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Themes and Conclusions (High Level)

I Machine learning aims to develop algorithms which can automatically discover
rich statistical representations of data and make impressive generalisations.

I Flexibility and scalability are two sides of one coin: larger datasets provide
relatively more information for learning rich statistical representations. We
therefore wish to simultaneously increase the flexibility and scalability of
machine learning methods.

I Bayesian nonparametric methods are natural for big datasets, since they
automatically scale their information capacity with the amount of available
data.
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Themes and Conclusions (Kernels)

I The generalisation properties of a kernel method are entirely controlled by a
kernel function, which represents an inner product of arbitrarily many basis
functions. In other words, the support and inductive biases of a kernel method
(which enables learning) are determined by the kernel.

I The main advantage of a Gaussian process, over other kernel machines, is
access to a marginal likelihood, which provides a powerful probabilistic
framework for kernel learning. This advantage is currently underappreciated,
because we typically use very simple kernels with only a few hyperparameters.

I In order to enable powerful representation learning, we can introduce highly
expressive kernels, and learn the properties of these kernels through marginal
likelihood optimisation.

I The best way to scale up expressive kernel learning approaches is by exploiting
the existing structure in the kernel (e.g., Kronecker methods).

I Nonparametric kernel methods corresponds to infinite basis function
expansions; these methods are well suited to performing ambitious
generalisations from large datasets.
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Outline (Specific), Part 1

I Introduce expressive ‘spectral mixture’ kernels by modelling a spectral density
(the Fourier transform of a kernel) with scale location Gaussian mixtures.

I Adapt these kernels for Kronecker structure, exploit this structure for exact
inference and learning, which costs O(PN

P+1
P ) computations and O(PN

2
P )

storage, for N datapoints and P input dimensions, compared to the standard
O(N3) computations and O(N2) storage associated with GPs.

I Extend Kronecker methods to account for non-grid data, whilst preserving
exact inference.

4 / 70



Outline (Specific), Part 2

I Show that i) truly nonparametric representations, ii) expressive kernels, and iii)
structure exploiting inference, when used in combination, distinctly enables
large scale pattern extrapolation, and representation learning including: long
range spatiotemporal forecasting, image inpainting, video extrapolation, and
kernel discovery.

I This is the first time, as far as we are aware, that highly expressive
non-parametric kernels with in some cases hundreds of hyperparameters, on
datasets exceeding N = 105 training instances, can be learned from the
marginal likelihood of a GP, in only minutes. Such experiments show that one
can, to some extent, solve kernel selection, and automatically extract useful
features from the data, on large datasets, using a special combination of
expressive kernels and scalable inference.
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Gaussian processes

Definition
A Gaussian process (GP) is a collection of random variables, any finite number of
which have a joint Gaussian distribution.

Nonparametric Regression Model

I Prior: f (x) ∼ GP(m(x), k(x, x′)), meaning (f (x1), . . . , f (xN)) ∼ N (µ,K),
with µi = m(xi) and Kij = cov(f (xi), f (xj)) = k(xi, xj).

GP posterior︷ ︸︸ ︷
p(f (x)|D) ∝

Likelihood︷ ︸︸ ︷
p(D|f (x))

GP prior︷ ︸︸ ︷
p(f (x))
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Gaussian Process Inference

I Observed noisy data y = (y(x1), . . . , y(xN))T at input locations X.

I Start with the standard regression assumption: N (y(x); f (x), σ2).

I Place a Gaussian process distribution over noise free functions
f (x) ∼ GP(0, kθ). The kernel k is parametrized by θ.

I Infer p(f∗|y,X,X∗) for the noise free function f evaluated at test points X∗.

Joint distribution[
y

f∗

]
∼ N

(
0,

[
Kθ(X,X) + σ2I Kθ(X,X∗)

Kθ(X∗,X) Kθ(X∗,X∗)

])
. (1)

Conditional predictive distribution

f∗|X∗,X, y,θ ∼ N (f̄∗, cov(f∗)) , (2)

f̄∗ = Kθ(X∗,X)[Kθ(X,X) + σ2I]−1y , (3)

cov(f∗) = Kθ(X∗,X∗)− Kθ(X∗,X)[Kθ(X,X) + σ2I]−1Kθ(X,X∗) . (4)
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Learning and Model Selection

p(Mi|y) =
p(y|Mi)p(Mi)

p(y)
(5)

We can write the evidence of the model as

p(y|Mi) =

∫
p(y|f ,Mi)p(f)df , (6)

              y
All Possible Datasets

p(
y|

M
)
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Learning and Model Selection

I We can integrate away the entire Gaussian process f (x) to obtain the marginal
likelihood, as a function of kernel hyperparameters θ alone.

p(y|θ,X) =

∫
p(y|f ,X)p(f |θ,X)df . (7)

log p(y|θ,X) =

model fit︷ ︸︸ ︷
−1

2
yT(Kθ + σ2I)−1y−

complexity penalty︷ ︸︸ ︷
1
2

log |Kθ + σ2I| −N
2

log(2π) . (8)

I An extremely powerful mechanism for kernel learning.
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Learning and Model Selection

I A fully Bayesian treatment would integrate away kernel hyperparameters θ.

p(f∗|X∗,X, y) =

∫
p(f∗|X∗,X, y,θ)p(θ|y)dθ (9)

I For example, we could specify a prior p(θ), use MCMC to take J samples from
p(θ|y) ∝ p(y|θ)p(θ), and then find

p(f∗|X∗,X, y) ≈ 1
J

J∑
i=1

p(f∗|X∗,X, y,θ
(i)) , θ(i) ∼ p(θ|y) . (10)

I If we have a non-Gaussian noise model, and thus cannot integrate away f , the
strong dependencies between Gaussian process f and hyperparameters θ make
sampling extremely difficult. In my experience, the most effective solution is to
use a deterministic approximation for the posterior p(f |y) which enables one to
work with an approximate marginal likelihood.
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Linear Basis Function Models

Model Specification

f (x,w) = wTφ(x) (11)

p(w) = N (0,Σw) (12)

Moments of Induced Distribution over Functions

E[f (x,w)] = m(x) = E[wT]φ(x) = 0 (13)

cov(f (xi), f (xj)) = k(xi, xj) = E[f (xi)f (xj)]− E[f (xi)]E[f (xj)] (14)

= φ(xi)
TE[wwT]φ(xj)− 0 (15)

= φ(xi)
TΣwφ(xj) (16)

I f (x,w) is a Gaussian process, f (x) ∼ N (m, k) with mean function m(x) = 0
and covariance kernel k(xa, xb) = φ(xi)

TΣwφ(xj).
I The entire basis function model of Eqs. (11) and (12) is encapsulated as a

distribution over functions with kernel k(x, x′).
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Deriving the RBF Kernel

I Start with the generalised linear model

f (x) =

J∑
i=1

wiφi(x) , (17)

wi ∼ N
(

0,
σ2

J

)
, (18)

φi(x) = exp
(
− (x− ci)

2

2`2

)
. (19)

I Equations (17)-(19) define a radial basis function regression model, with radial
basis functions centred at the points ci.

I Using our result for the kernel of a generalised linear model,

k(x, x′) =
σ2

J

J∑
i=1

φi(x)φi(x′) . (20)
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Deriving the SE (aka RBF, Gaussian) Kernel

f (x) =
J∑

i=1

wiφi(x) , wi ∼ N
(

0,
σ2

J

)
, φi(x) = exp

(
− (x− ci)

2

2`2

)
(21)

∴ k(x, x′) =
σ2

J

J∑
i=1

φi(x)φi(x′) (22)

I Letting ci+1 − ci = ∆c = 1
J , and J →∞, the kernel in Eq. (22) becomes a

Riemann sum:

k(x, x′) = lim
J→∞

σ2

J

J∑
i=1

φi(x)φi(x′) =

∫ c∞

c0

φc(x)φc(x′)dc (23)

I By setting c0 = −∞ and c∞ =∞, we spread the infinitely many basis
functions across the whole real line, each a distance ∆c→ 0 apart:

k(x, x′) =

∫ ∞
−∞

exp(− x− c
2`2 ) exp(− x′ − c

2`2 )dc (24)

=
√
π`σ2 exp(− (x− x′)2

2(
√

2`)2
) . (25)
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Gaussian Process Covariance Kernels

Let τ = x− x′:

kSE(τ) = exp(−0.5τ 2/`2) (26)

kMA(τ) = a(1 +

√
3τ
`

) exp(−
√

3τ
`

) (27)

kRQ(τ) = (1 +
τ 2

2α `2 )−α (28)

kPE(τ) = exp(−2 sin2(π τ ω)/`2) (29)
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CO2 Extrapolation with Standard Kernels
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Gaussian processes

“How can Gaussian processes possibly
replace neural networks? Did we throw the
baby out with the bathwater?”

David MacKay, 1998.
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More Expressive Covariance Functions
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Gaussian Process Regression Networks. Wilson et. al, ICML 2012.
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Gaussian Process Regression Network
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Expressive Covariance Functions

I GPs in Bayesian neural network like architectures. (Salakhutdinov and Hinton,
2008; Wilson et. al, 2012; Damianou and Lawrence, 2012).
Task specific, difficult inference, no closed form kernels.

I Compositions of kernels. (Archambeau and Bach, 2011; Durrande et. al, 2011;
Rasmussen and Williams, 2006).
In the general case, difficult to interpret, difficult inference, struggle with
over-fitting.

Can learn almost nothing about the covariance function of a stochastic process from a
single realization, if we assume that the covariance function could be any positive
definite function. Most commonly one assumes a restriction to stationary kernels,
meaning that covariances are invariant to translations in the input space.
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Bochner’s Theorem

Theorem
(Bochner) A complex-valued function k on RP is the covariance function of a weakly
stationary mean square continuous complex-valued random process on RP if and
only if it can be represented as

k(τ) =

∫
RP

e2πisTτψ(ds) , (30)

where ψ is a positive finite measure.

If ψ has a density S(s), then S is called the spectral density or power spectrum of k,
and k and S are Fourier duals:

k(τ) =

∫
S(s)e2πisTτds , (31)

S(s) =

∫
k(τ)e−2πisTτdτ . (32)
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Idea

k and S are Fourier duals:

k(τ) =

∫
S(s)e2πisTτds , (33)

S(s) =

∫
k(τ)e−2πisTτdτ . (34)

I If we can approximate S(s) to arbitrary accuracy, then we can approximate any
stationary kernel to arbitrary accuracy.

I We can model S(s) to arbitrary accuracy, since scale-location mixtures of
Gaussians can approximate any distribution to arbitrary accuracy.

I A scale-location mixture of Gaussians can flexibly model many distributions,
and thus many covariance kernels, even with a small number of components.
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Kernels for Pattern Discovery

Let τ = x− x′ ∈ RP. From Bochner’s Theorem,

k(τ) =

∫
RP

S(s)e2πisTτds (35)

For simplicity, assume τ ∈ R1 and let

S(s) = [N (s;µ, σ2) +N (−s;µ, σ2)]/2 . (36)

Then

k(τ) = exp{−2π2τ 2σ2} cos(2πτµ) . (37)

More generally, if S(s) is a symmetrized mixture of diagonal covariance Gaussians
on Rp, with covariance matrix Mq = diag(v(1)

q , . . . , v(P)
q ), then

k(τ) =

Q∑
q=1

wqcos(2πτTµq)
P∏

p=1

exp{−2π2τ 2
p v(p)

q }. (38)
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GP Model for Pattern Extrapolation

I Observations y(x) ∼ N (y(x); f (x), σ2) (can easily be relaxed).

I f (x) ∼ GP(0, kSM(x, x′|θ)) (f (x) is a GP with SM kernel).

I kSM(x, x′|θ) can approximate many different kernels with different settings of
its hyperparameters θ.

I Learning involves training these hyperparameters through maximum marginal
likelihood optimization (using BFGS)

log p(y|θ,X) =

model fit︷ ︸︸ ︷
−1

2
yT(Kθ + σ2I)−1y−

complexity penalty︷ ︸︸ ︷
1
2

log |Kθ + σ2I| −N
2

log(2π) . (39)

I Once hyperparameters are trained as θ̂, making predictions using
p(f∗|y,X∗, θ̂), which can be expressed in closed form.
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Results, CO2
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Results, Reconstructing Standard Covariances
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Results, Negative Covariances
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Results, Sinc Pattern
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Results, Airline Passengers
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Results

Table: We compare the test performance of the proposed spectral mixture (SM)
kernel with squared exponential (SE), Matérn (MA), rational quadratic (RQ), and
periodic (PE) kernels. The SM kernel consistently has the lowest mean squared error
(MSE) and highest log likelihood (L).

SM SE MA RQ PE

CO2

MSE 9.5 1200 1200 980 1200
L 170 −320 −240 −100 −1800

NEG COV

MSE 62 210 210 210 210
L −25 −70 −70 −70 −70

SINC

MSE 0.000045 0.16 0.10 0.11 0.05
L 3900 2000 1600 2000 600

AIRLINE

MSE 460 43000 37000 4200 46000
L −190 −260 −240 −280 −370
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Scaling up the Spectral Mixture Kernel

I The flexibility of the spectral mixture kernel will be most useful on large
datasets...

I Scaling an expressive kernel learning approach poses different challenges than
scaling a standard Gaussian process model. One faces additional computational
constraints, and the need to retain significant model structure for expressing the
rich information available in a large dataset.

I So far we have considered just univariate (time series) problems. But the
spectral mixture model is general purpose. How do we scale to multiple input
dimensions, and what sort of multidimensional pattern extrapolation problems
can we imagine?
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Scaling a Gaussian process: inducing inputs

I Gaussian process f and f∗ evaluated at N training points and J testing points.

I M � N inducing points u, p(u) = N (0,Ku,u)

I p(f∗, f) =
∫

p(f∗, f ,u)du =
∫

p(f∗, f |u)p(u)du
I Assume that f and f∗ are conditionally independent given u:

p(f∗, f) ≈ q(f∗, f) =

∫
q(f∗|u)q(f |u)p(u)du (40)

I Under this assumption,

p(f |u) = N (Kf,uK−1
u,uu,Kf,f − Qf,f ) (41)

p(f∗|u) = N (Kf∗,uK−1
u,uu,Kf∗,f∗ − Qf∗,f∗) (42)

Qa,b = Ka,uK−1
u,uKu,b (43)

I Cost for predictions reduced from O(N3) to O(M2N) where M � N.

I Different inducing approaches correspond to different additional assumptions
about q(f |u) and q(f∗|u).

For further reading, see Quinonero-Candela and Rasmussen (2005)
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Kronecker methods

Suppose

I If x ∈ RP, k decomposes as a product of kernels across each input dimension:
k(xi, xj) =

∏P
p=1 kp(xp

i , x
p
j ) (e.g., the RBF kernel has this property).

I Suppose the inputs x ∈ X are on a multidimensional grid
X = X1 × · · · × XP ⊂ RP.

Then

I K decomposes into a Kronecker product of matrices over each input dimension
K = K1 ⊗ · · · ⊗ KP.

I The eigendecomposition of K into QVQ also decomposes: Q = Q1 ⊗ · · · ⊗ QP,
V = Q1 ⊗ · · · ⊗ QP. Assuming equal cardinality for each input dimension, we
can thus eigendecompose an N × N matrix K in O(PN3/P) operations instead
of O(N3) operations.
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Kronecker methods
Suppose

I If x ∈ RP, k decomposes as a product of kernels across each input dimension:
k(xi, xj) =

∏P
p=1 kp(xp

i , x
p
j ) (e.g., the RBF kernel has this property).

I Suppose the inputs x ∈ X are on a multidimensional grid
X = X1 × · · · × XP ⊂ RP.

Then
I K decomposes into a Kronecker product of matrices over each input dimension

K = K1 ⊗ · · · ⊗ KP.
I The eigendecomposition of K into QVQ also decomposes: Q = Q1 ⊗ · · · ⊗ QP,

V = Q1 ⊗ · · · ⊗ QP. Assuming equal cardinality for each input dimension, we
can thus eigendecompose an N × N matrix K in O(PN3/P) operations instead
of O(N3) operations.

Then inference and learning are highly efficient:
I

(K + σ2I)−1y = (QVQT + σ2I)−1y = Q(V + σ2I)−1QTy , (44)

log |K + σ2I| = log |QVQT + σ2I| =
N∑

i=1

log(λi + σ2) , (45)

where λi are the eigenvalues of K. Saatchi (2011)
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Kronecker Methods

I We assumed that the inputs x ∈ X are on a multidimensional grid
X = X1 × · · · × XP ⊂ RP.

I How might we relax this assumption, to use Kronecker methods if there are
gaps (missing data) in our multidimensional grid?
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Kronecker Methods

I Assume imaginary points that complete the grid

I Place infinite noise on these points so they have no effect on inference

I The relevant matrices are no longer Kronecker, but we can get around this using
pre-conditioned conjugate gradients, an iterative linear solver.
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Kronecker Methods with Missing Data

I Assuming we have a dataset of M observations which are not necessarily on a
grid, we propose to form a complete grid using W imaginary observations,
yW ∼ N (f W , ε

−1IW), ε→ 0.

I The total observation vector y = [yM, yW ]T has N = M + W entries:
y = N (f ,DN), where the noise covariance matrix DN = diag(DM, ε

−1IW),
DM = σ2IM .

I The imaginary observations yW have no corrupting effect on inference: the
moments of the resulting predictive distribution are exactly the same as for the
standard predictive distribution, namely
limε→0(KN + DN)−1y = (KM + DM)−1yM .
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Kronecker Methods with Missing Inputs

I We use preconditioned conjugate gradients to compute (KN + DN)−1 y. We use
the preconditioning matrix C = D−1/2

N to solve CT (KN + DN) Cz = CTy. The
preconditioning matrix C speeds up convergence by ignoring the imaginary
observations yW .

I For the log complexity in the marginal likelihood (used in hyperparameter
learning),

log |KM + DM| =
M∑

i=1

log(λM
i + σ2) ≈

M∑
i=1

log(λ̃M
i + σ2) , (46)

where λ̃M
i = M

N λ
N
i for i = 1, . . . ,M.
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Spectral Mixture Product Kernel

I The spectral mixture kernel, in its standard form, does not quite have Kronecker
structure.

I Introduce a spectral mixture product kernel, which takes a product of across
input dimensions of one dimensional spectral mixture kernels.

kSMP(τ |θ) =

P∏
p=1

kSM(τp|θp) . (47)
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GPatt

I Observations y(x) ∼ N (y(x); f (x), σ2) (can easily be relaxed).

I f (x) ∼ GP(0, kSMP(x, x′|θ)) (f (x) is a GP with SMP kernel).

I kSMP(x, x′|θ) can approximate many different kernels with different settings of
its hyperparameters θ.

I Learning involves training these hyperparameters through maximum marginal
likelihood optimization (using BFGS)

log p(y|θ,X) =

model fit︷ ︸︸ ︷
−1

2
yT(Kθ + σ2I)−1y−

complexity penalty︷ ︸︸ ︷
1
2

log |Kθ + σ2I| −N
2

log(2π) . (48)

I Once hyperparameters are trained as θ̂, making predictions using
p(f∗|y,X∗, θ̂), which can be expressed in closed form.

I Exploit Kronecker structure for fast exact inference and learning (and extend
Kronecker methods to allow for non-grid data). Exact inference and learning
requires O(PN

P+1
P ) operations and O(PN

2
P ) storage, compared to O(N3)

operations and O(N2) storage, for N datapoints, and P input dimensions.
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Results
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Results: Extrapolation and Interpolation with Shadows

(a) Train (b) GPatt (c) GP-MA

(d) Train (e) GPatt (f) GP-MA
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Automatic Model Selection via Marginal Likelihood

I Simple initialisation

I The marginal likelihood shrinks weights of extraneous components to zero
through the log |K| complexity penalty.
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Results

 

 

(a) Train
 

 

(b) Test (c) Full (d) GPatt (e) SSGP (f) FITC

(g) GP-SE (h) GP-MA (i) GP-RQ (j) GPatt Initialisation
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More Patterns

(a) Rubber mat (b) Tread plate (c) Pores

(d) Wood (e) Chain mail

 

 

(f) Cone
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More Patterns

GPatt SSGP SE MA RQ

Rubber mat (train = 12675, test = 4225)

SMSE 0.31 0.65 0.97 0.86 0.89
MSLL −0.57 −0.21 0.14 −0.069 0.039

Tread plate (train = 12675, test = 4225)

SMSE 0.45 1.06 0.895 0.881 0.896
MSLL −0.38 0.018 −0.101 −0.1 −0.101

Pores (train = 12675, test = 4225)

SMSE 0.0038 1.04 0.89 0.88 0.88
MSLL −2.8 −0.024 −0.021 −0.024 −0.048

Wood (train = 14259, test = 4941)

SMSE 0.015 0.19 0.64 0.43 0.77
MSLL −1.4 −0.80 1.6 1.6 0.77

Chain mail (train = 14101, test = 4779)

SMSE 0.79 1.1 1.1 0.99 0.97
MSLL −0.052 0.036 1.6 0.26 −0.0025
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Speed and Accuracy Stress Tests

(a) Runtime Stress Test (b) Accuracy Stress Test
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Image Inpainting
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Recovering Sophisticated Out of Class Kernels
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Video Extrapolation

I GPatt makes almost no assumptions about the correlation structures across
input dimensions: it can automatically discover both temporal and spatial
correlations!

I Top row: True frames taken from the middle of a movie. Bottom row:
Predicted sequence of frames (all are forecast together).

I 112,500 datapoints. GPatt training time is under 5 minutes.
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Land Surface Temperature Forecasting

I Train using 9 years of temperature data. First two rows are the last 12 months
of training data, last two rows is a 12 month ahead forecast. 300, 000 data
points, with 40% missing data (from ocean).

I Predictions using GP-SE (GP with an SE or RBF kernel), and Kronecker
Inference.
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Land Surface Temperature Forecasting

I Train using 9 years of temperature data. First two rows are the last 12 months
of training data, last two rows is a 12 month ahead forecast. 300, 000 data
points, with 40% missing data (from ocean).

I Predictions using GPatt. Training time < 30 minutes.
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Learned Kernels for Land Surface Temperatures
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(a) Learned GPatt Kernel for Temperatures
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(b) Learned GP-SE Kernel for Temperatures

I The learned GPatt kernel tells us interesting properties of the data. In this case,
the learned kernels are heavy tailed and quasi-periodic.
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Summary of Findings

I We have separately understood the effects of many different kernels, inference
and learning algorithms, and parametric vs non-parametric representations. We
found truly nonparametric representations, scalable inference exploiting
structure, and highly expressive kernels, when used in combination, distinctly
enable pattern extrapolation on large multidimensional problems.

I Applications such as image inpainting were previously inaccessible to Gaussian
processes and kernel machines. Moreover, conventional inpainting algorithms
are often model free and highly specialised. On the other hand, the proposed
kernel approaches are quite general, and can learn, for example, spatial and
temporal correlations. Examples of this generality are demonstrated on video
extrapolation and land surface temperature forecastng problems.

I We can recover sophisticated out of class kernels.

I We can interpret the learned kernels to understand the fundamental properties
of our data, and make new scientific discoveries.
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Distribution over Kernels

I A Gaussian process can be viewed as a distribution over functions. We can
sample prior functions, and posterior functions.

I Why not create an analogous process over kernels, where we have prior over
kernels (with large support), concentrated on something reasonable, such as
stationarity? This process would contain many types of kernels, and represent
uncertainty over the kernels.
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Distribution over Spectral Mixture Kernels

I Induce a process prior over stationary kernels, by placing a (vague) prior
distribution over the parameters θ = {aq, σq, µq}Q

q=1 of the spectral mixture
kernel.

I We can then sample for the prior over kernels, and condition on these kernels
and sample from the corresponding Gaussian process.
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Non-Stationary Extensions

I If we can say almost nothing about the kernel of a stochastic process, from a
single realisation, if we make no assumptions.

I Stationarity provides a powerful inductive bias, but sometimes we still want to
allow for non-stationarity.

I It would be promising, therefore, to concentrate our process over kernels
around stationary kernels, but still have support for non-stationarity.

I Idea: Have the weights in the spectral mixture become random functions of the
input. Therefore at any different point in the input space, the kernel is described
by a diffrent spectral mixture. If we concentrate the support of these functions
around constant functions, then this process is concentrated around stationarity,
but still has support for a massive range of non-stationary kernels!
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Non-Stationary Extensions
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Non-Stationary Extensions

(a) Black (b) Blue (c) Red

(d) Magenta (e) Cov SE
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The Spectral Mixture Kernel

kGSM(τ) =

Q∑
i=1

exp{−2π2τ 2σ2
i } cos(2πτµi) (49)

I Can approximate a wide range of kernels, even with a small number of
components Q.

Described in:
I Covariance kernels for fast automatic pattern discovery and extrapolation with

Gaussian processes. Wilson, PhD Thesis, January 2014.
http://www.cs.cmu.edu/~andrewgw/andrewgwthesis.pdf

I Fast kernel learning for multidimensional pattern extrapolation. Wilson,
Gilboa, Nehorai, Cunningham, NIPS 2014.
http://www.cs.cmu.edu/~andrewgw/manet.pdf

I A process over all stationary kernels. Wilson, 2012.
http://www.cs.cmu.edu/~andrewgw/spectralkernel.pdf

I Gaussian process kernels for pattern discovery and extrapolation.
Wilson and Adams, ICML, 2013.
http://mlg.eng.cam.ac.uk/andrew/pattern
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Themes and Conclusions (High Level)

I Machine learning aims to develop algorithms which can automatically discover
rich statistical representations of data and make impressive generalisations.

I Flexibility and scalability are two sides of one coin: larger datasets provide
relatively more information for learning rich statistical representations. We
therefore wish to simultaneously increase the flexibility and scalability of
machine learning methods.

I Bayesian nonparametric methods are natural for big datasets, since they
automatically scale their information capacity with the amount of available
data.
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Themes and Conclusions (Kernels)

I The generalisation properties of a kernel method are entirely controlled by a
kernel function, which represents an inner product of arbitrarily many basis
functions. In other words, the support and inductive biases of a kernel method
(which enables learning) are determined by the kernel.

I The main advantage of a Gaussian process, over other kernel machines, is
access to a marginal likelihood, which provides a powerful probabilistic
framework for kernel learning. This advantage is currently underappreciated,
because we typically use very simple kernels with only a few hyperparameters.

I In order to enable powerful representation learning, we can introduce highly
expressive kernels, and learn the properties of these kernels through marginal
likelihood optimisation.

I The best way to scale up expressive kernel learning approaches is by exploiting
the existing structure in the kernel (e.g., Kronecker methods).

I Nonparametric kernel methods corresponds to infinite basis function
expansions; these methods are well suited to performing ambitious
generalisations from large datasets.
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Outline (Specific), Part 1

I Introduce expressive ‘spectral mixture’ kernels by modelling a spectral density
(the Fourier transform of a kernel) with scale location Gaussian mixtures.

I Adapt these kernels for Kronecker structure.

I Exploit this Kronecker structure for exact inference and learning with Gaussian
processes, which costs O(PN

P+1
P ) computations and O(PN

2
P ) storage, for N

datapoints and P input dimensions, compared to the standard O(N3)
computations and O(N2) storage associated with GPs.

I Extend Kronecker methods to account for non-grid data, whilst preserving
exact inference.
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Outline (Specific), Part 2

I Show that i) truly nonparametric representations, ii) expressive kernels, and iii)
structure exploiting inference, when used in combination, distinctly enable
large scale pattern extrapolation, and representation learning including: long
range spatiotemporal forecasting, image inpainting, video extrapolation, and
kernel discovery.

I This is the first time, as far as we are aware, that highly expressive
non-parametric kernels with in some cases hundreds of hyperparameters, on
datasets exceeding N = 105 training instances, can be learned from the
marginal likelihood of a GP, in only minutes. Such experiments show that one
can, to some extent, solve kernel selection, and automatically extract useful
features from the data, on large datasets, using a special combination of
expressive kernels and scalable inference.
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Worked Example: Combining Kernels, CO2 Data
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Example from Rasmussen and Williams (2006), Gaussian Processes for Machine
Learning.
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Worked Example: Combining Kernels, CO2 Data
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Worked Example: Combining Kernels, CO2 Data

I Long rising trend: k1(xp, xq) = θ2
1 exp

(
− (xp−xq)

2

2θ2
2

)
I Quasi-periodic seasonal changes:

k2(xp, xq) = kRBF(xp, xq)kPER(xp, xq) = θ2
3 exp

(
− (xp−xq)

2θ2
4
− 2 sin2(π(xp−xq))

θ2
5

)
I Multi-scale medium term irregularities: k3(xp, xq) = θ2

6

(
1 +

(xp−xq)
2

2θ8θ
2
7

)−θ8

I Correlated and i.i.d. noise: k4(xp, xq) = θ2
9 exp

(
− (xp−xq)

2

2θ2
10

)
+ θ2

11δpq

I ktotal(xp, xq) = k1(xp, xq) + k2(xp, xq) + k3(xp, xq) + k4(xp, xq)
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Worked Example: Combining Kernels, CO2 Data

I Hand crafted a kernel combination to perform extrapolation

I Confidence in the extrapolation is high (suggests that model is well specified).

I Can interpret the learned kernel hyperparameters θ to learn information about
our dataset.

I A lot of the interesting pattern recognition has been done by a human in this
example. We would like to completely automate this modelling procedure.
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Function Learning Example
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