a dumbbell in the volume element x∼ + dx∼ and having the endpoint of its elongation vector
within the volume element q

∼
+ dq

∼
. Hence ρ(ψ)(x∼, t) is the density of the polymer chains located at

x∼ at time t. The function ψ satisfies the following Fokker–Planck equation, together with suitable
boundary and initial conditions:

∂ψ

∂t
+ (u

∼
· ∇
∼

x )ψ +∇
∼

q · (σ
≈
(u
∼
) q
∼
ψ) =

1
2λ
∇
∼

q · (∇
∼

q ψ + U ′ q
∼
ψ)+ε∆x ψ in Ω×D × (0, T ], (2.4a)

ψ = 0 on Ω× ∂D × (0, T ], (2.4b)
ε∇
∼

x ψ · n
∼

= 0 on ∂Ω×D × (0, T ], (2.4c)

ψ(x
∼
, q
∼
, 0) = ψ0(x

∼
, q
∼
) ≥ 0 ∀(x

∼
, q
∼
) ∈ Ω×D; (2.4d)

where n∼ is the unit outward normal vector to ∂Ω. When D = Rd, the boundary condition (2.4b)
on ∂D, the boundary of D, is replaced by a decay condition at infinity which demands that |ψ|
converges to 0 sufficiently fast as |q

∼
| tends to ∞ (cf. [3]).

In (2.4a) the parameter λ ∈ R>0 characterizes the elastic relaxation property of the fluid, and

σ
≈
(v∼) is related to ∇

≈ x v∼, where (∇
≈ x v∼)(x∼, t) ∈ Rd×d and {∇

≈ x v∼}ij =
∂vi

∂xj
. The analytical results in

this paper are concerned with the corotational model, where

σ
≈
(v∼) := ω

≈
(v∼) ; (2.5)
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here

∇
≈ x v∼ = D

≈
(v∼) + ω

≈
(v∼), D

≈
(v∼) =

1
2

[∇
≈ x v∼+ (∇

≈ x v∼)
> ], ω

≈
(v∼) =

1
2

[∇
≈ x v∼− (∇

≈ x v∼)
> ]. (2.6)

On introducing the (normalized) Maxwellian

M(q
∼
) =

e−U( 1
2 |q∼|

2)∫
D

e−U dq
∼

,

we have that

M ∇∼ q M
−1 = −M−1∇∼ q M = U ′ q

∼
. (2.7)

In addition, the following identities hold:

∇∼ q U = U ′ q
∼
, ∇∼ q U

′ = U ′′ q
∼

and ∆q U = U ′′ |q
∼
|2 + U ′ d. (2.8)

Thus, the Fokker–Planck equation (2.4a) can be rewritten as

∂ψ

∂t
+ (u∼ · ∇∼ x )ψ +∇∼ q · (σ≈(u∼) q

∼
ψ) =

1
2λ
∇∼ q ·

(
M ∇∼ q

(
ψ

M

))
+ ε∆x ψ in Ω×D × (0, T ]. (2.9)

2.2. Two Examples. We present two relevant examples of spring potentials: the FENE po-
tential, where D is a bounded open ball in Rd, and the case of a Hookean potential, where D = Rd.

2.2.1. FENE-type models. A widely used model is the FENE model, where

D = B(0∼, b
1
2 ) and U(s) = − b

2
ln
(

1− 2 s
b

)
, and hence e−U( 1

2 |q∼|
2) =

(
1−
|q
∼
|2

b

)b
2

. (2.10)

Here B(0∼, s) is the bounded open ball of radius s > 0 in Rd centred at the origin, and b > 0 is an
input parameter. Hence the length |q

∼
| of the elongation vector q

∼
cannot exceed b

1
2 .

2.2.2. Hookean dumbbells. Letting b→∞ in (2.10) leads to the so-called Hookean dumbbell
model where

D = Rd and U(s) = s, and therefore e−U( 1
2 |q∼|

2) = e−
1
2 |q∼|

2

. (2.11)

This particular kinetic model, with ε ∈ R>0 and σ
≈
(u∼) = ∇

≈ x u∼, corresponds formally to a dissipative
Oldroyd-B type model, or with ε ∈ R>0 and σ

≈
(u∼) = ω

≈
(u∼) to a corotational dissipative Oldroyd-B

type model. Indeed, on multiplying (2.4a) by q
∼
q
∼

>, integrating over D, performing integration by
parts (assuming that ψ and |∇qψ| decay to zero sufficiently fast as |q

∼
| → ∞), and noting (2.3a) and

for any r∼ ∈ Rd that

(r∼.∇∼ q ) q
∼
q
∼

> = r∼ q∼
> + q

∼
r∼
> and ∆q (q

∼
q
∼

>) = 2 I
≈
, (2.12)

yields that C
≈

(x∼, t) ≡ C≈ (ψ(x∼, t)) satisfies

λ

(
δC
≈

δt
− ε∆x C≈

)
+ C
≈

= ρ I
≈

in Ω× (0, T ], (2.13)
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where ρ(x∼, t) ≡ ρ(ψ(x∼, t)) and

δC
≈

δt
=
∂C
≈

∂t
+ (u∼ · ∇∼ x )C

≈
− [σ

≈
(u∼)C

≈
+ C
≈

[σ
≈
(u∼)]> ] (2.14)

is the upper-convected time derivative. Similarly, on integrating (2.4a) over D and noting (2.3b)
yields that ρ satisfies

∂ρ

∂t
− ε∆x ρ+ (u∼ · ∇∼ x )ρ = 0 in Ω× (0, T ]. (2.15)

Hence in the Hookean case, the probability density function ψ can be eliminated, leading to a closed
model for u∼, C≈ and ρ. Moreover, in the case of the corotational model, (2.13) and (2.15) can be
combined to yield that the extra-stress tensor τ

≈
(ψ) satisfies

λ

(
δτ
≈

δt
− ε∆x τ≈

)
+ τ
≈

= k µλ ρ [σ
≈
(u∼) + [σ

≈
(u∼)]> ] in Ω× (0, T ], (2.16)

which, in the case of formally setting ε = 0, is the Oldroyd-B constitutive equation if σ
≈
(u∼) = ∇

≈ x u∼ or
the corotational Oldroyd-B constitutive equation if σ

≈
(u∼) = ω

≈
(u∼); in the latter case, the right-hand

side of (2.16) is identically equal to 0. With ε > 0, (2.16) represents dissipative versions of these
Oldroyd-B models.

2.3. General Structural Assumptions on the Potential. As has been noted in the Intro-
duction, the choice of D = Rd (corresponding to the Hookean model) is physically unrealistic; thus,
we shall henceforth suppose for simplicity that D is a bounded open ball in Rd. We assume that
q
∼
7→ U( 1

2 |q∼|
2) ∈ C∞(D) with q

∼
7→ U( 1

2 |q∼|
2) nonnegative and q

∼
7→ U ′( 1

2 |q∼|
2) positive on D, and that

there exist constants ci > 0, i = 1, 2, 3, 4, such that the Maxwellian M and the associated elastic
potential U satisfy

c1 [dist(q
∼
, ∂D)]κ ≤M(q

∼
) ≤ c2 [dist(q

∼
, ∂D)]κ ∀q

∼
∈ D, (2.17a)

c3 ≤ [dist(q
∼
, ∂D)]U ′( 1

2 |q∼|
2) ≤ c4 ∀q

∼
∈ D. (2.17b)

It is an easy matter to show that the Maxwellian M and the elastic potential U of the FENE
dumbbell model satisfy conditions (2.17a,b) with D = B(0∼, b

1
2 ) and κ = b

2 .
Since [U(q

∼
)]2 = (− lnM(q

∼
) + Const.)2, it follows from (2.17a) and (2.17b) that if κ > 1, then∫

D

[
1 + U2 + |U ′|2

]
M dq

∼
<∞. (2.18)

We shall therefore suppose that κ > 1. For the FENE model (2.10), κ = b
2 , and so the condition

κ > 1 translates into the requirement that b > 2. It is interesting to note that in the, equivalent,
stochastic version of the FENE model, a solution to the system of stochastic differential equations
associated with the Fokker–Planck equation exists and has trajectorial uniqueness if, and only if,
b > 2 (cf. [26] for details). Thus, the assumption κ > 1 can be seen as the weakest reasonable
requirement on the decay-rate of M as dist(q

∼
, ∂D)→ 0.

3. Numerical Approximation. Assuming that ∂Ω ∈ C0,1, let

H∼ := {w∼ ∈ L∼
2(Ω) : ∇∼ x · w∼ = 0} and V∼ := {w∼ ∈ H∼

1
0(Ω) : ∇∼ x · w∼ = 0}; (3.1)

where the divergence operator ∇∼ x · is to be understood in the sense of vector-valued distributions
on Ω. Let V∼

′ be the dual of V∼ . Let S∼ : V∼
′ → V∼ be such that S∼ v∼ is the unique solution to the

Helmholtz–Stokes problem∫
Ω

S∼ v∼ · w∼ dx∼ +
∫

Ω

∇
≈ x S∼ v∼ : ∇

≈ x w∼ dx∼ = 〈v∼, w∼ 〉 ∀w∼ ∈ V∼ , (3.2)
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where 〈·, ·〉 denotes the duality pairing between V∼
′ and V∼ . We note that

〈v∼, S∼ v∼〉 = ‖S∼ v∼‖
2
H1(Ω) ∀v∼ ∈ V∼

′ ⊃ (H∼
1
0(Ω))′, (3.3)

and ‖S∼ · ‖H1(Ω) is a norm on V ′.
On introducing

‖ϕ̂‖H1(Ω×D;M) :=
{∫

Ω×D

M
[
|ϕ̂|2 + |∇∼ x ϕ̂|2 + |∇∼ q ϕ̂|2

]
dq
∼

dx∼

} 1
2

, (3.4)

we then set

X̂ ≡ H1(Ω×D;M) :=
{
ϕ̂ ∈ L1

loc(Ω×D) : ‖ϕ̂‖H1(Ω×D;M) <∞
}
. (3.5)

It follows that

C∞(Ω×D) is dense in X̂. (3.6)

This can be shown, for example, by a simple adaption of Lemma 3.1 in Barrett, Schwab, and Süli
[2], which appeals to fundamental results on weighted Sobolev spaces in Triebel [47] and Kufner [28].

We note for future reference that (2.3a) and (2.18) yield for M
1
2 ϕ̂ ∈ L2(Ω×D) that

∫
Ω

|C
≈

(M ϕ̂)|2 dx
∼

=
∫

Ω

d∑
i=1

d∑
j=1

(∫
D

M ϕ̂U ′ qi qj dq
∼

)2

dx
∼

≤ d
(∫

D

M (U ′)2 |q
∼
|4 dq

∼

)(∫
Ω×D

M |ϕ̂|2 dq
∼

dx
∼

)
≤ C

(∫
Ω×D

M |ϕ̂|2 dq
∼

dx
∼

)
, (3.7)

where C = C(d) is a positive constant.
We note that

ω
≈
(v∼) = −[ω

≈
(v∼)]

> and hence q
∼

> ω
≈
(v∼) q∼ = 0 ∀q

∼
∈ Rd. (3.8)

On recalling (4.15a,b) in Barrett, Schwab, and Süli [2], it follows for all v∼ ∈ W∼ 1,∞(Ω) and ϕ̂ ∈ X̂
that ∫

Ω×D

M ϕ̂ (ω
≈
(v∼) q∼) · ∇∼ q ϕ̂dq

∼
dx∼ = 0 and

∫
Ω×D

M (ω
≈
(v∼) q∼) · ∇∼ q ϕ̂ dq

∼
dx∼ = 0. (3.9)

The aim of this paper is construct a numerical approximation of (P); and prove convergence of
this approximation, and hence prove existence of a (global-in-time) solution to the following weak
formulation (Pw) of (P), with ψ̂ = ψ/M , for given initial data

u
∼

0 ∈ H
∼

and M
1
2 ψ̂0 := M− 1

2ψ0 ∈ L2(Ω×D) . (3.10)

(Pw) Find u∼ ∈ L∞(0, T ;L∼
2(Ω))∩L2(0, T ;V∼ )∩W 1, 4

β (0, T ;V∼
′) and ψ̂ ∈ L2(0, T ; X̂), with M

1
2 ψ̂ ∈

9



L∞(0, T ;L2(Ω×D)) and C
≈

(M ψ̂) ∈ L∞(0, T ;L
≈

2(Ω)), such that u∼(·, 0) = u∼
0(·) and∫ T

0

〈
∂u∼
∂t
, w∼

〉
dt+

∫ T

0

∫
Ω

[
[(u∼ · ∇∼ x )u∼] · w∼ + ν∇

≈ x u∼ : ∇
≈ x w∼

]
dx∼ dt

= −
∫ T

0

∫
Ω

C
≈

(M ψ̂) : ∇
≈ x w∼ dx∼ dt ∀w∼ ∈ L

4
4−β (0, T ;V∼ ); (3.11a)

−
∫ T

0

∫
Ω×D

M ψ̂
∂ϕ̂

∂t
dq
∼

dx∼ dt−
∫

Ω×D

M ψ̂0(·, ·) ϕ̂(·, ·, 0) dq
∼

dx∼

+
∫ T

0

∫
Ω×D

{[
εM ∇∼ x ψ̂ − u∼ ψ̂

]
· ∇∼ x ϕ̂+

M

2λ
∇∼ q ψ̂ · ∇∼ q ϕ̂

}
dq
∼

dx∼ dt

+
1
2

∫ T

0

∫
Ω×D

[[
∇
≈ x

(
M ψ̂∇∼ q ϕ̂

)
q
∼

]
· u∼ − (u∼ · q∼)

[
∇∼ x ·

(
M ψ̂∇∼ q ϕ̂

) ]]
dq
∼

dx∼ dt = 0

∀ϕ̂ ∈ X̂ ; (3.11b)

where

β ∈ (2, 4) if d = 2 and β = 3 if d = 3, (3.12)

and X̂ is defined as the completion of C∞0 ((−T, T );C∞(Ω×D)) in the norm ‖ · ‖X̂ defined by

‖ϕ̂‖X̂ := ‖ϕ̂‖L2(0,T ;X̂) +
∥∥∥M 1

2 ∇
∼

q ϕ̂
∥∥∥

L2(0;T ;H1(Ω;L2(D)))
+
∥∥∥∥M 1

2
∂ϕ̂

∂t

∥∥∥∥
L2(0;T ;L2(Ω×D))

. (3.13)

This, in particular, implies that each ϕ̂ ∈ X̂ satisfies ϕ̂(·, ·, T ) = 0.

Remark 3.1. The imposition of the initial condition to the u∼-equation is understood in the
sense that limt→0

∫
Ω
[u∼(·, t) − u∼0(·)] · v∼(·) dx∼ = 0 for all v∼ ∈ H∼ , see e.g. Theorem 3.1 on p.191 in

Temam [46].

Remark 3.2. Since the test functions in V∼ are divergence-free, the pressure has been elim-
inated in (3.11a,b); it can be recovered in a very weak sense following the same procedure as for
the incompressible Navier–Stokes equations discussed on p.208 in Temam [46]; i.e., one obtains that∫ t

0
p(·, s) ds ∈ C([0, T ];L2(Ω)).

Let h > 0 denote a discretization parameter tending to zero and, for each h, let W∼ h and Rh be
two finite-dimensional spaces such that

W
∼

h ⊂ H
∼

1
0(Ω) ∩W

∼

1,∞(Ω) and Rh ⊂ L2
0(Ω) :=

{
r ∈ L2(Ω) :

∫
Ω

r(x
∼
) dx
∼

= 0
}
. (3.14)

We assume that
⋃

h>0W∼ h and
⋃

h>0Rh are dense in H∼
1
0(Ω) and L2

0(Ω), respectively. In addition,
we set

V
∼

h := {w
∼

h ∈W
∼

h :
∫

Ω

(∇
∼

x · w
∼

h) rh dx
∼

= 0 ∀rh ∈ Rh}. (3.15)

Moreover, we assume the inf-sup condition; that is, there exists a positive constant C0, independent
of h, such that

sup
w
∼

h∈W
∼

h

∫
Ω
(∇
∼

x · w
∼

h) rh dx
∼

‖w
∼

h‖H1(Ω)
≥ C0 ‖rh‖L2(Ω) ∀rh ∈ Rh. (3.16)
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Hence it follows that

∀v
∼
∈ V
∼
, ∃ {v

∼
h}h>0, v

∼
h ∈ V

∼
h, such that lim

h→0
‖v
∼
− v
∼

h‖H1(Ω) = 0. (3.17)

We require the L2 projector Q
∼

h : V∼ → V∼ h defined by∫
Ω

(v
∼
−Q
∼

h v
∼
) · w
∼

h dx
∼

= 0 ∀w
∼

h ∈ V
∼

h. (3.18)

We shall assume that Ω and V∼ h are such that this projection is uniformly H1 stable; that is,

‖Q
∼

h v
∼
‖H1(Ω) ≤ C1 ‖v

∼
‖H1(Ω) ∀v

∼
∈ V
∼
. (3.19)

Remark 3.3. In the case of Galerkin finite element approximations on quasi-uniform families
of partitions into simplices of Ω ⊂ Rd, d = 2, 3, where Ω is either a C2 domain or a convex polytope,
the inequality (3.19) is known to hold (see Heywood and Rannacher [24]). On the other hand, for
the L2 projector onto W∼ h(⊃ V∼ h), these hypotheses for ensuring uniform stability in the H1 norm
can be considerably relaxed; see, for example, [8, 11, 15]. As it is likely that the strong assumptions
from [24] are not necessary for the H1 stability of Q

∼
h, we chose to adopt hypothesis (3.19) directly

instead of imposing a demanding sufficient condition to ensure that it holds.

Let X̂x
h ⊂W 1,∞(Ω) and X̂q

h ⊂W 1,∞(D) be finite-dimensional spaces of functions defined on Ω
and D, respectively, such that the following standard approximation properties hold:

lim
h→0

distW 1,∞(Ω)(η, X̂x
h) = 0 ∀η ∈ C∞(Ω), lim

h→0
distW 1,∞(D)(ζ, X̂

q
h) = 0 ∀ζ ∈ C∞(D). (3.20)

In addition, we define

W (1,1),∞(Ω×D) :=

{
ϕ̂ ∈ L∞(Ω×D) :

∂k

∂xk
i

∂`

∂q`
j

ϕ̂ ∈ L∞(Ω×D), i, j = 1→ d, k, ` ∈ {0, 1}

}
.

Lemma 3.4. Suppose that X̂h := X̂x
h ⊗ X̂

q
h ⊂ X̂ ∩W (1,1),∞(Ω×D), where X̂x

h ⊂W 1,∞(Ω) and
X̂q

h ⊂ W 1,∞(D) are finite-dimensional spaces of functions defined on Ω and D, respectively, such
that (3.20) holds. Then, for each ϕ̂ ∈ C∞(Ω×D) there exists a monotonic decreasing sequence
of positive real numbers {hm}m≥1 converging to zero and elements {Ihm

ϕ̂}m≥1, with Ihm
ϕ̂ ∈ X̂hm

,
such that

lim
m→∞

∥∥∥∥∥ ∂k

∂xk
i

∂`

∂q`
j

(ϕ̂− Ihm ϕ̂)

∥∥∥∥∥
L∞(Ω×D)

= 0, i, j = 1→ d, k, ` ∈ {0, 1}. (3.21)

Proof. Let K0 and K1 be compact subsets of R2d such that Ω×D ⊂⊂ K1 ⊂⊂ K0. Given
ϕ̂ ∈ C∞(Ω×D), let ϕ̂∗ ∈ C2,1(R2d) denote the Whitney extension (cf. Stein [43]) of ϕ̂, considered
as an element of C2,1(Ω×D), from Ω×D to R2d, and let χ ∈ C∞0 (K0) be such that χ ≡ 1 on
K1. Then χ ϕ̂∗ ∈ C2,1

0 (K0) ⊂ C2
0 (K0) and (χ ϕ̂∗)|Ω×D = ϕ̂. By Nachbin’s variant of the Stone–

Weierstrass theorem (see [37] and Corollary 3 in [21]), for any δ > 0 there exists a nonnegative
integer n = n(δ) and a polynomial pn(x∼, q∼) of degree n defined on R2d such that

‖χ ϕ̂∗ − pn‖C2(K0) < δ.
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Hence,

max
i, j∈{1,...,d}

max
k,`∈{0,1}

∥∥∥∥∥ ∂k

∂xk
i

∂`

∂q`
j

(ϕ̂− pn)

∥∥∥∥∥
L∞(Ω×D)

≤ ‖ϕ̂− pn‖C2(Ω×D) < δ. (3.22)

Let us expand

pn(x∼, q∼) =
∑

α, γ∈Nd
≥0 : |α|+|γ|≤n

aα,γ x∼
α q
∼

γ ,

where Nd
≥0 denotes the d-fold cartesian product of the set N≥0 of nonnegative integers.

Then, as a consequence of (3.20), there exist functions ηα,h ∈ X̂x
h and ζγ,h ∈ X̂q

h such that

lim
h→0
‖xα − ηα,h‖W 1,∞(Ω) = 0 and lim

h→0
‖qγ − ζγ,h‖W 1,∞(D) = 0, α, γ ∈ Nd

≥0 : |α|+ |γ| ≤ n.

With Iδ
h ϕ̂ ∈ X̂h = X̂x

h ⊗ X̂
q
h defined, for n = n(δ), by

Iδ
h ϕ̂(x∼, q∼) :=

∑
α, γ∈Nd

≥0 : |α|+|γ|≤n

aα,γ ηα,h ζγ,h,

we then deduce, for δ > 0 (and n = n(δ)) fixed, that

lim
h→0

max
i, j∈{1,...,d}

max
k,`∈{0,1}

∥∥∥∥∥ ∂k

∂xk
i

∂`

∂q`
j

(pn − Iδ
h ϕ̂)

∥∥∥∥∥
L∞(Ω×D)

= 0.

Combining the above and (3.22), with δ > 0 (and n = n(δ)) fixed, then gives

lim
h→0

max
i, j∈{1,...,d}

max
k,`∈{0,1}

∥∥∥∥∥ ∂k

∂xk
i

∂`

∂q`
j

(ϕ̂− Iδ
h ϕ̂)

∥∥∥∥∥
L∞(Ω×D)

< δ,

which, in turn, implies the existence of h0 = h0(δ) > 0 such that

max
i, j∈{1,...,d}

max
k,`∈{0,1}

∥∥∥∥∥ ∂k

∂xk
i

∂`

∂q`
j

(ϕ̂− Iδ
h ϕ̂)

∥∥∥∥∥
L∞(Ω×D)

< δ ∀h ∈ (0, h0]. (3.23)

Thus we have shown that for each ϕ̂ ∈ C∞(Ω×D) and each δ > 0 there exists Iδ
h ϕ̂ ∈ X̂h and h0 =

h0(δ) such that (3.23) holds. Consider the sequence δm = 1/m, m = 1, 2, . . . , and let {hm}m≥1 be a
monotonic decreasing sequence of positive real numbers converging to zero, with hm ∈ (0, h0(δm)].
Letting

Ihm
ϕ̂ := Iδm

hm
ϕ̂ ∈ X̂hm

, m = 1, 2, . . . ,

it then follows that

max
i, j∈{1,...,d}

max
k,`∈{0,1}

∥∥∥∥∥ ∂k

∂xk
i

∂`

∂q`
j

(ϕ̂− Ihm
ϕ̂)

∥∥∥∥∥
L∞(Ω×D)

<
1
m
, m = 1, 2, . . . . (3.24)

Hence, passing to the limit m→∞, we deduce (3.21).
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Remark 3.5. Hypotheses (3.14), (3.15), and (3.16) are standard assumptions for inf-sup stable
H∼

1
0(Ω)× L2

0(Ω)-conforming discretizations of the Stokes problem. Numerous examples of finite ele-
ment spaces that satisfy these properties are given in the monographs of Brezzi and Fortin [10] and
Girault and Raviart [23], when Ω is a polygon in R2 or a polyhedron in R3; see also Section 4.2 in
the book of Ern and Guermond [20].

Any H1(Ω)-conforming finite element space X̂x
h is automatically a subset of W 1,∞(Ω). Similarly,

any H1(D)-conforming finite element space X̂q
h is automatically a subset of W 1,∞(D). Given two

such spaces X̂x
h and X̂q

h we then also have X̂h := X̂x
h ⊗ X̂q

h ⊂ W (1,1),∞(Ω × D) and, trivially
X̂h ⊂ H1(Ω ×D) ⊂ X̂. The requirement (3.20) follows from standard approximation properties of
classical H1-conforming finite element spaces (see, for example, inequalities (4.4.22) and (4.4.26)
in Brenner and Scott [9] when the domain is a polytope, or Theorem 4.3.4 in Ciarlet [13] and the
paper of Bernardi [5] in the case of a Lipschitz domain with a curved boundary).

Let 0 = t0 < t1 < · · · < tN−1 < tN = T be a partitioning of the time interval [0, T ] into uniform
time steps ∆t = tn − tn−1, n = 1→ N .

Given initial data satisfying (3.10), we choose u∼
0
h ∈ V∼ h and ψ̂0

h ∈ X̂h such that∫
Ω

[
u
∼

0
h · v

∼
h + ∆t∇

≈
x u
∼

0
h : ∇

≈
x w
∼

h

]
dx
∼

=
∫

Ω

u
∼

0 · v
∼

h dx
∼

∀v
∼

h ∈ V
∼

h, (3.25a)∫
Ω×D

M ψ̂0
h ϕ̂h dq

∼
dx
∼

=
∫

Ω×D

M ψ̂0 ϕ̂h dq
∼

dx
∼

∀ϕ̂h ∈ X
∼

h. (3.25b)

It follows from (3.25a,b) that∫
Ω

[
|u
∼

0
h|2 + ∆t |∇

≈
x u
∼

0
h|2
]

dx
∼

+
∫

Ω×D

M |ψ̂0
h|2 dq

∼
dx
∼
≤ C. (3.26)

Our numerical approximation of (P) is then defined as follows.

(Ph,∆t) For n = 1→ N , given (u∼
n−1
h , ψ̂n−1

h ) ∈ V∼ h × X̂h, find (u∼
n
h, ψ̂

n
h) ∈ V∼ h × X̂h such that

∫
Ω

u
∼

n
h − u∼

n−1
h

∆t
· w
∼

h dx
∼

+
1
2

∫
Ω

[
((u
∼

n−1
h · ∇

∼
x )u
∼

n
h) · w

∼
h − ((u

∼

n−1
h · ∇

∼
x )w
∼

h) · u
∼

n
h

]
dx
∼

+ ν

∫
Ω

∇
≈

x u
∼

n
h : ∇

≈
x w
∼

h dx
∼

= −k µ
∫

Ω×D

C
≈

(M ψ̂n−1
h ) : ∇

≈
x w
∼

h dx
∼

∀w
∼

h ∈ V
∼

h, (3.27a)∫
Ω×D

M
ψ̂n

h − ψ̂
n−1
h

∆t
ϕ̂h dq

∼
dx
∼

+ ε

∫
Ω×D

M ∇
∼

x ψ̂
n
h · ∇

∼
x ϕ̂h dq

∼
dx
∼

+
∫

Ω×D

M

[
1

2λ
∇
∼

q ψ̂
n
h − [ω

≈
(u
∼

n
h) q
∼

] ψ̂n
h

]
· ∇
∼

q ϕ̂h dq
∼

dx
∼

+
1
2

∫
Ω×D

M
[(
u
∼

n
h · ∇

∼
x ψ̂

n
h

)
ϕ̂h −

(
u
∼

n
h · ∇

∼
x ϕ̂h

)
ψ̂n

h

]
dq
∼

dx
∼

= 0 ∀ϕ̂h ∈ X̂h. (3.27b)

Hence the approximations u∼
n
h and ψ̂n

h at time level tn to the velocity field and the probability
distribution are obtained by solving two decoupled linear equations. It is convenient to rewrite
(3.27a) as

b(u∼
n−1
h )(u∼

n
h, w∼ h) =

∫
Ω

[
u∼

n−1
h · w∼ h −∆t k µC

≈
(M ψ̂n−1

h ) : ∇
≈ x (w∼ h)

]
dx∼ ∀w∼ h ∈ V∼ h, (3.28)
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where for all v∼, w∼ 1, w∼ 2 ∈ H∼ 1(Ω)

b(v∼)(w∼ 1, w∼ 2) :=
∫

Ω

w∼ 1 · w∼ 2 dx∼ + ∆t ν
∫

Ω

∇
≈ x w∼ 1 : ∇

≈ x w∼ 2 dx∼

+
∆t
2

∫
Ω

[((v∼ · ∇∼ x )w∼ 1) · w∼ 2 − ((v∼ · ∇∼ x )w∼ 2) · w∼ 1] dx∼. (3.29)

Hence it follows from (3.29) that b(v∼)(·, ·) is a continuous and coercive bilinear functional on H∼
1(Ω)×

H∼
1(Ω). On recalling (3.7), we have the right-hand side of (3.28) is a bounded linear functional on

H∼
1(Ω). Hence the Lax–Milgram theorem yields the existence of a unique solution u∼

n
h ∈ V∼ h to (3.28).

It is also convenient to rewrite (3.27b) as

a(u∼
n
h)(ψ̂n

h , ϕ̂h) =
∫

Ω×D

M ψ̂n−1
h ϕ̂h dq

∼
dx∼ ∀ϕ̂h ∈ X̂h; (3.30)

where, for all ϕ̂1, ϕ̂2 ∈ X̂ and v∼h ∈ V∼ h,

a(v∼h)(ϕ̂1, ϕ̂2) :=
∫

Ω×D

M

(
ϕ̂1 ϕ̂2 + ∆t ε∇∼ x ϕ̂1 · ∇∼ x ϕ̂2

)
dq
∼

dx∼

+
∆t
2

∫
Ω×D

M [(v∼h · ∇∼ x ϕ̂1)ϕ̂2 − (v∼h · ∇∼ x ϕ̂2)ϕ̂1] dq
∼

dx∼

+∆t
∫

Ω×D

M

[
1

2λ
∇∼ q ϕ̂1 − [ω

≈
(v∼h) q

∼
] ϕ̂1

]
· ∇∼ q ϕ̂2 dq

∼
dx∼. (3.31)

In addition, it is easily deduced that a(v∼h)(·, ·) is a continuous nonsymmetric bilinear functional on
X̂ × X̂, and, for each fixed ψ̂n−1

h ∈ X̂h, the right-hand side of (3.30) defines a linear functional on
X̂. Moreover, on noting (3.9), we see that

a(v
∼

h)(ϕ̂, ϕ̂) =
∫

Ω×D

M

[
|ϕ̂|2 + ∆t ε

∣∣∣∇
∼

x ϕ̂
∣∣∣2 +

∆t
2λ

∣∣∣∇
∼

q ϕ̂
∣∣∣2] dq

∼
dx
∼

∀ϕ̂ ∈ X̂. (3.32)

Hence a(v∼h)(·, ·) is coercive on X̂ × X̂, and so the Lax–Milgram theorem yields the existence of a
unique solution ψ̂n

h ∈ X̂h to (3.30).

On choosing w∼ h ≡ u∼n
h in (3.28) and noting (3.7) yields that

1
2

∫
Ω

[
|u∼

n
h|2 + |u∼

n
h − u∼

n−1
h |2 − |u∼

n−1
h |2

]
dx∼ + ∆t ν

∫
Ω

|∇
≈ x u∼

n
h|2 dx∼

= −∆t k µ
∫

Ω

C
≈

(M ψ̂n−1
h ) : ∇

≈ x u∼
n
h dx∼ ≤ C∆t

∫
Ω×D

M |ψ̂n−1
h |2 dq

∼
dx∼. (3.33)

On choosing w∼ h ≡ Q
∼

h

[
S∼

(
u∼

n
h−u∼

n−1
h

∆t

)]
∈ V∼ h in (3.28) yields, on noting (3.18), (3.2), (3.19) and

14



Sobolev embedding, that∥∥∥∥∥S∼
(
u
∼

n
h − u∼

n−1
h

∆t

)∥∥∥∥∥
2

H1(Ω)

=
∫

Ω

(
u
∼

n
h − u∼

n−1
h

∆t

)
·Q
∼

h

[
S
∼

(
u
∼

n
h − u∼

n−1
h

∆t

)]
dx
∼

= −ν
∫

Ω

∇
≈

x u
∼

n
h : ∇

≈
x

[
Q
∼

h

[
S
∼

(
u
∼

n
h − u∼

n−1
h

∆t

)]]
dx
∼

− k µ
∫

Ω

C
≈

(M ψ̂n−1
h ) : ∇

≈
x

[
Q
∼

h

[
S
∼

(
u
∼

n
h − u∼

n−1
h

∆t

)]]
dx
∼

+
1
2

∫
Ω

u
∼

n
h ·

[
(u
∼

n−1
h · ∇

∼
x )

[
Q
∼

h

[
S
∼

(
u
∼

n
h − u∼

n−1
h

∆t

)]]]
dx
∼

− 1
2

∫
Ω

[
Q
∼

h

[
S
∼

(
u
∼

n
h − u∼

n−1
h

∆t

)]]
·
[
(u
∼

n−1
h · ∇

∼
x )u
∼

n
h

]
dx
∼

≤ C
[
‖C
≈

(M ψ̂n−1
h )‖2L2(Ω) + ‖∇

≈
x u
∼

n
h‖2L2(Ω) + ‖ |u

∼

n−1
h | |u

∼

n
h| ‖2L2(Ω)

]
+ C ‖ |u

∼

n−1
h | |∇

≈
x u
∼

n
h| ‖2L1+δ(Ω) (3.34)

for any δ > 0 if d = 2 and for δ = 1
5 if d = 3. Applying the Cauchy–Schwarz and the algebraic-

geometric mean inequalities, in conjunction with the Gagliardo–Nirenberg inequality yields that

‖ |u∼
n−1
h | |u∼

n
h| ‖2L2(Ω) ≤ ‖u∼

n−1
h ‖2L4(Ω) ‖u∼

n
h‖2L4(Ω) ≤ 1

2

n∑
m=n−1

‖u∼
m
h ‖4L4(Ω)

≤ C
n∑

m=n−1

[
‖u∼

m
h ‖4−d

L2(Ω) ‖∇≈ x u∼
m
h ‖dL2(Ω)

]
. (3.35)

Similarly, we have for any δ ∈ (0, 1), if d = 2, that

‖ |u
∼

n−1
h | |∇

≈
x u
∼

n
h| ‖2L1+δ(Ω) ≤ ‖u∼

n−1
h ‖2

L
2(1+δ)
1−δ (Ω)

‖∇
≈

x u
∼

n
h‖2L2(Ω)

≤ C ‖u
∼

n−1
h ‖

2(1−δ)
1+δ

L2(Ω)

n∑
m=n−1

‖∇
≈

x u
∼

m
h ‖

2(1+3δ)
1+δ

L2(Ω) ; (3.36a)

and if d = 3, (δ = 1
5 ), that

‖ |u
∼

n−1
h | |∇

≈
x u
∼

n
h| ‖2

L
6
5 (Ω)

≤ ‖u
∼

n−1
h ‖2L3(Ω) ‖∇

≈
x u
∼

n
h‖2L2(Ω) ≤ C ‖u∼

n−1
h ‖L2(Ω)

n∑
m=n−1

‖∇
≈

x u
∼

m
h ‖3L2(Ω). (3.36b)

On choosing ϕ̂h = ψ̂n
h in (3.30) yields that∫

Ω×D

M
[
|ψ̂n

h |2 + |ψ̂n
h − ψ̂n−1

h |2
]

dq
∼

dx∼ + 2 ∆t ε
∫

Ω×D

M
∣∣∣∇∼ x ψ̂

n
h

∣∣∣2 dq
∼

dx∼

+
∆t
λ

∫
Ω×D

M
∣∣∣∇∼ q ψ̂

n
h

∣∣∣2 dq
∼

dx∼ =
∫

Ω×D

M |ψ̂n−1
h |2 dq

∼
dx∼ ; (3.37)

where we have noted (3.9) and the simple identity

2 (s1 − s2) s1 = s21 + (s1 − s2)2 − s22 ∀s1, s2 ∈ R. (3.38)
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Summing (3.37) and (3.33) from n = 1 → m, with 1 ≤ m ≤ N , and noting (3.26) and (3.7)
yields that

max
n=0→N

[∫
Ω×D

M |ψ̂n
h |2 dq

∼
dx∼

]
+

1
λ

N∑
n=1

∆t
∫

Ω×D

M
∣∣∣∇∼ q ψ̂

n
h

∣∣∣2 dq
∼

dx∼

+ε
N∑

n=1

∆t
∫

Ω×D

M
∣∣∣∇∼ x ψ̂

n
h

∣∣∣2 dq
∼

dx∼ +
N∑

n=1

∫
Ω×D

M |ψ̂n
h − ψ̂n−1

h |2 dq
∼

dx∼

+ max
n=0→N

[∫
Ω

|C
≈

(M ψ̂n
h)|2 dx∼

]
≤ C

∫
Ω×D

M |ψ̂0
h|2 dq

∼
dx∼ ≤ C ; (3.39a)

max
n=0→N

[∫
Ω

|u∼
n
h|2 dx∼

]
+

N∑
n=1

∫
Ω

|u∼
n
h − u∼

n−1
h |2 dx∼ + ν

N∑
n=1

∆t
∫

Ω

|∇
≈ x u∼

n
h|2 dx∼

≤ C
∫

Ω

|u∼
0
h|2 dx∼ + C T

∫
Ω×D

M |ψ̂0
h|2 dq

∼
dx∼ ≤ C(T ). (3.39b)

On taking the 2
β power of both sides of (3.34), recall (3.12), summing from n = 1→ N and noting

(3.35), (3.36a,b), (3.39a,b) and (3.26) yields that

N∑
n=1

∆t

∥∥∥∥∥S∼
(
u
∼

n
h − u∼

n−1
h

∆t

)∥∥∥∥∥
4
β

H1(Ω)

≤ C

[
N∑

n=1

∆t ‖C
≈

(M ψ̂n
h)‖

4
β

L2(Ω)

]
+ C(T )

[
N∑

n=1

∆t ‖∇
≈

x u
∼

n
h‖2L2(Ω)

] 2
β

+ C

[
max

n=0→N

(∫
Ω

|u
∼

n
h|2 dx

∼

) 4
β−1

] [
N∑

n=0

∆t
∫

Ω

|∇
≈

x u
∼

n
h|2 dx

∼

]
≤ C(T ). (3.40)

Now we introduce some definitions prior to passing to the limit h, ∆t→ 0. Let

u∼
∆t
h (·, t) :=

t− tn−1

∆t
u∼

n
h(·) +

tn − t
∆t

u∼
n−1
h (·), t ∈ [tn−1, tn], n ≥ 1, (3.41a)

and

u∼
∆t,+
h (·, t) := u∼

n
h(·), u∼

∆t,−
h (·, t) := u∼

n−1
h (·), t ∈ (tn−1, tn], n ≥ 1. (3.41b)

We note for future reference that

u∼
∆t
h − u∼

∆t,±
h = (t− t±n )

∂u∼
∆t
h

∂t
, t ∈ (tn−1, tn), n ≥ 1, (3.42)

where t+n := tn and t−n := tn−1. Using the above notation, and introducing analogous notation for
16



{ψ̂n
h}Nn=0, (3.28) summed for n = 1→ N can be restated as:∫ T

0

∫
Ω

[
∂u∼

∆t
h

∂t
· w∼ h + ν∇

≈ x u∼
∆t,+
h : ∇

≈ x w∼ h

]
dx∼ dt

+
1
2

∫ T

0

∫
Ω

[[
(u∼

∆t,−
h · ∇∼ x )u∼

∆t,+
h

]
· w∼ h −

[
(u∼

∆t,−
h · ∇∼ x )w∼ h

]
· u∼

∆t,+
h

]
dx∼ dt

= −k µ
∫ T

0

∫
Ω

C
≈

(M ψ̂∆t,−
h ) : ∇

≈ x w∼ h dx∼ dt ∀w∼ h ∈ L
4

4−β (0, T ;V∼ h). (3.43)

Similarly, (3.30) summed for n = 1→ N can be restated as:∫ T

0

∫
Ω×D

M
ψ̂∆t,+

h − ψ̂∆t,−
h

∆t
ϕ̂h dq

∼
dx∼ dt+ ε

∫ T

0

∫
Ω×D

M ∇∼ x ψ̂
∆t,+
h · ∇∼ x ϕ̂h dq

∼
dx∼ dt

+
1
2

∫ T

0

∫
Ω×D

M
[
(u∼

∆t,+
h · ∇∼ x ψ̂

∆t,+
h )ϕ̂h − (u∼

∆t,+
h · ∇∼ x ϕ̂h)ψ̂∆t,+

h

]
dq
∼

dx∼ dt

+
∫ T

0

∫
Ω×D

M

[
1

2λ
∇∼ q ψ̂

∆t,+
h − [ω

≈
(u∼

∆t,+
h ) q

∼
] ψ̂∆t,+

h

]
· ∇∼ q ϕ̂h dq

∼
dx∼ dt = 0

∀ϕ̂h ∈ L2(0, T ; X̂h). (3.44)

We have from (3.39a) that

sup
t∈(0,T )

[∫
Ω×D

M |ψ̂∆t(,±)
h |2 dq

∼
dx∼

]
+

1
λ

∫ T

0

∫
Ω×D

M
∣∣∣∇∼ q ψ̂

∆t,+
h

∣∣∣2 dq
∼

dx∼ dt

+ε
∫ T

0

∫
Ω×D

M
∣∣∣∇∼ x ψ̂

∆t,+
h

∣∣∣2 dq
∼

dx∼ dt+ sup
t∈(0,T )

[∫
Ω

|C
≈

(ψ̂∆t(,±)
h )|2 dx∼

]

+
∫ T

0

[∫
Ω×D

M
|ψ̂∆t,+

h − ψ̂∆t,−
h |2

∆t
dq
∼

dx∼

]
dt ≤ C(T ). (3.45)

In the above and throughout, the notation ψ̂
∆t(,±)
h means ψ̂∆t

h with or without the superscripts ±.
Similarly, we have from (3.39b), and (3.40) that

sup
t∈(0,T )

[∫
Ω

|u
∼

∆t(,±)
h |2 dx

∼

]
+
∫ T

0

∫
Ω

|u
∼

∆t,+
h − u

∼

∆t,−
h |2

∆t
dx
∼

dt

+ ν

∫ T

0

∫
Ω

|∇
≈

x u
∼

∆t(,±)
h |2 dx

∼
dt+

∫ T

0

∥∥∥∥∥S∼ ∂u
∼

∆t
h

∂t

∥∥∥∥∥
4
β

H1(Ω)

dt ≤ C(T ). (3.46)

We are now in a position to prove the following convergence result.
Theorem 3.6.There exists a subsequence of {(u∼∆t

h , ψ̂∆t
h )}h>0,∆t>0, and functions u∼ ∈ L∞(0, T ;

L∼
2(Ω))∩L2(0, T ;V∼ )∩W 1, 4

β (0, T ;V∼
′) and ψ̂ ∈ L2(0, T ; X̂) with M

1
2 ψ̂ ∈ L∞(0, T ;L2(Ω×D)), such

that, as h, ∆t→ 0,

M
1
2 ψ̂

∆t(,±)
h →M

1
2 ψ̂ weak* in L∞(0, T ;L2(Ω×D)), (3.47a)

M
1
2 ∇
∼

q ψ̂
∆t,+
h →M

1
2 ∇
∼

q ψ̂ weakly in L2(0, T ;L
∼

2(Ω×D)), (3.47b)

M
1
2 ∇
∼

x ψ̂
∆t,+
h →M

1
2 ∇
∼

x ψ̂ weakly in L2(0, T ;L
∼

2(Ω×D)), (3.47c)

C
≈

(M ψ̂
∆t(,±)
h )→ C

≈
(M ψ̂) weak* in L∞(0, T ;L

≈

2(Ω)); (3.47d)
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and

u
∼

∆t(,±)
h → u

∼
weak* in L∞(0, T ;L

∼

2(Ω)), (3.48a)

u
∼

∆t(,±)
h → u

∼
weakly in L2(0, T ;V

∼
), (3.48b)

S
∼

∂u
∼

∆t
h

∂t
→ S

∼

∂u
∼

∂t
weakly in L

4
β (0, T ;V

∼
), (3.48c)

u
∼

∆t(,±)
h → u

∼
strongly in L2(0, T ;L

∼

r(Ω), (3.48d)

where β is defined by (3.12) and r ∈ [1,∞) if d = 2 and r ∈ [1, 6) if d = 3. Furthermore, the pair
(u∼, ψ̂) is a weak solution of the problem (P) defined by (Pw).

Proof. The result (3.47a) follows immediately from the bounds on the first and fifth terms on
the left-hand side of (3.45), on noting the notation (3.41a,b).

It follows immediately from the bound on the second term on the left-hand side of (3.45) that
(3.47b) holds for some limit g

∼
∈ L2(0, T ;L∼

2(Ω × D)), which we need to identify. However for
any η

∼
∈ L2(0, T ;C∼

∞
0 (Ω × D)), it follows from (2.7) and the compact support of η

∼
on D that

[∇∼ q · (M
1
2 η
∼
) ]/M

1
2 ∈ L2(0, T ;L2(Ω × D)) and hence the above convergence implies, on noting

(3.47a), that ∫ T

0

∫
Ω×D

g
∼
· η
∼

dq
∼

dx∼ dt← −
∫ T

0

∫
Ω×D

M
1
2 ψ̂∆t,+

h

∇∼ q · (M
1
2 η
∼
)

M
1
2

dq
∼

dx∼ dt

→ −
∫ T

0

∫
Ω×D

M
1
2 ψ̂
∇∼ q · (M

1
2 η
∼
)

M
1
2

dq
∼

dx∼ dt (3.49)

as h, ∆t → 0. Hence the desired result (3.47b) follows from (3.49) on noting the denseness of
C∞0 (Ω×D) in L2(Ω×D). A similar argument also proves (3.47c). The desired result (3.47d) follows
immediately from (3.47a), and (2.3a).

The results (3.48a–c) follow immediately from the bounds (3.46) on noting (3.15) and the dense-
ness of

⋃
h>0Rh in L2

0(Ω). The strong convergence result (3.48d) for u∼
∆t
h follows immediately from

(3.48a–c), (3.3) and a standard compactness result, on noting that V∼ ⊂ H∼ 1
0(Ω) is compactly embed-

ded in L∼
r(Ω) for the stated values of r. We now prove (3.48d) for u∼

∆t,±
h . First we obtain from the

bound on the second term on the left-hand side of (3.46) and (3.42) that

‖u∼
∆t
h − u∼

∆t,±
h ‖2L2(0,T,L2(Ω)) ≤ C∆t. (3.50)

Second, we note from Sobolev embedding that, for all η ∈ L2(0, T ;H1(Ω)),

‖η‖L2(0,T ;Lr(Ω)) ≤ ‖η‖ζL2(0,T ;L2(Ω)) ‖η‖
1−ζ
L2(0,T ;Ls(Ω)) ≤ C ‖η‖

ζ
L2(0,T ;L2(Ω)) ‖η‖

1−ζ
L2(0,T ;H1(Ω)) (3.51)

for all r ∈ [2, s), with any s ∈ (2,∞) if d = 2 or any s ∈ (2, 6] if d = 3, and ζ = [2 (s−r)]/[r (s−2)] ∈
(0, 1]. Hence, combining (3.50), (3.51) and (3.48d) for u∼

∆t
h yields (3.48d) for u∼

∆t,±
h .

It remains to prove that the pair (u∼, ψ̂) is a weak solution of the problem (P) defined by (Pw).
We note that for all v∼ ∈ L∞(0, T ;L∼

2(Ω)) ∩ L2(0, T ;V∼ ) and w∼ ∈ L2(0, T ;V∼ ) that∫ T

0

∫
Ω

[[
(v
∼
· ∇
∼

x )v
∼

]
· w
∼

+
[
(v
∼
· ∇
∼

x )w
∼

]
· v
∼

]
dx
∼

dt =
∫ T

0

∫
Ω

∇
∼

x · [(v
∼
· w
∼

) v
∼
] dx
∼

dt = 0. (3.52)

It then follows from (3.17), (3.45), (3.46), (3.48a–d), (3.47d), (3.2) and (3.52) that we may pass to
the limit, h, ∆t→ 0, in (3.43) to obtain that u∼ ∈ L∞(0, T ;L∼

2(Ω))∩L2(0, T ;V∼ )∩W 1, 4
β (0, T ;V∼

′) and
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C
≈

(M ψ̂) ∈ L∞(0, T ;L
≈

2(Ω)) satisfy (3.11a). It also follows from (3.25a), (3.17), (3.46) and (3.48d)
that u∼(·, 0) = u∼

0(·) in the required sense.
As we have no control of the time derivative ψ̂∆t

h , in order to pass to the h, ∆t → 0 limit
in (3.44) this derivative has to be transferred to the test function. We have for any fixed ϕ̂h ∈
C∞0 ((−T, T ); X̂h) and for ∆t sufficiently small that∫ T

0

∫
Ω×D

M
ψ̂∆t,+

h (x∼, q∼, t)− ψ̂
∆t,−
h (x∼, q∼, t)

∆t
ϕ̂h(x∼, q∼, t) dq

∼
dx∼ dt

= −
∫ T

0

∫
Ω×D

M ψ̂∆t,−
h (x∼, q∼, t)

ϕ̂h(x∼, q∼, t)− ϕ̂h(x∼, q∼, t−∆t)

∆t
dq
∼

dx∼ dt

−
∫

Ω×D

M ψ̂0
h(x∼, q∼)

(
1

∆t

∫ t1

0

ϕ̂h(x∼, q∼, t−∆t) dt
)

dq
∼

dx∼. (3.53)

It follows for all ϕ̂h ∈ C∞0 ((−T, T ); X̂h) and for all (x∼, q∼, t) ∈ Ω×D × (0, T ) that

ϕ̂h(x∼, q∼, t)− ϕ̂h(x∼, q∼, t−∆t)

∆t
=
∂ϕ̂h

∂t
(x∼, q∼, t) +R∆t(ϕ̂h)(x∼, q∼, t),

where

|R∆t(ϕ̂h)(x∼, q∼, t)| ≤
∆t
2

max
(x∼,q
∼

,t)∈Ω×D×[−T,T ]

∣∣∣∣∂2ϕ̂h

∂t2
(x∼, q∼, t)

∣∣∣∣ . (3.54)

Next, we note that for all v∼ ∈ H∼ 1
0(Ω) and η

∼
∈ H1(Ω;L2(D;M)) we have∫

Ω×D

M [ω
≈
(v∼) q∼] · η∼ dq

∼
dx∼ =

1
2

∫
Ω×D

M
[
(v∼ · q∼) (∇∼ x · η

∼
)− [(∇

≈ x η
∼
) q
∼
] · v∼
]

dq
∼

dx∼. (3.55)

Hence, on combining (3.44) for a fixed ϕ̂h ∈ C∞0 ((−T, T ); X̂h), (3.53), (3.54), (3.25b) and (3.55)
with η

∼
= ψ̂h∇∼ q ϕ̂h we have for ∆t sufficiently small that

−
∫ T

0

∫
Ω×D

M ψ̂∆t,−
h

[
∂ϕ̂h

∂t
+R∆t(ϕ̂h)

]
dq
∼

dx
∼

dt

−
∫

Ω×D

M ψ̂0(x
∼
, q
∼
)
(

1
∆t

∫ t1

0

ϕ̂h(x
∼
, q
∼
, t−∆t) dt

)
dq
∼

dx
∼

+
∫ T

0

∫
Ω×D

M

[
1

2λ
∇
∼

q ψ̂
∆t,+
h · ∇

∼
q ϕ̂h + ε∇

∼
x ψ̂

∆t,+
h · ∇

∼
x ϕ̂h

]
dq
∼

dx
∼

dt

+
1
2

∫ T

0

∫
Ω×D

M
[
(u
∼

∆t,+
h · ∇

∼
x ψ̂

∆t,+
h )ϕ̂h − (u

∼

∆t,+
h · ∇

∼
x ϕ̂h)ψ̂∆t,+

h

]
dq
∼

dx
∼

dt

+
1
2

∫ T

0

∫
Ω×D

M

[[
∇
≈

x (ψ̂h∇
∼

q ϕ̂h) q
∼

]
· u
∼

∆t,+
h − (u

∼

∆t,+
h · q

∼
)
[
∇
∼

x ·
(
ψ̂h∇

∼
q ϕ̂h

)]]
dq
∼

dx
∼

dt = 0.

(3.56)

Similarly to (3.52), we note that for all v∼ ∈ L∞(0, T ;L∼
2(Ω)) ∩ L2(0, T ;V∼ ) and ϕ̂1, ϕ̂2 ∈

L2(0, T ; X̂) that∫ T

0

∫
Ω×D

M
[[

(v
∼
· ∇
∼

x )ϕ̂1

]
· ϕ̂2 +

[
(v
∼
· ∇
∼

x )ϕ̂2

]
· ϕ̂1

]
dq
∼

dx
∼

dt

=
∫ T

0

∫
Ω×D

∇
∼

x · [M (ϕ1 · ϕ2) v
∼
] dq
∼

dx
∼

dt = 0. (3.57)
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Let us consider (3.56) with h = hm, m = 1, 2, . . . , where hm is as in (3.21), and take ϕ̂h(·, t) =
ϕ̂hm

(·, t) = Ihm
ϕ̂(·, t) for t ∈ [−T, T ], with ϕ̂ ∈ C∞0 ((−T, T );C∞(Ω×D)). It then follows from

(3.21), (3.45), (3.46), (3.47a–c), (3.48d), (3.54) and (3.57) with h = hm, that we may pass to the
limit hm → 0 (on letting m→∞) and ∆t→ 0 in (3.56) to obtain that ψ̂ ∈ L2(0, T ; X̂) with M

1
2 ψ ∈

L∞(0, T ;L2(Ω×D)) and u∼ ∈ L2(0, T ;V∼ ) satisfy (3.11b) for any ϕ̂ ∈ C∞0 ((−T, T );C∞(Ω×D)). Fi-
nally, noting that C∞0 ((−T, T );C∞(Ω×D)) is a dense subset of X̂ , recall (3.13), it follows that
(3.11b) remains true for all ϕ̂ ∈ X̂ . Hence we have proved, using a weak-compactness argument,
the existence of a global weak solution of (P), (3.11a,b), as well as that a (sub)sequence of ap-
proximations generated by the proposed numerical method converges, in the sense of (3.47a–d) and
(3.48a–d), to such a global weak solution.

In our forthcoming paper [4] we shall establish an analogous convergence result in the technically
more involved case of a general noncorotational dumbell model for a dilute polymer. There, we shall
confine ourselves to spatial discretizations based on the finite element method.
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