Quantum Proofs for Classical Theorems

Ronald de Wolf

Universiteit van Amsterdam

Oxford, October 24, 2014

Unexpected proofs: Complex numbers

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) \quad ?$

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) \quad ?$
Go to complex numbers!
$e^{i x}=\cos (x)+i \sin (x)$

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) ?$
Go to complex numbers!
$e^{i x}=\cos (x)+i \sin (x)$
$\cos (x+y)$

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) ?$
Go to complex numbers!
$e^{i x}=\cos (x)+i \sin (x)$
$\cos (x+y)=\Re\left(e^{i(x+y)}\right)$

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) \quad ?$
Go to complex numbers!
$e^{i x}=\cos (x)+i \sin (x)$
$\cos (x+y)=\Re\left(e^{i(x+y)}\right)=\Re\left(e^{i x} e^{i y}\right)$

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) \quad ?$
Go to complex numbers!

$$
e^{i x}=\cos (x)+i \sin (x)
$$

$$
\begin{gathered}
\cos (x+y)=\Re\left(e^{i(x+y)}\right)=\Re\left(e^{i x} e^{i y}\right) \\
=\Re(\cos (x) \cos (y)-\sin (x) \sin (y)+ \\
\quad i \cos (x) \sin (y)+i \sin (x) \cos (y))
\end{gathered}
$$

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers

$$
\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) ?
$$

Go to complex numbers!

$$
e^{i x}=\cos (x)+i \sin (x)
$$

$$
\cos (x+y)=\Re\left(e^{i(x+y)}\right)=\Re\left(e^{i x} e^{i y}\right)
$$

$$
=\Re(\cos (x) \cos (y)-\sin (x) \sin (y)+
$$

$$
i \cos (x) \sin (y)+i \sin (x) \cos (y))
$$

$$
=\cos (x) \cos (y)-\sin (x) \sin (y)
$$

Unexpected proofs: Probabilities

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. Pick vertex-set $T \subseteq V$ at random

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. Pick vertex-set $T \subseteq V$ at random
2. Set $X_{i j}= \begin{cases}1 & \text { if edge }(i, j) \text { "crosses" (between } T \text { and } \bar{T}) \\ 0 & \text { otherwise }\end{cases}$

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. Pick vertex-set $T \subseteq V$ at random
2. Set $X_{i j}= \begin{cases}1 & \text { if edge }(i, j) \text { "crosses" (between } T \text { and } \bar{T} \text {) } \\ 0 & \text { otherwise }\end{cases}$
3. $\mathbb{E}\left[X_{i j}\right]$

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. Pick vertex-set $T \subseteq V$ at random
2. Set $X_{i j}= \begin{cases}1 & \text { if edge }(i, j) \text { "crosses" (between } T \text { and } \bar{T} \text {) } \\ 0 & \text { otherwise }\end{cases}$
3. $\mathbb{E}\left[X_{i j}\right]=\operatorname{Pr}[$ edge (i, j) crosses $]$

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. Pick vertex-set $T \subseteq V$ at random
2. Set $X_{i j}= \begin{cases}1 & \text { if edge }(i, j) \text { "crosses" (between } T \text { and } \bar{T} \text {) } \\ 0 & \text { otherwise }\end{cases}$
3. $\mathbb{E}\left[X_{i j}\right]=\operatorname{Pr}[$ edge (i, j) crosses $]=1 / 2$

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. Pick vertex-set $T \subseteq V$ at random
2. Set $X_{i j}= \begin{cases}1 & \text { if edge }(i, j) \text { "crosses" (between } T \text { and } \bar{T} \text {) } \\ 0 & \text { otherwise }\end{cases}$
3. $\mathbb{E}\left[X_{i j}\right]=\operatorname{Pr}[$ edge (i, j) crosses $]=1 / 2$
4. Expected number of crossing edges:

$$
\mathbb{E}\left[\sum_{(i, j) \in E} X_{i j}\right]
$$

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. Pick vertex-set $T \subseteq V$ at random
2. Set $X_{i j}= \begin{cases}1 & \text { if edge }(i, j) \text { "crosses" (between } T \text { and } \bar{T} \text {) } \\ 0 & \text { otherwise }\end{cases}$
3. $\mathbb{E}\left[X_{i j}\right]=\operatorname{Pr}[$ edge (i, j) crosses $]=1 / 2$
4. Expected number of crossing edges:

$$
\mathbb{E}\left[\sum_{(i, j) \in E} X_{i j}\right]=\sum_{(i, j) \in E} \mathbb{E}\left[X_{i j}\right]
$$

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. Pick vertex-set $T \subseteq V$ at random
2. Set $X_{i j}= \begin{cases}1 & \text { if edge }(i, j) \text { "crosses" (between } T \text { and } \bar{T} \text {) } \\ 0 & \text { otherwise }\end{cases}$
3. $\mathbb{E}\left[X_{i j}\right]=\operatorname{Pr}[$ edge (i, j) crosses $]=1 / 2$
4. Expected number of crossing edges:

$$
\mathbb{E}\left[\sum_{(i, j) \in E} X_{i j}\right]=\sum_{(i, j) \in E} \mathbb{E}\left[X_{i j}\right]=\sum_{(i, j) \in E} \frac{1}{2}
$$

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. Pick vertex-set $T \subseteq V$ at random
2. Set $X_{i j}= \begin{cases}1 & \text { if edge }(i, j) \text { "crosses" (between } T \text { and } \bar{T} \text {) } \\ 0 & \text { otherwise }\end{cases}$
3. $\mathbb{E}\left[X_{i j}\right]=\operatorname{Pr}[$ edge (i, j) crosses $]=1 / 2$
4. Expected number of crossing edges:

$$
\mathbb{E}\left[\sum_{(i, j) \in E} X_{i j}\right]=\sum_{(i, j) \in E} \mathbb{E}\left[X_{i j}\right]=\sum_{(i, j) \in E} \frac{1}{2}=m / 2
$$

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon \& Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m / 2$ edges

Proof:

1. Pick vertex-set $T \subseteq V$ at random
2. Set $X_{i j}= \begin{cases}1 & \text { if edge }(i, j) \text { "crosses" (between } T \text { and } \bar{T} \text {) } \\ 0 & \text { otherwise }\end{cases}$
3. $\mathbb{E}\left[X_{i j}\right]=\operatorname{Pr}[$ edge (i, j) crosses $]=1 / 2$
4. Expected number of crossing edges:
$\mathbb{E}\left[\sum_{(i, j) \in E} X_{i j}\right]=\sum_{(i, j) \in E} \mathbb{E}\left[X_{i j}\right]=\sum_{(i, j) \in E} \frac{1}{2}=m / 2$
5. But then there is a T with at least $m / 2$ crossing edges!

Unexpected proofs: Information theory

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$, for $d \leq n / 2$?

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$, for $d \leq n / 2$?
- At most $2^{n H(d / n)}$, where $H(\cdot)$ is binary entropy function

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$, for $d \leq n / 2$?
- At most $2^{n H(d / n)}$, where $H(\cdot)$ is binary entropy function
- Information-theoretic proof:

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$, for $d \leq n / 2$?
- At most $2^{n H(d / n)}$, where $H(\cdot)$ is binary entropy function
- Information-theoretic proof:

$$
\text { 1. Def } S=\left\{x \in\{0,1\}^{n}:|x| \leq d\right\}
$$

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$, for $d \leq n / 2$?
- At most $2^{n H(d / n)}$, where $H(\cdot)$ is binary entropy function
- Information-theoretic proof:

$$
\text { 1. Def } S=\left\{x \in\{0,1\}^{n}:|x| \leq d\right\} \text {, then }|S|=\sum_{i=0}^{d}\binom{n}{i}
$$

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$, for $d \leq n / 2$?
- At most $2^{n H(d / n)}$, where $H(\cdot)$ is binary entropy function
- Information-theoretic proof:

1. Def $S=\left\{x \in\{0,1\}^{n}:|x| \leq d\right\}$, then $|S|=\sum_{i=0}^{d}\binom{n}{i}$
2. Let $X=X_{1} \ldots X_{n}$ be uniformly random element of S

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$, for $d \leq n / 2$?
- At most $2^{n H(d / n)}$, where $H(\cdot)$ is binary entropy function
- Information-theoretic proof:

1. Def $S=\left\{x \in\{0,1\}^{n}:|x| \leq d\right\}$, then $|S|=\sum_{i=0}^{d}\binom{n}{i}$
2. Let $X=X_{1} \ldots X_{n}$ be uniformly random element of S
3. Then $\operatorname{Pr}\left[X_{i}=1\right] \leq d / n$

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$, for $d \leq n / 2$?
- At most $2^{n H(d / n)}$, where $H(\cdot)$ is binary entropy function
- Information-theoretic proof:

1. Def $S=\left\{x \in\{0,1\}^{n}:|x| \leq d\right\}$, then $|S|=\sum_{i=0}^{d}\binom{n}{i}$
2. Let $X=X_{1} \ldots X_{n}$ be uniformly random element of S
3. Then $\operatorname{Pr}\left[X_{i}=1\right] \leq d / n$, so $H\left(X_{i}\right) \leq H(d / n)$

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$, for $d \leq n / 2$?
- At most $2^{n H(d / n)}$, where $H(\cdot)$ is binary entropy function
- Information-theoretic proof:

1. Def $S=\left\{x \in\{0,1\}^{n}:|x| \leq d\right\}$, then $|S|=\sum_{i=0}^{d}\binom{n}{i}$
2. Let $X=X_{1} \ldots X_{n}$ be uniformly random element of S
3. Then $\operatorname{Pr}\left[X_{i}=1\right] \leq d / n$, so $H\left(X_{i}\right) \leq H(d / n)$
4. $\log |S|$

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$, for $d \leq n / 2$?
- At most $2^{n H(d / n)}$, where $H(\cdot)$ is binary entropy function
- Information-theoretic proof:

1. Def $S=\left\{x \in\{0,1\}^{n}:|x| \leq d\right\}$, then $|S|=\sum_{i=0}^{d}\binom{n}{i}$
2. Let $X=X_{1} \ldots X_{n}$ be uniformly random element of S
3. Then $\operatorname{Pr}\left[X_{i}=1\right] \leq d / n$, so $H\left(X_{i}\right) \leq H(d / n)$
4. $\log |S|=H(X)$

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$, for $d \leq n / 2$?
- At most $2^{n H(d / n)}$, where $H(\cdot)$ is binary entropy function
- Information-theoretic proof:

1. Def $S=\left\{x \in\{0,1\}^{n}:|x| \leq d\right\}$, then $|S|=\sum_{i=0}^{d}\binom{n}{i}$
2. Let $X=X_{1} \ldots X_{n}$ be uniformly random element of S
3. Then $\operatorname{Pr}\left[X_{i}=1\right] \leq d / n$, so $H\left(X_{i}\right) \leq H(d / n)$
4. $\log |S|=H(X) \leq \sum_{i=1}^{n} H\left(X_{i}\right)$

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$, for $d \leq n / 2$?
- At most $2^{n H(d / n)}$, where $H(\cdot)$ is binary entropy function
- Information-theoretic proof:

1. Def $S=\left\{x \in\{0,1\}^{n}:|x| \leq d\right\}$, then $|S|=\sum_{i=0}^{d}\binom{n}{i}$
2. Let $X=X_{1} \ldots X_{n}$ be uniformly random element of S
3. Then $\operatorname{Pr}\left[X_{i}=1\right] \leq d / n$, so $H\left(X_{i}\right) \leq H(d / n)$
4. $\log |S|=H(X) \leq \sum_{i=1}^{n} H\left(X_{i}\right) \leq n H(d / n)$

Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d}\binom{n}{i}$, for $d \leq n / 2$?
- At most $2^{n H(d / n)}$, where $H(\cdot)$ is binary entropy function
- Information-theoretic proof:

1. Def $S=\left\{x \in\{0,1\}^{n}:|x| \leq d\right\}$, then $|S|=\sum_{i=0}^{d}\binom{n}{i}$
2. Let $X=X_{1} \ldots X_{n}$ be uniformly random element of S
3. Then $\operatorname{Pr}\left[X_{i}=1\right] \leq d / n$, so $H\left(X_{i}\right) \leq H(d / n)$
4. $\log |S|=H(X) \leq \sum_{i=1}^{n} H\left(X_{i}\right) \leq n H(d / n)$
5. Exponentiating both sides finishes the proof

But that's just counting!

But that's just counting!

- Probabilistic arguments and information theory are just "counting arguments in disguise"

But that's just counting!

- Probabilistic arguments and information theory are just "counting arguments in disguise"
- That's true, but beside the point

But that's just counting!

- Probabilistic arguments and information theory are just "counting arguments in disguise"
- That's true, but beside the point
- The language of probability and information theory gives us intuitions and tools that wouldn't be readily available in the plain language of counting

But that's just counting!

- Probabilistic arguments and information theory are just "counting arguments in disguise"
- That's true, but beside the point
- The language of probability and information theory gives us intuitions and tools that wouldn't be readily available in the plain language of counting
- Large deviation inequalities, Lovász Local Lemma, chain rules, subadditivity of information,...

But that's just counting!

- Probabilistic arguments and information theory are just "counting arguments in disguise"
- That's true, but beside the point
- The language of probability and information theory gives us intuitions and tools that wouldn't be readily available in the plain language of counting
- Large deviation inequalities, Lovász Local Lemma, chain rules, subadditivity of information,...
- You could do those proofs in the language of counting, but you probably wouldn't find them

But that's just counting!

- Probabilistic arguments and information theory are just "counting arguments in disguise"
- That's true, but beside the point
- The language of probability and information theory gives us intuitions and tools that wouldn't be readily available in the plain language of counting
- Large deviation inequalities, Lovász Local Lemma, chain rules, subadditivity of information,...
- You could do those proofs in the language of counting, but you probably wouldn't find them
- Good to have probabilistic techniques in your tool-box

Unexpected proofs: Quantum

Unexpected proofs: Quantum

- We know quantum information \& computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.

Unexpected proofs: Quantum

- We know quantum information \& computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.

Unexpected proofs: Quantum

- We know quantum information \& computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.
- Why? Because quantum information is a rich melting pot of many branches of math: linear algebra, probability theory, group theory, geometry, combinatorics, functional analysis, ...

Unexpected proofs: Quantum

- We know quantum information \& computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.
- Why? Because quantum information is a rich melting pot of many branches of math: linear algebra, probability theory, group theory, geometry, combinatorics, functional analysis, ...
- Bonus: no need to implement anything in the lab

Unexpected proofs: Quantum

- We know quantum information \& computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.
- Why? Because quantum information is a rich melting pot of many branches of math: linear algebra, probability theory, group theory, geometry, combinatorics, functional analysis, ...
- Bonus: no need to implement anything in the lab
- We'll give two examples:

Unexpected proofs: Quantum

- We know quantum information \& computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.
- Why? Because quantum information is a rich melting pot of many branches of math: linear algebra, probability theory, group theory, geometry, combinatorics, functional analysis, ...
- Bonus: no need to implement anything in the lab
- We'll give two examples:

1. Lower bound on locally decodable codes [KW'03]

Unexpected proofs: Quantum

- We know quantum information \& computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.
- Why? Because quantum information is a rich melting pot of many branches of math: linear algebra, probability theory, group theory, geometry, combinatorics, functional analysis, ...
- Bonus: no need to implement anything in the lab
- We'll give two examples:

1. Lower bound on locally decodable codes [KW'03]
2. Lower bounds for linear programs [FMPTW'12]

But that's just linear algebra!

But that's just linear algebra!

- Quantum arguments are just "linear algebra in disguise"

But that's just linear algebra!

- Quantum arguments are just "linear algebra in disguise"
- That's true, but beside the point

But that's just linear algebra!

- Quantum arguments are just "linear algebra in disguise"
- That's true, but beside the point
- The language of quantum information and quantum algorithms gives us intuitions and tools that wouldn't be readily available in the plain language of linear algebra

But that's just linear algebra!

- Quantum arguments are just "linear algebra in disguise"
- That's true, but beside the point
- The language of quantum information and quantum algorithms gives us intuitions and tools that wouldn't be readily available in the plain language of linear algebra
- You could do those proofs in the language of linear algebra, but you probably wouldn't find them

But that's just linear algebra!

- Quantum arguments are just "linear algebra in disguise"
- That's true, but beside the point
- The language of quantum information and quantum algorithms gives us intuitions and tools that wouldn't be readily available in the plain language of linear algebra
- You could do those proofs in the language of linear algebra, but you probably wouldn't find them
- Good to have quantum techniques in your tool-box

Quantum computing reminder

Quantum computing reminder

- A state is a unit vector of complex amplitudes

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathbb{C}^{2}$

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathbb{C}^{2}$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_{i}|i\rangle$

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathbb{C}^{2}$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_{i}|i\rangle \in \mathbb{C}^{d}$

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathbb{C}^{2}$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_{i}|i\rangle \in \mathbb{C}^{d}$
- n-qubit state $\left(d=2^{n}\right):|\phi\rangle=\sum_{i \in\{0,1\}^{n}} \alpha_{i}|i\rangle$

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathbb{C}^{2}$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_{i}|i\rangle \in \mathbb{C}^{d}$
- n-qubit state $\left(d=2^{n}\right):|\phi\rangle=\sum_{i \in\{0,1\}^{n}} \alpha_{i}|i\rangle \in \mathbb{C}^{2^{n}}$

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathbb{C}^{2}$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_{i}|i\rangle \in \mathbb{C}^{d}$
- n-qubit state $\left(d=2^{n}\right):|\phi\rangle=\sum_{i \in\{0,1\}^{n}} \alpha_{i}|i\rangle \in \mathbb{C}^{2^{n}}$
- Operations: unitary transform of the vector.

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathbb{C}^{2}$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_{i}|i\rangle \in \mathbb{C}^{d}$
- n-qubit state $\left(d=2^{n}\right):|\phi\rangle=\sum_{i \in\{0,1\}^{n}} \alpha_{i}|i\rangle \in \mathbb{C}^{2^{n}}$
- Operations: unitary transform of the vector.

Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)$

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathbb{C}^{2}$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_{i}|i\rangle \in \mathbb{C}^{d}$
- n-qubit state $\left(d=2^{n}\right):|\phi\rangle=\sum_{i \in\{0,1\}^{n}} \alpha_{i}|i\rangle \in \mathbb{C}^{2^{n}}$
- Operations: unitary transform of the vector. Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)$
- Measurement: specified by orthogonal projectors

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathbb{C}^{2}$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_{i}|i\rangle \in \mathbb{C}^{d}$
- n-qubit state $\left(d=2^{n}\right):|\phi\rangle=\sum_{i \in\{0,1\}^{n}} \alpha_{i}|i\rangle \in \mathbb{C}^{2^{n}}$
- Operations: unitary transform of the vector. Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)$
- Measurement: specified by orthogonal projectors P_{1}, \ldots, P_{k}, s.t. $\sum_{i=1}^{k} P_{i}=l$.

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathbb{C}^{2}$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_{i}|i\rangle \in \mathbb{C}^{d}$
- n-qubit state $\left(d=2^{n}\right):|\phi\rangle=\sum_{i \in\{0,1\}^{n}} \alpha_{i}|i\rangle \in \mathbb{C}^{2^{n}}$
- Operations: unitary transform of the vector. Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)$
- Measurement: specified by orthogonal projectors P_{1}, \ldots, P_{k}, s.t. $\sum_{i=1}^{k} P_{i}=I$.
$\operatorname{Pr}[$ outcome i$]=\operatorname{Tr}\left(P_{i}|\phi\rangle\langle\phi|\right)$

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathbb{C}^{2}$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_{i}|i\rangle \in \mathbb{C}^{d}$
- n-qubit state $\left(d=2^{n}\right):|\phi\rangle=\sum_{i \in\{0,1\}^{n}} \alpha_{i}|i\rangle \in \mathbb{C}^{2^{n}}$
- Operations: unitary transform of the vector. Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)$
- Measurement: specified by orthogonal projectors P_{1}, \ldots, P_{k}, s.t. $\sum_{i=1}^{k} P_{i}=I$.
$\operatorname{Pr}[$ outcome i$]=\operatorname{Tr}\left(P_{i}|\phi\rangle\langle\phi|\right)$
State $|\phi\rangle$ then collapses to $P_{i}|\phi\rangle$

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathbb{C}^{2}$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_{i}|i\rangle \in \mathbb{C}^{d}$
- n-qubit state $\left(d=2^{n}\right):|\phi\rangle=\sum_{i \in\{0,1\}^{n}} \alpha_{i}|i\rangle \in \mathbb{C}^{2^{n}}$
- Operations: unitary transform of the vector. Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)$
- Measurement: specified by orthogonal projectors P_{1}, \ldots, P_{k}, s.t. $\sum_{i=1}^{k} P_{i}=I$.
$\operatorname{Pr}[$ outcome i$]=\operatorname{Tr}\left(P_{i}|\phi\rangle\langle\phi|\right)$
State $|\phi\rangle$ then collapses to $P_{i}|\phi\rangle / \| P_{i}|\phi\rangle \|$

Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathbb{C}^{2}$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_{i}|i\rangle \in \mathbb{C}^{d}$
- n-qubit state $\left(d=2^{n}\right):|\phi\rangle=\sum_{i \in\{0,1\}^{n}} \alpha_{i}|i\rangle \in \mathbb{C}^{2^{n}}$
- Operations: unitary transform of the vector. Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)$
- Measurement: specified by orthogonal projectors P_{1}, \ldots, P_{k}, s.t. $\sum_{i=1}^{k} P_{i}=l$.
$\operatorname{Pr}\left[\right.$ outcome i] $=\operatorname{Tr}\left(P_{i}|\phi\rangle\langle\phi|\right)$
State $|\phi\rangle$ then collapses to $P_{i}|\phi\rangle / \| P_{i}|\phi\rangle \|$
Special case: $P_{i}=|i\rangle\langle i|$, then $\operatorname{Pr}\left[\right.$ outcome i] $=\left|\alpha_{i}\right|^{2}$

Example 1:

Lower bounds for locally decodable codes

Locally decodable codes

Locally decodable codes

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$

Locally decodable codes

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$ Decoder: if $w \in\{0,1\}^{m}$ is "close" to $C(x)$, then $D(w)=x$

Locally decodable codes

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$ Decoder: if $w \in\{0,1\}^{m}$ is "close" to $C(x)$, then $D(w)=x$
- Inefficient if you only want to decode a small part of x

Locally decodable codes

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$ Decoder: if $w \in\{0,1\}^{m}$ is "close" to $C(x)$, then $D(w)=x$
- Inefficient if you only want to decode a small part of x
- C is k-query locally decodable if there is a decoder D that can decode individual bits x_{i} of x, while only looking at k bits of w

Locally decodable codes

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$ Decoder: if $w \in\{0,1\}^{m}$ is "close" to $C(x)$, then $D(w)=x$
- Inefficient if you only want to decode a small part of x
- C is k-query locally decodable if there is a decoder D that can decode individual bits x_{i} of x, while only looking at k bits of w
- Hard question: optimal tradeoff between k and m ?

Locally decodable codes

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$ Decoder: if $w \in\{0,1\}^{m}$ is "close" to $C(x)$, then $D(w)=x$
- Inefficient if you only want to decode a small part of x
- C is k-query locally decodable if there is a decoder D that can decode individual bits x_{i} of x, while only looking at k bits of w
- Hard question: optimal tradeoff between k and m ?
- Using quantum, we can show: $k=2 \Rightarrow m \geq 2^{\Omega(n)}$

Locally decodable codes

- Error-correcting code: $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, m \geq n$ Decoder: if $w \in\{0,1\}^{m}$ is "close" to $C(x)$, then $D(w)=x$
- Inefficient if you only want to decode a small part of x
- C is k-query locally decodable if there is a decoder D that can decode individual bits x_{i} of x, while only looking at k bits of w
- Hard question: optimal tradeoff between k and m ?
- Using quantum, we can show: $k=2 \Rightarrow m \geq 2^{\Omega(n)}$
- Still the only superpolynomial bound known for LDCs

Example of 2-query LDC: Hadamard

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$, so $C(x)$ is a codeword of 2^{n} bits

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$, so $C(x)$ is a codeword of 2^{n} bits
- Decoding x_{i} from corrupted codeword $w \approx C(x)$:

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$, so $C(x)$ is a codeword of 2^{n} bits
- Decoding x_{i} from corrupted codeword $w \approx C(x)$:

1. pick random $j \in\{0,1\}^{n}$

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$, so $C(x)$ is a codeword of 2^{n} bits
- Decoding x_{i} from corrupted codeword $w \approx C(x)$:

1. pick random $j \in\{0,1\}^{n}$
2. query w at positions j and $j \oplus e_{i}$

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$, so $C(x)$ is a codeword of 2^{n} bits
- Decoding x_{i} from corrupted codeword $w \approx C(x)$:

1. pick random $j \in\{0,1\}^{n}$
2. query w at positions j and $j \oplus e_{i}$
3. output $w_{j} \oplus w_{j \oplus e_{i}}$

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$, so $C(x)$ is a codeword of 2^{n} bits
- Decoding x_{i} from corrupted codeword $w \approx C(x)$:

1. pick random $j \in\{0,1\}^{n}$
2. query w at positions j and $j \oplus e_{i}$
3. output $w_{j} \oplus w_{j \oplus e_{i}}$

- This works perfectly if there is no noise $(w=C(x))$:

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$, so $C(x)$ is a codeword of 2^{n} bits
- Decoding x_{i} from corrupted codeword $w \approx C(x)$:

1. pick random $j \in\{0,1\}^{n}$
2. query w at positions j and $j \oplus e_{i}$
3. output $w_{j} \oplus w_{j \oplus e_{i}}$

- This works perfectly if there is no noise $(w=C(x))$:

$$
w_{j} \oplus w_{j \oplus e_{i}}
$$

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$, so $C(x)$ is a codeword of 2^{n} bits
- Decoding x_{i} from corrupted codeword $w \approx C(x)$:

1. pick random $j \in\{0,1\}^{n}$
2. query w at positions j and $j \oplus e_{i}$
3. output $w_{j} \oplus w_{j \oplus e_{i}}$

- This works perfectly if there is no noise $(w=C(x))$:

$$
w_{j} \oplus w_{j \oplus e_{i}}=(j \cdot x) \oplus\left(\left(j \oplus e_{i}\right) \cdot x\right)
$$

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$, so $C(x)$ is a codeword of 2^{n} bits
- Decoding x_{i} from corrupted codeword $w \approx C(x)$:

1. pick random $j \in\{0,1\}^{n}$
2. query w at positions j and $j \oplus e_{i}$
3. output $w_{j} \oplus w_{j \oplus e_{i}}$

- This works perfectly if there is no noise $(w=C(x))$:

$$
w_{j} \oplus w_{j \oplus e_{i}}=(j \cdot x) \oplus\left(\left(j \oplus e_{i}\right) \cdot x\right)=e_{i} \cdot x
$$

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$, so $C(x)$ is a codeword of 2^{n} bits
- Decoding x_{i} from corrupted codeword $w \approx C(x)$:

1. pick random $j \in\{0,1\}^{n}$
2. query w at positions j and $j \oplus e_{i}$
3. output $w_{j} \oplus w_{j \oplus e_{i}}$

- This works perfectly if there is no noise $(w=C(x))$:

$$
w_{j} \oplus w_{j \oplus e_{i}}=(j \cdot x) \oplus\left(\left(j \oplus e_{i}\right) \cdot x\right)=e_{i} \cdot x=x_{i}
$$

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$, so $C(x)$ is a codeword of 2^{n} bits
- Decoding x_{i} from corrupted codeword $w \approx C(x)$:

1. pick random $j \in\{0,1\}^{n}$
2. query w at positions j and $j \oplus e_{i}$
3. output $w_{j} \oplus w_{j \oplus e_{i}}$

- This works perfectly if there is no noise $(w=C(x))$:

$$
w_{j} \oplus w_{j \oplus e_{i}}=(j \cdot x) \oplus\left(\left(j \oplus e_{i}\right) \cdot x\right)=e_{i} \cdot x=x_{i}
$$

- With δm errors, $\operatorname{Pr}_{j}\left[w_{j} \neq C(x)_{j}\right] \leq \delta$

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$, so $C(x)$ is a codeword of 2^{n} bits
- Decoding x_{i} from corrupted codeword $w \approx C(x)$:

1. pick random $j \in\{0,1\}^{n}$
2. query w at positions j and $j \oplus e_{i}$
3. output $w_{j} \oplus w_{j \oplus e_{i}}$

- This works perfectly if there is no noise $(w=C(x))$:

$$
w_{j} \oplus w_{j \oplus e_{i}}=(j \cdot x) \oplus\left(\left(j \oplus e_{i}\right) \cdot x\right)=e_{i} \cdot x=x_{i}
$$

- With δm errors, $\operatorname{Pr}_{j}\left[w_{j} \neq C(x)_{j}\right] \leq \delta$ and $\operatorname{Pr}_{j}\left[w_{j \oplus e_{i}} \neq C(x)_{j \oplus e_{i}}\right] \leq \delta$,

Example of 2-query LDC: Hadamard

- Define $C(x)_{j}=j \cdot x \bmod 2$ for all $j \in\{0,1\}^{n}$, so $C(x)$ is a codeword of 2^{n} bits
- Decoding x_{i} from corrupted codeword $w \approx C(x)$:

1. pick random $j \in\{0,1\}^{n}$
2. query w at positions j and $j \oplus e_{i}$
3. output $w_{j} \oplus w_{j \oplus e_{i}}$

- This works perfectly if there is no noise $(w=C(x))$:

$$
w_{j} \oplus w_{j \oplus e_{i}}=(j \cdot x) \oplus\left(\left(j \oplus e_{i}\right) \cdot x\right)=e_{i} \cdot x=x_{i}
$$

- With δm errors, $\operatorname{Pr}_{j}\left[w_{j} \neq C(x)_{j}\right] \leq \delta$ and $\operatorname{Pr}_{j}\left[w_{j \oplus e_{i}} \neq C(x)_{j \oplus e_{i}}\right] \leq \delta$, so $\operatorname{Pr}\left[\right.$ we correctly output $\left.x_{i}\right] \geq 1-2 \delta$

Exponential lower bound [KW03]

Exponential lower bound [KW03]

- Given 2-query LDC $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$.

Exponential lower bound [KW03]

- Given 2-query LDC $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Normal form for the classical decoder of x_{i} [KT00]: query random (j, k) in matching M_{i}, output $C(x)_{j} \oplus C(x)_{k}$

Exponential lower bound [KW03]

- Given 2-query LDC $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Normal form for the classical decoder of x_{i} [KT00]: query random (j, k) in matching M_{i}, output $C(x)_{j} \oplus C(x)_{k}$
- Def superposition over $C(x)$:

Exponential lower bound [KW03]

- Given 2-query LDC $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Normal form for the classical decoder of x_{i} [KT00]: query random (j, k) in matching M_{i}, output $C(x)_{j} \oplus C(x)_{k}$
- Def superposition over $C(x):\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$

Exponential lower bound [KW03]

- Given 2-query LDC $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Normal form for the classical decoder of x_{i} [KT00]: query random (j, k) in matching M_{i}, output $C(x)_{j} \oplus C(x)_{k}$
- Def superposition over $C(x):\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$
- We can predict x_{i} from $\left|\phi_{x}\right\rangle$

Exponential lower bound [KW03]

- Given 2-query LDC $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Normal form for the classical decoder of x_{i} [KT00]: query random (j, k) in matching M_{i}, output $C(x)_{j} \oplus C(x)_{k}$
- Def superposition over $C(x):\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$
- We can predict x_{i} from $\left|\phi_{x}\right\rangle$: view M_{i} as a measurement with $m / 2$ 2-dimensional projectors, $P_{j k}=|j\rangle\langle j|+|k\rangle\langle k|$

Exponential lower bound [KW03]

- Given 2-query LDC $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Normal form for the classical decoder of x_{i} [KT00]: query random (j, k) in matching M_{i}, output $C(x)_{j} \oplus C(x)_{k}$
- Def superposition over $C(x):\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$
- We can predict x_{i} from $\left|\phi_{x}\right\rangle$: view M_{i} as a measurement with $m / 2$ 2-dimensional projectors, $P_{j k}=|j\rangle\langle j|+|k\rangle\langle k|$
- Applying M_{i} to $\left|\phi_{x}\right\rangle$ gives

Exponential lower bound [KW03]

- Given 2-query LDC $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Normal form for the classical decoder of x_{i} [KT00]: query random (j, k) in matching M_{i}, output $C(x)_{j} \oplus C(x)_{k}$
- Def superposition over $C(x):\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$
- We can predict x_{i} from $\left|\phi_{x}\right\rangle$: view M_{i} as a measurement with $m / 2$ 2-dimensional projectors, $P_{j k}=|j\rangle\langle j|+|k\rangle\langle k|$
- Applying M_{i} to $\left|\phi_{x}\right\rangle$ gives
$\frac{1}{\sqrt{2}}\left((-1)^{C(x)_{j}}|j\rangle+(-1)^{C(x)_{k}}|k\rangle\right)$ for random $(j, k) \in M_{i}$.

Exponential lower bound [KW03]

- Given 2-query LDC $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Normal form for the classical decoder of x_{i} [KT00]: query random (j, k) in matching M_{i}, output $C(x)_{j} \oplus C(x)_{k}$
- Def superposition over $C(x):\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$
- We can predict x_{i} from $\left|\phi_{x}\right\rangle$: view M_{i} as a measurement with $m / 2$ 2-dimensional projectors, $P_{j k}=|j\rangle\langle j|+|k\rangle\langle k|$
- Applying M_{i} to $\left|\phi_{x}\right\rangle$ gives
$\frac{1}{\sqrt{2}}\left((-1)^{C(x)_{j}}|j\rangle+(-1)^{C(x)_{k}}|k\rangle\right)$ for random $(j, k) \in M_{i}$.
Measurement in basis $\{|j\rangle \pm|k\rangle\}$ gives $C(x)_{j} \oplus C(x)_{k}$.

Exponential lower bound [KW03]

- Given 2-query LDC $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Normal form for the classical decoder of x_{i} [KT00]: query random (j, k) in matching M_{i}, output $C(x)_{j} \oplus C(x)_{k}$
- Def superposition over $C(x):\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$
- We can predict x_{i} from $\left|\phi_{x}\right\rangle$: view M_{i} as a measurement with $m / 2$ 2-dimensional projectors, $P_{j k}=|j\rangle\langle j|+|k\rangle\langle k|$
- Applying M_{i} to $\left|\phi_{x}\right\rangle$ gives
$\frac{1}{\sqrt{2}}\left((-1)^{C(x)_{j}}|j\rangle+(-1)^{C(x)_{k}}|k\rangle\right)$ for random $(j, k) \in M_{i}$.
Measurement in basis $\{|j\rangle \pm|k\rangle\}$ gives $C(x)_{j} \oplus C(x)_{k}$.
But that's the output of the classical decoder, so equals x_{i} !

Exponential lower bound [KW03]

- Given 2-query LDC $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Normal form for the classical decoder of x_{i} [KT00]: query random (j, k) in matching M_{i}, output $C(x)_{j} \oplus C(x)_{k}$
- Def superposition over $C(x):\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$
- We can predict x_{i} from $\left|\phi_{x}\right\rangle$: view M_{i} as a measurement with $m / 2$ 2-dimensional projectors, $P_{j k}=|j\rangle\langle j|+|k\rangle\langle k|$
- Applying M_{i} to $\left|\phi_{x}\right\rangle$ gives
$\frac{1}{\sqrt{2}}\left((-1)^{C(x)_{j}}|j\rangle+(-1)^{C(x)_{k}}|k\rangle\right)$ for random $(j, k) \in M_{i}$.
Measurement in basis $\{|j\rangle \pm|k\rangle\}$ gives $C(x)_{j} \oplus C(x)_{k}$.
But that's the output of the classical decoder, so equals x_{i} !
- $\left|\phi_{x}\right\rangle$ has $\log m$ qubits, but predicts each of x_{1}, \ldots, x_{n}

Exponential lower bound [KW03]

- Given 2-query LDC $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Normal form for the classical decoder of x_{i} [KT00]: query random (j, k) in matching M_{i}, output $C(x)_{j} \oplus C(x)_{k}$
- Def superposition over $C(x):\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$
- We can predict x_{i} from $\left|\phi_{x}\right\rangle$: view M_{i} as a measurement with $m / 2$ 2-dimensional projectors, $P_{j k}=|j\rangle\langle j|+|k\rangle\langle k|$
- Applying M_{i} to $\left|\phi_{x}\right\rangle$ gives
$\frac{1}{\sqrt{2}}\left((-1)^{C(x)_{j}}|j\rangle+(-1)^{C(x)_{k}}|k\rangle\right)$ for random $(j, k) \in M_{i}$.
Measurement in basis $\{|j\rangle \pm|k\rangle\}$ gives $C(x)_{j} \oplus C(x)_{k}$.
But that's the output of the classical decoder, so equals x_{i} !
- $\left|\phi_{x}\right\rangle$ has $\log m$ qubits, but predicts each of x_{1}, \ldots, x_{n}
- Random access code bound [Nayak'99]: $\log m \geq \Omega(n)$

Exponential lower bound [KW03]

- Given 2-query LDC $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Normal form for the classical decoder of x_{i} [KT00]: query random (j, k) in matching M_{i}, output $C(x)_{j} \oplus C(x)_{k}$
- Def superposition over $C(x):\left|\phi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{m}(-1)^{C(x)_{j}}|j\rangle$
- We can predict x_{i} from $\left|\phi_{x}\right\rangle$: view M_{i} as a measurement with $m / 2$ 2-dimensional projectors, $P_{j k}=|j\rangle\langle j|+|k\rangle\langle k|$
- Applying M_{i} to $\left|\phi_{x}\right\rangle$ gives
$\frac{1}{\sqrt{2}}\left((-1)^{C(x)_{j}}|j\rangle+(-1)^{C(x)_{k}}|k\rangle\right)$ for random $(j, k) \in M_{i}$.
Measurement in basis $\{|j\rangle \pm|k\rangle\}$ gives $C(x)_{j} \oplus C(x)_{k}$.
But that's the output of the classical decoder, so equals x_{i} !
- $\left|\phi_{x}\right\rangle$ has $\log m$ qubits, but predicts each of x_{1}, \ldots, x_{n}
- Random access code bound [Nayak'99]: $\log m \geq \Omega(n) \Rightarrow m \geq 2^{\Omega(n)}$

Example 2:

Lower bounds for
linear programs

Background: solving NP by linear programs?

Background: solving NP by linear programs?

- Famous P-problem: linear programming [Khachian'79]

Background: solving NP by linear programs?

- Famous P-problem: linear programming [Khachian'79]
- Famous NP-hard problem: Traveling Salesman Problem

Background: solving NP by linear programs?

- Famous P-problem: linear programming [Khachian'79]
- Famous NP-hard problem: Traveling Salesman Problem
- TSP polytope: convex hull of all Hamiltonian cycles on complete n-vertex graph. This is a polytope in $\mathbb{R}^{\binom{n}{2}}$.

Background: solving NP by linear programs?

- Famous P-problem: linear programming [Khachian'79]
- Famous NP-hard problem: Traveling Salesman Problem
- TSP polytope: convex hull of all Hamiltonian cycles on complete n-vertex graph. This is a polytope in $\mathbb{R}\binom{n}{2}$. TSP: minimize linear function over this polytope

Background: solving NP by linear programs?

- Famous P-problem: linear programming [Khachian'79]
- Famous NP-hard problem: Traveling Salesman Problem
- TSP polytope: convex hull of all Hamiltonian cycles on complete n-vertex graph. This is a polytope in $\mathbb{R}\binom{n}{2}$. TSP: minimize linear function over this polytope Unfortunately, polytope needs exponentially many inequalities

Background: solving NP by linear programs?

- Famous P-problem: linear programming [Khachian'79]
- Famous NP-hard problem: Traveling Salesman Problem
- TSP polytope: convex hull of all Hamiltonian cycles on complete n-vertex graph. This is a polytope in $\mathbb{R}^{\binom{n}{2}}$. TSP: minimize linear function over this polytope Unfortunately, polytope needs exponentially many inequalities
- Extended formulation: linear inequalities on $\binom{n}{2}+k$ variables s.t. projection on first $\binom{n}{2}$ variables gives TSP polytope

Background: solving NP by linear programs?

- Famous P-problem: linear programming [Khachian'79]
- Famous NP-hard problem: Traveling Salesman Problem
- TSP polytope: convex hull of all Hamiltonian cycles on complete n-vertex graph. This is a polytope in $\mathbb{R}\binom{n}{2}$. TSP: minimize linear function over this polytope Unfortunately, polytope needs exponentially many inequalities
- Extended formulation: linear inequalities on $\binom{n}{2}+k$ variables s.t. projection on first $\binom{n}{2}$ variables gives TSP polytope
- Swart'86 claimed polynomial-size extended formulation, which would give poynomial-time LP-algorithm for TSP

Background: solving NP by linear programs?

- Famous P-problem: linear programming [Khachian'79]
- Famous NP-hard problem: Traveling Salesman Problem
- TSP polytope: convex hull of all Hamiltonian cycles on complete n-vertex graph. This is a polytope in $\mathbb{R}\binom{n}{2}$. TSP: minimize linear function over this polytope Unfortunately, polytope needs exponentially many inequalities
- Extended formulation: linear inequalities on $\binom{n}{2}+k$ variables s.t. projection on first $\binom{n}{2}$ variables gives TSP polytope
- Swart'86 claimed polynomial-size extended formulation, which would give poynomial-time LP-algorithm for TSP
- Yannakakis'88: symmetric EFs for TSP are exponentially big

Background: solving NP by linear programs?

- Famous P-problem: linear programming [Khachian'79]
- Famous NP-hard problem: Traveling Salesman Problem
- TSP polytope: convex hull of all Hamiltonian cycles on complete n-vertex graph. This is a polytope in $\mathbb{R}^{\binom{n}{2}}$. TSP: minimize linear function over this polytope Unfortunately, polytope needs exponentially many inequalities
- Extended formulation: linear inequalities on $\binom{n}{2}+k$ variables s.t. projection on first $\binom{n}{2}$ variables gives TSP polytope
- Swart'86 claimed polynomial-size extended formulation, which would give poynomial-time LP-algorithm for TSP
- Yannakakis'88: symmetric EFs for TSP are exponentially big
- Swart's LPs were symmetric, so they couldn't work

Background: solving NP by linear programs?

- Famous P-problem: linear programming [Khachian'79]
- Famous NP-hard problem: Traveling Salesman Problem
- TSP polytope: convex hull of all Hamiltonian cycles on complete n-vertex graph. This is a polytope in $\mathbb{R}\binom{n}{2}$. TSP: minimize linear function over this polytope Unfortunately, polytope needs exponentially many inequalities
- Extended formulation: linear inequalities on $\binom{n}{2}+k$ variables s.t. projection on first $\binom{n}{2}$ variables gives TSP polytope
- Swart'86 claimed polynomial-size extended formulation, which would give poynomial-time LP-algorithm for TSP
- Yannakakis'88: symmetric EFs for TSP are exponentially big
- Swart's LPs were symmetric, so they couldn't work
- FMPTW'12 show the same for all extended formulations

Quantum vs classical communication complexity

Quantum vs classical communication complexity

- Communication complexity: Alice gets input $a \in\{0,1\}^{k}$, Bob gets input $b \in\{0,1\}^{k}$, they need to compute $f:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}$ with minimal communication

Quantum vs classical communication complexity

- Communication complexity: Alice gets input $a \in\{0,1\}^{k}$, Bob gets input $b \in\{0,1\}^{k}$, they need to compute $f:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}$ with minimal communication
- Nondeterministic communication complexity: protocol outputs 1 with positive probability on input a, b iff $f(a, b)=1$

Quantum vs classical communication complexity

- Communication complexity: Alice gets input $a \in\{0,1\}^{k}$, Bob gets input $b \in\{0,1\}^{k}$, they need to compute $f:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}$ with minimal communication
- Nondeterministic communication complexity: protocol outputs 1 with positive probability on input a, b iff $f(a, b)=1$
- W'00: exponential separation between quantum and classical nondeterministic protocols for support of the following $2^{k} \times 2^{k}$ matrix: $M_{a b}=\left(1-a^{T} b\right)^{2}$

Quantum vs classical communication complexity

- Communication complexity: Alice gets input $a \in\{0,1\}^{k}$, Bob gets input $b \in\{0,1\}^{k}$, they need to compute $f:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}$ with minimal communication
- Nondeterministic communication complexity: protocol outputs 1 with positive probability on input a, b iff $f(a, b)=1$
- W'00: exponential separation between quantum and classical nondeterministic protocols for support of the following $2^{k} \times 2^{k}$ matrix: $M_{a b}=\left(1-a^{T} b\right)^{2}$
- Classical protocols need $\Omega(k)$ bits of communication for this

Quantum vs classical communication complexity

- Communication complexity: Alice gets input $a \in\{0,1\}^{k}$, Bob gets input $b \in\{0,1\}^{k}$, they need to compute $f:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}$ with minimal communication
- Nondeterministic communication complexity: protocol outputs 1 with positive probability on input a, b iff $f(a, b)=1$
- W'00: exponential separation between quantum and classical nondeterministic protocols for support of the following $2^{k} \times 2^{k}$ matrix: $M_{a b}=\left(1-a^{T} b\right)^{2}$
- Classical protocols need $\Omega(k)$ bits of communication for this
- \exists protocol for this using $O(\log k)$ qubits of communication

Lower bound for correlation polytope

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(k)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{k}\right\}$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(k)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{k}\right\}$
- For each $a \in\{0,1\}^{k}$, the following constraint hold:

$$
\forall x \in \operatorname{COR}(k): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(k)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{k}\right\}$
- For each $a \in\{0,1\}^{k}$, the following constraint hold:

$$
\forall x \in \operatorname{COR}(k): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this constraint w.r.t. vertex $b b^{T} \in \operatorname{COR}(k)$:

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(k)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{k}\right\}$
- For each $a \in\{0,1\}^{k}$, the following constraint hold:

$$
\forall x \in \operatorname{COR}(k): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this constraint w.r.t. vertex $b b^{T} \in \operatorname{COR}(k)$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(k)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{k}\right\}$
- For each $a \in\{0,1\}^{k}$, the following constraint hold:

$$
\forall x \in \operatorname{COR}(k): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this constraint w.r.t. vertex $b b^{T} \in \operatorname{COR}(k)$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]=\left(1-a^{T} b\right)^{2}$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(k)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{k}\right\}$
- For each $a \in\{0,1\}^{k}$, the following constraint hold:

$$
\forall x \in \operatorname{COR}(k): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this constraint w.r.t. vertex $b b^{T} \in \operatorname{COR}(k)$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]=\left(1-a^{T} b\right)^{2}=M_{a b}$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(k)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{k}\right\}$
- For each $a \in\{0,1\}^{k}$, the following constraint hold:

$$
\forall x \in \operatorname{COR}(k): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this constraint w.r.t. vertex $b b^{T} \in \operatorname{COR}(k)$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]=\left(1-a^{T} b\right)^{2}=M_{a b}$

- Take slack matrix S for COR, with 2^{k} vertices $b b^{T}$ for columns, $2^{k} a$-constraints for first 2^{k} rows, remaining inequalities for other rows

$$
S=\left[\begin{array}{ccc}
& \vdots & \\
\cdots & M_{a b} & \cdots \\
& \vdots & \\
\hline & \vdots &
\end{array}\right]
$$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(k)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{k}\right\}$
- For each $a \in\{0,1\}^{k}$, the following constraint hold:

$$
\forall x \in \operatorname{COR}(k): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this constraint w.r.t. vertex $b b^{T} \in \operatorname{COR}(k)$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]=\left(1-a^{T} b\right)^{2}=M_{a b}$

- Take slack matrix S for COR, with 2^{k} vertices $b b^{T}$ for columns, 2^{k} a-constraints for first 2^{k} rows, remaining inequalities for other rows

- $x c(\operatorname{COR}(k))$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(k)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{k}\right\}$
- For each $a \in\{0,1\}^{k}$, the following constraint hold:

$$
\forall x \in \operatorname{COR}(k): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this constraint w.r.t. vertex $b b^{T} \in \operatorname{COR}(k)$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]=\left(1-a^{T} b\right)^{2}=M_{a b}$

- Take slack matrix S for COR, with 2^{k} vertices $b b^{T}$ for columns, $2^{k} a$-constraints for first 2^{k} rows, remaining inequalities for other rows

$$
S=\left[\begin{array}{ccc}
& \vdots & \\
\cdots & M_{a b} & \cdots \\
& \vdots & \\
\hline & \vdots &
\end{array}\right]
$$

- $x c(\operatorname{COR}(k)) \stackrel{\text { Yannakakis }}{\geq} \exp ($ nondetermin c.c. of $S)$

Lower bound for correlation polytope

- Correlation polytope: $\operatorname{COR}(k)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{k}\right\}$
- For each $a \in\{0,1\}^{k}$, the following constraint hold:

$$
\forall x \in \operatorname{COR}(k): \operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) x\right] \leq 1
$$

Slack of this constraint w.r.t. vertex $b b^{T} \in \operatorname{COR}(k)$: $S_{a b}=1-\operatorname{Tr}\left[\left(2 \operatorname{diag}(a)-a a^{T}\right) b b^{T}\right]=\left(1-a^{T} b\right)^{2}=M_{a b}$

- Take slack matrix S for COR, with 2^{k} vertices $b b^{T}$ for columns, $2^{k} a$-constraints for first 2^{k} rows, remaining inequalities for other rows

- $x c(\operatorname{COR}(k)) \stackrel{\text { Yannakakis }}{\geq} \exp ($ nondetermin c.c. of $S) \geq 2^{\Omega(k)}$

Consequences

Consequences

- We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large

Consequences

- We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large
- This implies exponential lower bounds for TSP and other polytopes for NP-hard problems

Consequences

- We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large
- This implies exponential lower bounds for TSP and other polytopes for NP-hard problems
- This refutes all $P=N P$ "proofs" à la Swart

Consequences

- We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large
- This implies exponential lower bounds for TSP and other polytopes for NP-hard problems
- This refutes all $P=N P$ "proofs" à la Swart
- Did we really need quantum for this proof?

Consequences

- We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large
- This implies exponential lower bounds for TSP and other polytopes for NP-hard problems
- This refutes all $P=N P$ "proofs" à la Swart
- Did we really need quantum for this proof?
- No, we just needed to find the right matrix M and a classical nondeterministic communication lower bound

Consequences

- We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large
- This implies exponential lower bounds for TSP and other polytopes for NP-hard problems
- This refutes all $P=N P$ "proofs" à la Swart
- Did we really need quantum for this proof?
- No, we just needed to find the right matrix M and a classical nondeterministic communication lower bound
- But the reason we found the right M is the earlier result about quantum communication complexity

Consequences

- We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large
- This implies exponential lower bounds for TSP and other polytopes for NP-hard problems
- This refutes all $P=N P$ "proofs" à la Swart
- Did we really need quantum for this proof?
- No, we just needed to find the right matrix M and a classical nondeterministic communication lower bound
- But the reason we found the right M is the earlier result about quantum communication complexity
- Wittgenstein: throw away the ladder after you climbed it

From quantum algorithms to polynomials

From quantum algorithms to polynomials

- "Polynomial method":
efficient quantum algorithms \Rightarrow low-degree polynomials

From quantum algorithms to polynomials

- "Polynomial method":
efficient quantum algorithms \Rightarrow low-degree polynomials
- Usual application: lower bounds on degree \Rightarrow lower bounds on quantum complexity

From quantum algorithms to polynomials

- "Polynomial method":
efficient quantum algorithms \Rightarrow low-degree polynomials
- Usual application: lower bounds on degree \Rightarrow lower bounds on quantum complexity
- But you can also use this method as a tool to construct low-degree polynomials with nice properties

From quantum algorithms to polynomials

- "Polynomial method":
efficient quantum algorithms \Rightarrow low-degree polynomials
- Usual application: lower bounds on degree \Rightarrow lower bounds on quantum complexity
- But you can also use this method as a tool to construct low-degree polynomials with nice properties.

Examples:

- minimal-degree polynomial approximations to functions $f:\{0, \ldots, n\} \rightarrow \mathbb{R}[$ W08]

From quantum algorithms to polynomials

- "Polynomial method":
efficient quantum algorithms \Rightarrow low-degree polynomials
- Usual application: lower bounds on degree \Rightarrow lower bounds on quantum complexity
- But you can also use this method as a tool to construct low-degree polynomials with nice properties.

Examples:

- minimal-degree polynomial approximations to functions $f:\{0, \ldots, n\} \rightarrow \mathbb{R}[$ W08]
- quantum proof of Jackson's theorem [DW11]

Other examples of quantum proofs

Other examples of quantum proofs

- Other uses of quantum information, often based on quantum encodings of classical data

Other examples of quantum proofs

- Other uses of quantum information, often based on quantum encodings of classical data
- Classical lower bound methods inspired by quantum methods

Other examples of quantum proofs

- Other uses of quantum information, often based on quantum encodings of classical data
- Classical lower bound methods inspired by quantum methods
- Aaronson: quantum reproofs of classical complexity results

Other examples of quantum proofs

- Other uses of quantum information, often based on quantum encodings of classical data
- Classical lower bound methods inspired by quantum methods
- Aaronson: quantum reproofs of classical complexity results
- PP is closed under intersection [uses postselection]

Other examples of quantum proofs

- Other uses of quantum information, often based on quantum encodings of classical data
- Classical lower bound methods inspired by quantum methods
- Aaronson: quantum reproofs of classical complexity results
- PP is closed under intersection [uses postselection]
- Permanent is \#P-hard [uses linear optics]

Other examples of quantum proofs

- Other uses of quantum information, often based on quantum encodings of classical data
- Classical lower bound methods inspired by quantum methods
- Aaronson: quantum reproofs of classical complexity results
- PP is closed under intersection [uses postselection]
- Permanent is \#P-hard [uses linear optics]
- Results in functional analysis, other areas of math

Summary \& Outlook

Summary \& Outlook

- Quantum proofs for classical theorems

Summary \& Outlook

- Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

Summary \& Outlook

- Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

- Currently this is more like a "bag of tricks" than a fully-developed "quantum method"

Summary \& Outlook

- Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

- Currently this is more like a "bag of tricks" than a fully-developed "quantum method" (but you could say the same about probabilistic method)

Summary \& Outlook

- Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

- Currently this is more like a "bag of tricks" than a fully-developed "quantum method" (but you could say the same about probabilistic method)
- Where can we find more applications?

Summary \& Outlook

- Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

- Currently this is more like a "bag of tricks" than a fully-developed "quantum method" (but you could say the same about probabilistic method)
- Where can we find more applications?
- Low-degree polynomials

Summary \& Outlook

- Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

- Currently this is more like a "bag of tricks" than a fully-developed "quantum method" (but you could say the same about probabilistic method)
- Where can we find more applications?
- Low-degree polynomials
- Encoding-based lower bounds

Summary \& Outlook

- Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

- Currently this is more like a "bag of tricks" than a fully-developed "quantum method" (but you could say the same about probabilistic method)
- Where can we find more applications?
- Low-degree polynomials
- Encoding-based lower bounds
- Places where linear algebra and combinatorics meet

Summary \& Outlook

- Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

- Currently this is more like a "bag of tricks" than a fully-developed "quantum method" (but you could say the same about probabilistic method)
- Where can we find more applications?
- Low-degree polynomials
- Encoding-based lower bounds
- Places where linear algebra and combinatorics meet
- ...

Summary \& Outlook

- Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

- Currently this is more like a "bag of tricks" than a fully-developed "quantum method" (but you could say the same about probabilistic method)
- Where can we find more applications?
- Low-degree polynomials
- Encoding-based lower bounds
- Places where linear algebra and combinatorics meet
- ...
- Good to have quantum techniques in your tool-box!

