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1 Scalar inverses via calculus of fractions

In a †-compact category [1, 4] the commutative monoid C(I.I) does not admit (multi-
plicative) inverses, but sometimes it is useful to have them. The naive way to proceed
is to construct fractions by considering pairs (f, s), with f : A → B any morphism and
s : I → I a scalar, subject to some congruence, such that (−, s) ends up playing the role
of s−1 • − i.e. f

s := (f, s). Hence we require

(f, s) ∼ (g, t) ⇒ t • f = s • g ,

but only requiring this constraint does not yield transitivity, and we also need to take
the potential existence of a zero scalar and/or zero divisors into account. The required
congruence is displayed in the statement of Theorem 1.2, together with a statement about
its universality. A scalar s is said to be positive if there is an element ψ ∈ C(I, A) such
that s = ψ† ◦ ψ, is zero if for all scalars t holds s ◦ t = s, and is a divisor of zero if there
is a scalar t such that st is zero. Clearly, there is at most one zero scalar in a category,
which we denote by o.

Definition 1.1 A †-compact category is called local 1 iff all of its positive scalars are
either divisors of zero, or are invertible.

Theorem 1.2 Every †-compact category C has a universal localisation LC equipped with
a †-compact functor C→LC, which is initial for all local †-compact categories with a †-
compact functor from C. In particular, the objects of LC are those of C, and a morphism
in LC(A,B) is in the form f

s , where

s ∈ Σ = {s ∈ C(I, I) | ∀t ∈ C(I, I) : s ◦ t 6= o} ,

and these fractions are taken modulo the congruence

f

s
=
g

t
⇐⇒ ∃u, v ∈ Σ : u ◦ s = v ◦ t & u • f = v • g .

Proof: It is easy to see that Σ is a multiplicative system allowing calculus of fractions in
the sense of [3], and we took LC to be the ‘category of fractions’ C[Σ]. The †-compact
structure on the fractions is defined pointwise:

f

s
⊗ g

t
=
f ⊗ g

s ◦ t

(
f

s

)†
=
f †

s†
etc.

The universal property is proven in [3]. 2

Although of less importance for this paper, let us mention that the results in [3] also imply
that the limits and colimits of LC are created in C, including any biproducts, and, that
every †-compact category C also admits a couniversal localisation `C and a †-compact
functor `C → C which is final for all local †-compact categories with a †-compact functor
to C, where `C is the subcategory of C generated by the elements ψ ∈ C(I, A) which are
such that ψ† ◦ ψ = 1I.

1We borrow this terminology from ring-theory: ring is local if it has a unique maximal ideal i.e. if all
of its elements are either divisors of zero or or invertible.
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2 Categories of pure states

We can use the above together with the WP-construction [2] to produce categories of
pure states in the Birkhoff-von Neumann sense i.e. without any redundancies. We define
equivalent morphisms within the universal localization:

f ∼ g ⇐⇒ f ⊗ f †

Tr(f ◦ f †)
=

g ⊗ g†

Tr(g ◦ g†)
.

The action of the congruence ∼ defines a monad P for which the P-algebras are ex-
actly those local †-compact categories where the elements are the projectors with unique
representing vectors i.e.

f ⊗ f †

Tr(f ◦ f †)
=

g ⊗ g†

Tr(g ◦ g†)
=⇒ f ∼ g .

References

[1] S. Abramsky and B. Coecke (2003) Physical traces: Quantum vs. classical
information processing. Electronic Notes in Theoretical Computer Science 69.
arXiv:cs/0207057.

[2] B. Coecke (2007) De-linearizing linearity: projective quantum axiomatics from strong
compact closure. Electronic Notes in Theoretical Computer Science 170, 47–72.
arXiv:quant-ph/0506134

[3] P. Gabriel and M. Zisman (1967) Calculus of Fractions and Homotopy Theory.
Springer-Verlach.

[4] P. Selinger (2007) Dagger compact categories and completely positive
maps. Electronic Notes in Theoretical Computer Science 170, 139–163.
http://www.mathstat.dal.ca/∼selinger/papers.html]dagger

3


