Equating Simulation with Refinement

E.f Jifeng, Tony Hoare, Cedric Fournet, Paul Gardiner,
Stiram Rajamani, Jakob Rehof, Bill Roscoe

November, 2003

Sunimary. Two-thirds simulation is equivalent to failures refinement if two redundant
transition rules are added to the operational semantics of CCs.

1 Introduction

In the study of CCS {10, 11] and related process calculi, there are two standard approaches
to the definition of similarity or equivalence of processes. The first is bisimulation, an
equivalence relation based on the structural operational semantics of the calculus. The
second is refinement, an ordering defined as inclusion of the sets of observations that may
be made of the behaviour of each process. The original forms of bisimulation (strong and
weak) were intended to give the strongest reasonable definition of process expressions. The
original forms of refinement (traces and failures) were intended to make mutual refinement
r-Lante Lﬂe the weakes%leﬁnition of equivalenice, There are many other definitions of equivalence that
lie betweed bhese two extremes. The selection between them is often made to match the
needs of each particular application.
‘]}h’lﬁ):&pc&l‘ shows how to define a process calculus in which the concepts of simulation
and mutual refinement coincide with each other : thus the combined benefits oféévo {Z&Lw«»
approaches are available uniformly to all applications. The calculus is identical with S,
except for a few additional transition rules. Each additional rule can be interpreted as o
permission (but not a compulsion) for an implementation to perform a transition that is _ N
to the benefit of the user, for example, enabling the user to avoid deadlock. It is shown Pl M(,(,Afuwﬂ
that two-thirds simulation is a valid asymmetric form of bisimulation, and corresponds rvles gyt

exactly to failures refinement, s E)S od
Phe technical results of this paper, together with a treatment of divergence refinement, {\ﬂ’y
RALY-R2S

are reported more fully {n {7.

2 CCS Summary

Following he\CCS (10, 11}, we’@_dopt)an infinite set M of names, and theset N' = {&|a €
N} of co‘nafnes. Let @ 16 stand for action a. It is assumed that A and N are disjoint,
and their union £ comprises the labels representing observable actions. The unobservable

action is denoted by 7, which, as an internal action, has no complement. The full class of

actions, both observable and internal, consists of Act ey {r}. We denote members
of Act by o and members of £ by A

Wt We need a little Qotation. We shall write @ for a sequence @i, .., @ of names. If @ and b
are name sequen es of length n where all elements of & are distinct, and P is a process
expression, then {#/&}P means the result of replacing a; by b; in P (1 £ 4 < n). The
set of free names which occur in P is denoted by fn(P). For any subset X of £, define

1

SO o

x4 {@a|aecX}and X7 4ot Xu{r}
Definition 2.1 (Process expression)

The set P of process expressions is defined by the following syntax:

P = YicroiF; | A<ar,0m > | (Plle) [newa P
where o; € Act and I is any finite indezing 3et.(1n [10], I can also be an infinite set) If
I = @ then X704 P; is the empty sum, written 0. We shall often use M, N to stand for
summations. We assume that every process identifier A has a defining equation of the form
A(@) 4f p, where P4 is a summation, and the names & = @1,..,8n (all distinct) include
all the free names of P4. In general P4 may contain process identifiers, including A. Any

resulting recursion is guaranteed syntactically to be guarded. The notation (P1]FP2) stands
for the parallel composition of Py and Py, and thg restriction newa P internalises both a

andi;é 1 I’)pwq}(l'ﬂ“!} _;l,(){q.\w g -l:{}wvﬁ Rﬁ—\ﬂ_ \\z\, "JQ_/\.‘-:.-_.._
The following labelled trans{t on system for concurrent processes was defined in [1'1].
Definition 2.2 (The LTS of concurrent processes)

The labelled transition system (P, T) of concurrent processes over the action set Act has
all process expressions P as its states, and its transitions 7~ are exactly those which can
be inferred from the rules listed below, together with alpha-conversion.

SUM : M+aP+N S P

pmacr ; EOP_22@
PlQ - P&
PP Q3 qQ
L —PAR i ————— R—PAR : —————
PIQ % PIQ PlQ % PQ'
RES : P3P if a ¢ {a, a}

neva P S newa P!
{8/a}Pa S P!

e e de
AS P if 4@ < P

IDENT :

In the rules REACT, L— PAR, R—-PAR and RES a transition of a composite process is
inferred from transitions of its components. SUM is the basic rule to which all transitions

are ultimately traced.

The following properties of transitions given in [11] will be used later. The first says
that the branching of a process behaviour is finite; the second says that a process can only
use the names which it already contains.

Lemma 2.3
(1) Given P, there are only finitely many transitions P 3 p.

(2 PS5 P then fa(P)U{e} C fn(P).]

3 Failures refinement

A process P can perform both internal actions and observable actions. We use init(P) to
denote the set of actions in which P can engage at the very beginning.

init(P) % {o | 3P« P S P}

2

!Q\,z,-.,(,(S

h

any

\)*ﬁ

o,

b’

Lemma 3.1
(1) init(Sieraq.Pi) = {a|i€l}

(2) init(P|Q) = mit(P) U init(Q) U {r | X e A € init(P) AN €init(Q)}
(3) init(newa P) = init(P)\ {a, &}

(4) init(A()) = init({5/@}Pa) 0
Definition 3.2 (stability)

A process P is stable if 7 ¢ init(P). 0
Lemma 3.3 —

(1) Sicroq.P; is stable iff a; # 7 for all i € I. it ()

(2) P|Q is stable iff both P and Q are stable, and init(P)N {a | e € init(Q)} = B.

(3) (newa P) is stable iff P is stable,

(4) A(D) is stable iff {5/@}Pa is stable. a
i

™ L-&& b c{) Tt e
Definition 3.4 (refusal) C L{‘ f ;\o e P e M/‘S.wl-c
Let X be a subset of £, and 5" the reflexive and tragmsitive closure of . Then

ng/&,ﬁi:,, b!d’wx a\xwg}[‘j@, AN, e g‘a!’é‘_g\/ﬁ.ﬁ'ﬂ“’

I .
™ Loihe
Lo fc%f; 3 ‘f:\‘@@

P can refuse X def Qe P Yy Q A nit(@NX" =9 D@\\j{{ (/_;e:w;};utwhw

“Tias Fidr s
Lemma 3.5 (subset closure of refusals) \HAA.C S
If P can refuse X then it can also refuse every subset of X. a . x"'
Theorem 3,6 (refusals of process expressions) (&

(1) (E,-E;)\i.Pacan refuse X ff s ¢ X foralliel. . «

(2) Bicrri-P; + Bjes7.Q; can refuse X iff @; can refuse X for some j € J.

(3) newa P can refuse X iff P can refuse X \ {a, a}.

(4) A(B) can refuse X iff {b/@}Ps does so. o

We will come back to the refusals of parallel processes after introduction of the notions of
traces and failures for process expressions.

Definition 8.7 (traces and failures)
Let =A>df—~f " o D for A € £. Define
traces(P) def {<>} U {<A>s]|3QeP A Q A s € traces(Q)}
A\ p def {{<>X)| P éan mfis?%X YU T et
1 failures(P}) = NI
{(<A>8X)|3QeP 3 Q A (s, X) € failures(Q)}

P is a failures refinement [6] of @ if

traces(P) C traces(Q) and failures(P) G Failures(Q) o
Remark: In general, traces(P) # {s | 3X o (s, X) € failures(P)}. For ?xample, let top

be defined by the defining equation top %f T.top, then T\Jﬂ) wc,gwuﬂ @,vb..t..] J’Jm tLrs
b

YR
(5_,,w.‘,.\ \'i'{/‘-f p m,{j
1o

traces(top) = {()} failures(top) = 0

Theorem 3.8 (refusals of parallel composition)
(P|Q) can refuse X iff there exist (s, Xp) € failures(P) and (3, Xq) € failures(Q) such
that X C (XpNXg) and VAELe (A€ XpVAE Xg) 0

Theorem 3.9 (7-transition implies failures refinement)
If P % P', then ' is a failures refinement of P. O

Wit
y\,e.,ej\

SR

u(& \) i

;\ A F?

s
)
R

\r-o\‘r\f\rﬂ/“' £

f_,f‘B
(i Mt

.

VAR N

Y
oAt

D %
e

0

"ﬁ/
~
.

e
. L
The failures of a sumfnation can be caleulated as follows.

Theorem 3.10 /. \
failures(Dicrad Pi\= Uq=r failures(P) U
K__/Uaj#r(aj) faitures(P;) U {((), X)| X7 N {dslij € I} = 0}
where (A} + failures(P) denotes the set {{A)s, X} | (s, X) € failures(P)} o
Let P be a process and A € £. From Lemma 2.3 we can obtain the following finite sets:
@,..on ¥ {@|PAQ)
(RL,...,Rm} % {R|PSR AR}
When P ='\>, we have n-+m > 0.

- Definition- 3.11 (Derivative).

Let P be a process and X ¢ £. Then the process P is calledtheA—deuva.tweof P, whose

defining equation can be presented syntactically as follows
7Ql + ..+ 7.Qn + TRy + ..k T.Rmy, m>0AN>0

P dif T.Q1+...+T.Qn m=0An>0
A7) RRl\+..+7.Rmy n=0Am>0
T.top m=0An=0

where Py, Rly,..., and Rm, are process identifiers, and the notations used in the above
defining equation is similar to those of the Boolean buffer given in [11]. 0

Theorem 3.12 0wv[:J \ :!'i:{ f \"mmo: “:‘,M'pﬂmw"

If P2 P', then P' is a failures refinement of Py, ...

4 Simulation Har basos 68 S .\q\,\guw\a-\(s

\ The two-thirds simulation defined by Larsen and Skou (9] is adopted here.

#"Definition 4.1 (Two-thirds simulation)
Let S be a binary relation over the set 7 of process expressions. Then & is called a two-
third simulation over (P, T) if, whenever P S @

4

Proof We proceed by induction on tl@qgg&g}{ﬁﬁ?ansztu@g) In case of P > P, the " Lo
conclusion follows from Theorem 3.10.” Otherwise, assume that P > R and R 3 p. /OL%UL;.
From the inductive hypothesis we have failures(P') C failures(fy). The conclusion O i-»l
follows from the definition of Py and Theorem 3.10. O w \-\ ’ﬂ"; e
Let s be a sequence of observable actions, and -a,%/ (ﬁ;fg) o t{ﬂf}) and =5%/ 1%, e
Theorem 3.13
(1) failures(P) = {{s, X} | 3Qe (P =2 Q A init{Q) N X7 = 0}
(2) traces(P) = {s | 3Qe P == @} ‘
Proof By induction on the length of s. \H,u,.w‘ W(ingcw Y0
Let s and ¢ be sequences of observable actions. The set st is defined inductively
; {5} t=1{)
2 st = § {#} =10
{First())(tail(s)|t) U (first(t))(sltail(t)) s# () and? # ()
M/w\:\‘*(‘“

(1) if P 2 P’ then there exists Q € P such that @ A g and P'SQ.
(2) if P can refuse X, so can Q.
We say Q simulates P, denoted by P <s/3 Q, if there exists a two-third simulation & such

that PSQ. o
Remark: top <g/3 Q for all @. a
Lemma 4.2 (7-transition implies two thirds simulation)

IfPQP’thenP’gg/g,P. O

Lemma 4.3
<gy3 is reflexive and transitive. m

Theorem 4.4 (Two thirds simulation is a pre-congruence)
wo thirds simulation is a pre-congruence; in other words, P <q/3 Q implies for all o € Act

(2) neva P <y/3 newa@ ()\’0'5" <P
(3) P|R <33 QIR (
(4) RIP <45 RIQ u]

Theorem 4.5 (simulation implies refinement)
If P <yp3 @ then P is a failures refinement of Q.

Proof ({), X) € failures(P) {Def of failures}
=> P canrefuse X {P <q5 Q}
= canrefuse X {Def of failures}
= ({}, X) € failures(Q)

& ({A} - s, X) € failures(P) {Def of failures}
=3 3P e (P2 PYA(s, X) € failures(P') {P <33 QY
— Qe (Q2 QAP <y5 @) A(s, X) € failures(P') {induction hypothesis}
= 3Q'e(Q D Q) A(s, X) € failures(Q') {Def of failures}
= {{A):8, X) € failures(@) o

5 FEquating simulation with refinement

The introduction of failures into the definition of simulation and refinement enables us
to distinguish .M + 7.N from M + N. In the labelled transition system presented in
Section 2, the summation (a.b+ a.¢) cannot simulate the process a.{T.b+7.c}, even though
they have the same trace and failure sets. This is why we need to add some non-standard

transitions.
PAP forallicl

RECON —1: I ig finite
P A Yierr. P
T
RECON—2: 29 Q3R
. PAR
The rule RECO; 1 states that if there is a non-deterministic choice between transitions

with the same label, then this choice may be exercised after the transition has taken

5

Z
S/P('\ [

place. RECON — 2 states that if an action can occur after a 7-transition, an implementer
is permitted to optimise the execution by omitting the tau-transition, and allowing the
visible action to occur immediately. Actually, in RECON — 2, the A could be replaced
by o as in [11], allowing an optimisation that replaces two internal steps by one. In
the following we use LTSy to stand for the extended transition systems, and 3 for the
transitions in LTSy, Define intt1(P) % {a|3QeP %1 Q}. g
Lemma 5.1 WA JL‘ O ’i

P is stable in TS, iff it is stable in L7'S. Furthermore if P is stable then init;(P) =
init(P). A

Proof From the fact that >C%1 we are only required to prove the if-part.

(1) P = Scro4. P, From Lemma 3.3(1) we have 7 ¢ {a; | i € I}. Clearly P has no
r-transition in LTS, and init (P) = {ali € I},

~ (2) P.= newa Q. From Lemma 3.3(3) it follows that Q) is stable. By induction hypothesis

we conclude that @ is stable in IT'Sy. From Lemmas 3.3(3) and 3.1(3) follows
init;(newa Q) = init1(Q) \ {a, a} = nit(Q}\ {a, a} = init(newa Q)

(3) P = Q|R. From Lemma 8.3(2) it follows that both @ and R are stable and init(@)N
{ala € init(R)} = @. From induction hypothesis it follows that initi(Q) = init(Q) and
init;(R) = init(R) and both @ and R stable in I/TS,. The conclusion follows from
Lemmas 3.3(2) and 3.1(2).

4y P = A(B) where A(d) %f p,. From Lemma 3.3(4) it follows that {B/@} P4 is stable.
From induction hypothesis and Lemma 3.3(4) we conclude that P is also stable, and

init,(P) = init, ({B/@}Pa) = init({8/@}Pa) = init(P) O

Lemma 5.2

U{r.P+ T.Pg))(%h_ o 5]) Q and @Q is stable, then there is i such that F; (=310 50Q
with no morﬁggon rhiles is ysed.

T

SPEE e S

B o e
Proof The proof proceeds by induction on the number of the/recon rules used in the

inference. -
(1) The first step is a T-transition. In this case from the rule SUM we conclude that there

is ¢ such that P 5 P and B (=1 0 —T->:) Q which implies the conclusion directly.
(2) The first step is a A-transition (7.P1 + 7.P,) A, R. There are two possible cases:
(2.1) Tt is inferred by the rule RECON —1

(r P P) P, PIMQL (RPiAT PSP, P10

{r.P147. ps_;)l‘“Q 1 (r.P1+r.Pg)3+1Q2
(r.Py +7.Py) D1 (1.Q1 -+ 7.Qa)

By induction hypothesis we can find j such that Q; (tﬂ)l o L»;) Q. Now the inference
Pj(=%51 0 1) Q uses less recon rules as required.
(2.2) It is inferred by the riule RECON — 2, i.e., there is i such that

(r.P + 7.P) P, B 41 R
(rP +7.) MR

In this case we have Pj(==1 © L*)Q which uses less recon rules. o,

6

N

Theorem 5.3 L\ ' L\
IfP(w—f—h o 5;) Q and @ is stable, then P (m—i;, o I)*) Q. WA e

Proof The proof uses induction on the structure of P ggdu.thﬁr{{l}glber of the recon rules
used in the inference. When the number of steps of €he inference i§ zero, the conclusion
follows from Theorem 5.1. If the inference does not use the recon rules, the conclusion is
obvious. In the following we are going to treat all possible cases for the first step of the
inference based on structural induction.
(1) P = Byicrai.P;. We consider three cases.
(1.1) The first step of the inference is inferred by the use of SUM, i.e., there exists { € I
such that _ , .

P, P and B(=210 H0Q
where 8' = s if a4 = 7 otherwise 8 = tail(s). By induction hypothesis we conclude that
Py (=% o ") Q which implies that P (=% 0 5')Q
(1.2) The first step is inferred by RECON —2 where oy = 7

PLP, BMW
PAW

which implies that P; (=51 0 51) Q. By induction hypothesis we conclude
Pi(=5 05 Q

which together with P 7 P; implies the conclusion.

(1.3) The first step is inferred by RECON —1, i, there exist 41, f2 € I

P5Py, Py dQr POPy, P hQs
P41Q1 PAQs

P (1.Q1+7.Q2)

In this case we have (7.Q1 + 7.Q2) (t{ﬂ;)1 o ;) Q. From Lemma 5.2 we can find k such
that P 41 Qk(t‘ﬂg)1 o i>,{)Q where the first step uses less recon rules:

P5 Py, By D1 Qs
P
which together the induction hypothesis leads to the conclusion,

(2) P = newaP’. From the rule RES and Lemma 3.3 we can find a stable process @'
such that Q@ = newa @ and

P'(=%105)) ¢
By induction hypothesis we conclude P (=0 -5*) @', which implies the conclusion.

(3) P = P1|P,. From L~ PAR and R — PAR it follows that there exist stable processes
Q1 and Q2 and sequences s and s; such that @ = Q1|Q2 and s € (s1]s2), and B (=51
o 3%?) Q for i = 1, 2. By induction hypothesis we conclude F; (= 0 Y Qi (fori=1, 2)
from which and Theorem 5.1 follows the conclusion.

(4) P = A(p) where A(@) %/ p,. From the rule IDENT it follows that
{B/@}Pa (=510 51)Q

7

By induction hypothesis we have {5/&'}PA (=5 o 5*) Q, which together with the rule
IDENT implies the conclusion. m

Theorem bH.4
P2, ifP=
Proof Similar to Theorem 5.3, O

Theorem 5.5
Adding the rules RECON —1 and RECON — 2 to the labelled transition system {given
by Definition 2.2) has no effect on traces(P) and failures(P).

Proof Direct from Theorems 3.13, 5.3 and 5.4. a
Corollary [

Theorem 3.12 remains valid in presence of thfecan r les. O
Theorem 5.6 (closure) i

¥ P2, P for i = 1, 2, then P 3 (r.Py +7.P2). 0
Corollary &MU? “‘X” &rv\o\m

If P24 then P D Py, -
where the definition of Py applies only to tﬁé}original transition system, without the@ob
rules. - KD
Theorem 5.7 (failures refinement implies simulation)

If P is a failures refinement of @ then P <a73 @

Proof Define
s % {(P, Q) | traces(P) C traces(@) A failures(P)C failures(Q)}

We are going to show that S is a two-third simulation.
Assume that P& Q

nHur A P!, then one has {\) € traces(P) C traces(Q) which implies that Q 3.
From Corollary of Theorem 5.6 it follows that @ ='\‘.q €2, which implies

traces(P') _(;\\ races(P) C \tmces(Q,\) and
failures(P") gt failures(Py) C failures(@x)
as required. %,V
(2) If P can refuse X, then from the definition of failures one has (), X) € failures(P).
From the assumption P S @ one has ({), X) € failures(Q)), i.e,, @ can also refuse X. O

C thn /{“)'

so P15 Q)

6 Conclusion

CCS is to maintain an explicit distinction between processes which resolve there nternal
non-determinism at different times. The redundant transitions suggested i this paper
deliberately obscure these distinctions. They give explicit freedom to the implementer of
the calculus to resolve non-determinism whenever it is most convenient to do so. They
thereby raise the level of abstraction of CCS closer to that of the standard model of CSP

[6].
But they still differ in the treatment of divergence, which is defined as the possibility
of an infinite sequence of invisible tau-transitions. It is sometimes called live-lock, and is

An explicit goal in the definition of bisimulation as the notion of process eq{uiy,jence in

a common goal of denial-of-service attackers on a computer system. In CCS, the respon-
sibility for avoidance of divergence (wherever possible) is placed upon the implementation
of the calculus; it is required to make an ultimately fair choice between a possible visible
action and an invisible one. That is why CCS is so useful in modelling and analysis of dis-
tributed scheduling algorithms, where fairness is needed to break symmetry, and is easily
implemented by probabilistic means.

CSP, on the other hand, places responsibility for the avoidance of divergence on the
designer of a process. It does this by interpreting recursion in the sense of Dijkstra [2] as
the greatest fixed point rather than the least fixed point of the defining equation. Thus the
possibility of an infinite tau-sequence gives rise to the universal set of failures. As a result,
a divergent process cannot refine any specification, except one that is also divergent. For
example, the equation defining top makes it denote the bottom of the simulation ordering

rath/er/than the top. CSP is therefore an appropriate calculus where avoidance of live-lock

__is-an important concern of system design.

There is a variety of different methods of achieving equivalence of simulation with
refinement. The simplest one is just to postulate certain basic algebraic equations as
axioms or structural equivalences of the calculus [5, 12]. A second method is to define a
version of simulation between sets of processes rather than between single processes (3. A
third method uses the modal mu-calculus {8] as a specification language, and then makes
a syntactic restriction on the expressive power of the specification, so that two processes
with the same failure set cannot be distinguished. The fact that mathematics provides so
many ways of achieving the same goal is indicative of robustness in a theory, and maybe
in prasticet00, \a~ Lo epplivotran

Redundant transitions have been used before to explore, adapt and improve the prop-
erties of bisimulation [1, 4, 16]. Their use to equate simulation with refinement is probably
original. g B AR

The primary goal for this investigation was to simplify the theoretical foundation for
the design of a new model-checker [14]. If gave confidence that model checking would be
effective in treating more general forms of refinement.

References

[1] B.Bloom. “Structural operational semantics for weak bisimulation.” Theoretical Com-
puter Science 146, 25-68, (1995).

[2] E.W. Dijkstra. “A discipline of programming.” Prentice Hall, (1976).

[8] Paul Gardiner. “Bisumation on sets of processes.” Private communication, (2002)

[4] R.J. Glabbeek. “Bounded non-determinism and the approzimation’induction princi-
ple in process algebra (estended adstract). P{@feedings STACS, LNCS 247, pp 336-
347, (1987).

[6] M. Hennessy. “Algebraic theory of processes.” The MIT Press, {1988).
[6] C.A.R. Hoare. “Communicaéing sequential processes.” Prentice Hall, (1985).

[7] C.A.R. Hoare, Cedric Fournet, He Jifeng, Paul Gardiner, Robin Milner, Sriram Raja-
mani, Jakob Rehof, Bill Roscoe. “Bisimulation and Refinement Reconciled’ to appear
as Microsoft Research Report/ (2008).

(8] D. Kozen. “Results on propositional mu-calculus.” Theoretical Computer Science,
(1983).

[9] K.G. Larsen and A, Skou. “Bisimulation through probabilistic testing.” Information
and control 94 (1), (1991)

(10} R. Milner. “Communication and concurrency.” Prentice Hall, (1989).

[11] R. Milner. “Communicating and mobile systems: the ar-calewlus.” Cambridge Univer-
sity Press, (1999).

[12] R. De Nicola. “A complete set of axioms for a theory of communicating sequential
processes.” Foundations of Computing Theory, LNCS 158, pp 115-126, (1983).

[13] R. De Nicola and M. Hennessy. “Testing equivalence for processes.” Theoretical Com-
puter Science 34, pp 83-133, (1983).

[14] S.Rajamani, J. Rehof. “Zing: A new model checker.” to appear as Microsoft Research
Report, (2003).

[15] A.W. Roscoe. “The theory and practice of concurrency.” Prentice Hall, (1998)

[16) Simone Tini. “Rule Formats for Non-interference.” ESOP’2003, LNCS 2618, pp 129~
143, (2003)

10

