1. Assert early and assert often ‘
4 cwswtm

development and test. In a successful product like Qffrce, around
one line in ten of the code base’is an assertion~4 other products,
there may be as few as one4n a hundred:=~This wide disparity of
ratios suggests that the quality of our products might be improved
simply by spread of current good practices from one product team

o another.
1o amother how To do Hutse 9 w JLPW

The purpose of this presentation is to describe/a range of assertion
macros currently available to users of the program analysis tools
PREfix and PREfast. Iéuggest how you can use them more
effectively and more often, from the earliest to the latest stages of

product development.

2. Engineering test probes

The main use of assertions today is to assist in program test and

fault diagnosis. In all branches of engineering, product test is an
essential prerequisite before release to manufacture of a new or
improved product. For example, in the development of a new aero
jet engine, an early working model is installed on an engineering
test bench for exhaustive trials. This model engine will first be
thoroughly instrumented by insertion of test probes at every
accessible internal interface. A rigorous test schedule is designed
to exercise the engine at all the extremes of its intended operating
range. By continuously checking tolerances at all the crucial
internal interfaces, the engineer detects incipient errors
immediately, and never needs to test the assembly as a whole to
destruction. By continuously striving to improve the set points and
tighten the tolerances at each internal interface, the quality of the
whole product can be gradually raised. That is the reason for the
success of the six sigma quality improvement initiative.

In the engineering of software, it is the assertions at the interfaces
between modules of the program that play the same role as test

probes in engine design. My analogy with tightening tolerances

suggests that programmers who wish to w#€ trustworthy de.l\ve»r
programs should gradually increase the number and strength of the..
assertions in code. Paradoxically, the intended effect of assertions

is to make a system more likely to fail under test; but the reward is

that failure is much less likely after shipping to the customer.

3. Macros

The defining characteristic of an engineering test probe is that it is
removed from the engine before manufacture and delivery to the
customer. In computer programs, this effect is achieved by means
of conditionally defined macros. The macro is resolved at compile
« time in one of two ways, depending on a compile-time switch

W w5 called DEBUG, sct for a debugging run, and unset when compiling
retail code. My slide shows an example taken from a collection of
macros written by Jon Pincus, and made available with the
program analysis tools PREfix and PREfast. An assertion may be
placed anywhere in the middle of executable code by means of this
CONSISTENCY CHECK macro. The details of the whole package
are posted on the sharepoint site for this Iecture. E

4. Explanations

The whole point of an assertion is that the programmer should
_ mhave a good reason for believing that it will always be true when
l\ukéﬂ 25 ke ‘programis executed. The programmer should be willing to
explain the reason why the assertion is valid, in an informally
?0 'J"'J :

WM DA | 5 W\/‘W\G

written text passed-as-a-second-argument-to-the-CHECK—mdero. In
case of error, discovered perhaps much later, the programmer¥will
have the information needed to trace the underlying cause of the
mistake. This should make correction much easier: but more than
that. The programmer will be warned of other likely occurrences
of a similar error in the existing code; andywill be encouraged to

improve the rigour of (théreasoning, to aveid all such errors in the ! i

future. ” lb N &\be Wik

That is why the PREfix assertion macro requires a second e cﬂ‘ﬁ
, a string j#t which #ie.pressesmer can explaifyquite o‘t”‘w“”

informally the reason why the first parameter will always be true.

The more obscure the reason, the greater the value of the

explanation. Unexplained assertions can be seen from records in

the RAID progeanrdefect-database to generate grief when they fire

in later releases of the same program.

5. Documentation

A major concern of our Company is the continuous evolution and
improvement of old code to meet new market needs. Even quite
trivial assertions, like that shown on this slide, give added value
when the time comes to change the code for the next release. One
Development Manager recommends that for every bug corrected in
test, an assertion should be added to the code which will fire if that
bug ever occurs again. My recommendation is even stronger.
From the beginning, there should be enough assertions in the code
to ensure that nearly all bugs will be caught by assertion failure —
much easier to diagnose than any other failure.

0
Some developers are willing to spend a whole day to design
precautions that will avoid a week’s work by a less experienced
programmer, tracing an error that may be introduced by a later

change to the code. Success in such documentation by assertions
depends on long experience and careful judgment in predicting the
most likely errors a year or more from now. Not everyone can
spare the time to do this under pressure of tight delivery schedules.
But it is likely that a liberal sprinkling of assertions in the code will
increase the accumulated value of Microsoft legacy, when the time
comes to develop a new release

6. Assumptions

In the early testing of a prototype program, the developer wants to

check out the main paths in the code before dealing with all the

exceptional conditions that may occur in practice. In order to

document such a development plan, PREfast provides a variety of

assertion which is called a simplifying assumption. The quoted

assumption documents exactly the cases which the developer is not

yet ready to treat, and it also serves as a reminder of what remains

to do later. Violation of such assumptions in test will simply cause

a test case to be ignored, and should not be treated as an error. But

the priority of the test case should be increased, to ensure that the .
eventual special case code will be adequately tgstet®. Of course, in W‘JAJ
a retail build when the debug flag is not set, th¥macro will give

rise to a compile-time error; it will not just be ignored like an

ordinary assertion. This gives,protection against the risk incurred

by more informal TO DO comments, which occasionally and
embarrassingly find their way {into retail code.

7. Compile-time bes

All the best debug messages are those given at compile time, since
that avoids all the hassle of diagnosis of errors by test. In the
Windows product team, a special class of assertion has been
implemented called a compile-time check, because it can be
evaluated at compile time. The compile time error message is

«

10 NAANS

generated by a macro that compiles to an invalid declaration

(negative array bound) in C in the case that the compiler evaluates

the assertion to false; of course, the assertion must be one that uses

only values and functions computable by the compiler. (The

compiler will still complain if not.) The example abov€ showsa on +[¢4.5
test of conformity of the size of two array parameters x and y. 5[&(0
Note that this macro is not provided by PREfast.

Of course, only a very few assertions can be evaluated at compile
time — at present. To change this is exactly the long-term goal of
my colleagues in Microsoft Research, who are developing new
programmer productivity tools. By more sophisticat{;:lrogram ol
analyses, it is increasingly possible to guarantee with mathematical
certainty that each assertion will be true on every occasion that it is
evaluated. If this guarantee cannot be given, the tool should

ideally generate a test case automatically that will expose the fault.
Of course, an assertion that has been proved to be always true can
be optimised away, to avoid the overhead of evaluation, even on
test runs. Because it is known that there will be no errors left for
run-time testing. At this Techfest, in the Software Engineering
section,you will be able to see the progresgwe have made towards

this goal. e
TusC oonrs Hae LwJZMm\ From there—

8. Invariants

Assertions are particularly valuable for documenting object-
oriented programs. An invariant is defined as an assertion that is
intended to be true of every object of a class before and after every
method call. It can be coded as a suitably named boolean method
of the same class. For example, in a class that maintains a private
list of objects, the invariant could state the implementer’s intention
that the list should always be circular., While the program is under
test, the invariant can be retested after each method call, or even
before as well.

so-called

0. Invariants

Invariants are widely used today in software engineering practice,
though not under the same name. For example, every time a PC is
switched on, or a new application is launched, invariants are used

to check the integrity of the current environment and of the data

held in long-term storage. In Microsoft Office, invariants on the
structure of dynamically allocat#torage on the heap are used to 0[.
help diagnose storage leaks. In the telephone industry, they are

used by a l_\é_oftw.are auditing process, which runs concurrently with

the switchthg software in an electronic exchange. Any call records

. that are found to violate the invariant are simply re-initialised or

even just deleted. It is rumoured that this technique once raised the
reliability of a system from undeliverable to irreproachable.

In Microsoft, I sce a future role for invariants in post-mortem
dump-cracking, to check whether a failure was caused perhaps by
some incident long ago that corrupted object data on the heap.
Such a test has to made on the customer machine, because the heap
is too Volummous to communicate the whole of it to # central

server. Rulfmonol "-(a,e_..
10. Interface assertions

Assertions written at the interfaces between program modules,

assemblies and components give exceptionally good value.

Firstly, they are exploited at least twice, by the implementer of the .
interface and by its user — indeed by all its users. Second] HNCUSHWV
interfaces are uswally-mere stable overfeleases than the code, so

the assertions that-defreamintestace are used repeatedly WheneveI

code is enhanced for a later release.
4 il

15 s

I

pagthod

sl‘lowu \o& mwwgeﬂ\ | /‘“D‘)H"W‘

the users of a library g¢ read the interface documentation ‘than the 'ow'{" uw.Q,

codeitself. Interface assertions permit unit testing of each module

separately from its use; and they give good guidance in the design =,
wamd\'m

of rigorous test cases. Finally, they enable the analysis and preetf”
of a large system to be split into smaller parts, so that each part can
be analysed separately in a modular fashion. This is absolutely
critical. Even with fully modular checking, the first application of
PREfix to Windows 2000 took three weeks of machine time; and
even after a series of optimisations and compromises, it still takes
three days.

11. Preconditions

The first important kind of assertion that one sees at an interface is
a precondition. A precondition is defined as an assertion made at
the beginning of a method body. It is the caller of the method
rather than the implementer who is responsible for the validity of
the precondition on every entry to the method; the implementer of
the body of the method can just take it as an assumption.
Recognition of this division of responsibility across the interface
protects the virtuous writer of a method from being called out to
inspect faults which have been caused by a careless caller of the
method. As an example, consider the insertion of a node in a
circular list, which may require that the parameter is not NULL.
The example shown on this slide includes also a test of the class
invariant and a simplifying assumption; the assumption uses the
find method local to the same class to check that the inserted object
is not already there.

12. Post-conditions

.
The second main kind of interface assertion is the postcondition,
defined as an assertion evaluated on return from the method. The
postcondition is-an-asserten-whieh describes (at least partially) the
purpose of a method:eal:- The caller of a method is allowed to
assume its validity on return from the call. The obligation is on the
writer of the method to ensure that the post-condition is always

MGd, and that the class invariant is satisfied too. Preconditions

and post-conditions document the contract between the contr
implementer and the user of the methods of a class. Th@Aspect of
assertions has been heavily exploited in the Eiffel programming
language.

13. ASSERTIONAL
s Lol

It is sometimes useful for an assertion to refer to thepreviens

/wes of variables, or to a log of significant actions that a program
h

PM;,O“&

guetyg

as'performed. That is the purpose of the assertional macro, which
may contain arbitrary declarations of variables,and assignments to
them. The example on this slide shows the use of an assertional
variable to hold the initial value of a,variable t, so as to check/that
its value has been reduced by the body of a method. e

- 'ﬁ*@ ~) sfcmd'd{@ﬂ
14. Optimisation) P

Assertions can help a compiler producé better code. For example,
ina C—sty}e case statement, a default clause that cannot be reached
should marked with an UNREACHABLE assertion, and the
compiler avoids ¢missies-ef unnecessary code for this case. In
future, perhaps assertions will give further help in optimisation, for
example by asserting that pointers or references do not point to the
same location. This will encourage the compiler to continue
optimisation, in spite of the risk of an alias. The optimisation

Finro \U{M\\

/

70

r

fhvo

OP COUNSL e b

depends on confidence in the'validify of the assertion. At present
this confidence is built up- ﬁfrmasswe testing — in fact, assertions
are widely believed to be the only reliable form of program
documentation. When assertions are automatically proved by an

analysis tool, they will be even more believable.
v
. S
15. Defect tracking

Assertions feature strongly in the code for Microsoft Office —
around a quarter of a million of them. They are automatically
given unique tags, so that they can be tracked in successive tests,
builds and releases of the product, even though their line-number
changes with the program code. Office Watson automatically
records and classifies assertion violations in RAID. When the
same fault is detected by two different test cases, it is twice as easy
to diagnose, and twice as valuable to correct. This kind of fault
classification defines an important part of the team’s programming
process.

In future, defect tracking will be assisted by the distinction
between preconditions and postconditions. Violation of a
precondition will be attributed to the calling program, whereas
violation of a postcondition or invariant will be attributed to the

called method.

16. PREFIX ASSUME

The global program analysis tool PREfix is now widely used by
Mmosoft development teams ta.del;eet-pl:e-g-l:am-defecls.au.n.eaﬂ-y

%«-VW\'V“ :

(?/ f}} 2)\esség
A

may be a defect. The trouble is that most of the paths considered
can never in fact be activated. The resulting false positive
messages still require considerable cffort to analyse and rgject; and
the rejection is prone to etror too, a§ Shown WA 2 Cosen
oF the hma\ox_, VWS

Assertions can help the PREfix ancsaly-checker to avoid
unnecessary noise. If something has only just three lines ago been

inserted in a table, it is annoying to be told that it might not be
there. The ASSUME macro allows the programmer to tell PREfix
information about the program that cannot be automatically
deduced. This is a much better way of reducmg noise than just
switching off the warning.

17. SHIP-ASSERTS
rePoamble

The original purpose of assertions was t¢ ensure that program
defects are detected as early as possible’in test, rather than later-on,
. after check-in, after code complete, or even after delivery. But the
'h'\fwﬂ' power of the@ustomer’s processor is constantly increasing, and the
frequency of delivery of software upgrades in the dot. NET
., environment is also increasing. It is therefore more and more cost-
M5 effective to leave apcgstatn proportion of the assertions in fetail ~—— e
b:j code; when they fire they generate an exception, and the choice is
offered to the customer of sending a bug report to Microsoft. This
is much better than a crash, which is a likely result of entry into a
region of code that you already know has never been encountered
in test. A common idiom is to give the programmer control over
such a range of options by means of different ASSERT macros.
These three examples are taken from the Visual Studio project. In
libraries provided by Microsoft to its customers, most of the
preconditions will be SHIP-ASSERTS like this.

18. Life of an assertion

In this talk, I have described many effective ways in which
assertions of various kinds are exploited today in Microsoft
programming practice. Thep’; benefits extend through all stages of
the Missoseft-software development process. My final suggestion
is that the benefits can be increased, and the costs reduced, if the
same assertion can be reused for more than one purpose during the
design, development and deployment and evolution of Microsoft
products.

To maximise the benefit of assertions, start to write them even f—ﬂ- H’%
before the code into which they will be inserted. Thesthey help in 3"?’:3& ,
early design discussions, clarifying the design options, and

enabling theit consequences of the alternative choices to be

evaluated. In project planning, use assertions as interface

contracts, formalising the assumptions and commitments of each

separately developed module of code. They are a powerful tool to

control unavoidable dependencies that plague the life of product

managers. Exploit the assertions again in the planning of

exhaustive test strategies, and incorporate them directly into early

test harness designs. Make sure that the tests that violate assertions

are given priority, and that they are included in long-term

regression suites. In detailed coding, cheskatte assertions record

the reasons why the program is believed to work, and this
reasoning can be checked in code reviews; ' | make;{ the
review more interesting and more effective. In early prototyping
of new features, a simplifying assumption gives a safe way of
recording future obligations undertaken by the programmer.

19.... continued Lwﬂ Wﬂl

In the debug phase of development, add a new asgertion that will
detect possible recurrence of each error that haseeeurred. Classify
defects in RAID according to the assertions that they fire. Before
RTM, decide which assertions to leave in ship code, and what
should be the appropriate logging or recovery action. Incorporate 1 {
g” A invariants and other assertions into eede for start-up checks, "
Cor

for software audit, and&lump analysis and diagnosis. Finally, exploit
and strengthen the aksertions that you already find in legacy code,

so that their valuable role is repeated again and again when the s
code is evolved for subsequent releases. ‘]b]" l
20. Conclusion G

As I havetust described, there.ate so many ways of exploiting an
assertion during its lifetime that there is no need to know in
advance which of the uses will be most valuable in each case.
Once an assertion has been recorded, it can be used and re-used to
meet the evolving needs of the project. In conclusion, my message

is simple:

Assert early, assert often, and assert more strongly every time.

21. Apologies to...

Y
My title is taken from the advice that I was given when 1 f{}\t voted
in an election in Ireland in 1970. It is attributed to a nineteénth
century American humourist, Josh Billings.

22. Acknowledgements

/) +
, O VAAY

Apologies are due to Josh Billings, and more serious
acknowledgement to all who have responded to my eatlier
research survey on the current uses of assertions in Microsoft, ahes
theseswhe-encouraged and enabled-me-tomake-it. I would like to
continue to collect more experience of the use of assertions in
other environments. Further contributions will be very welcome if
sent to thoare @microsoft.com. I believe that these contributions
from the best of Microsoft Development practice today will be of
enormous value in the planning and design of future programmer
productivity tools, which will-make-further-major-contributions-to—-
efficientﬁdelivery of highly trastworthy software products from
Microsoft. . e

e

(mﬁ)lm} v}é; vl austenr g

CAPAN ware - u&/\/ii\ejz/\f %—é Cosr S

.____
o

9

.. to be continued, and
probably shortened significantly. Remarks about the need to
restrict the language in which p1obes are written, and/or the
desirability of extending it. &J gL

v

v

AN
P (:"f_“J
)X &ﬁ S‘L@ e ¢¥f3(*;§ Yale ()

A A ANAN, /\/\/1] j A l/\ —Q s

7»,212@@&5%121@»@1@@191;413&&@& excellent way of propagating the=guod. hoes 9
practices that lead to trustworthy code is the use of programming Mw{’u g
language features that are inherently safe and promole correctness.:

“That is why our research team recently welcomed a ch,alle,ﬂge\.'ijfom
the C# team to propose a design of an assertional feature for their
language, which lacks the macro capability that has been used to
add assertions to C and C++. C# provides an exceptionally good
handle on which to hang the assertions in their role as probes, AFSEN
namely the interface class. We hope to get agreement from the C# V\Al/vt
design authority to put some simpler forms of assertions onto the
interface. Reso ce constraints over, the fiext (wo years prevent the
consideration of /er more ambitious p”[}‘aé‘f?oéal aleng-the-lines
suggested in this paper.

\;\/\ WO LML ¢

Conchlsion. The. ol

_.But this does not deter us from the development of toolsets which
Willfnez:@ughly tried and tested by application to the existing
Microsoft code base, written in legacy languages The lessons
learned can then be transferred with confitlence to the new
language, when the opportunity again arises.

Yoo el ll, MW L % ot

Tl’\b M}U\A(L@l + (}g\ WA oAl e :\ (’00 l/v\ (J/ j et Ghan 290 G P/U/ ,, -
.y lﬁt L) Al L/{ (),Qc/,i J[/\{) Lw’; N mu,, \Mﬁuw’(lo@?g LA)'(/Q/ fﬂ(o v‘m ﬁﬂ /)é
7

{)/Dra/v\ 4 jﬁ
JOY'}UMS @La/t/ A WAL r})o&t]W‘o ugmrv\\ 0(1 ia'z,«v{) Y H,ut

l)ﬂ() ‘

Lo W/qu #,

reasoning can be checked in code reviews; and this goal makes the
review more interesting and more effective. In early prototyping
of new features, a simplifying assumption gives a safe way of
recording future obligations undertaken by the programmer,

In the debug phase of development, add a new assertion that will
detect possible recurrence of each error that has occurred. Classify
defects in RAID according to the assertions that they fire. Before
RTM, decide which assertions to leave in ship code, and what
should be the appropriate logging or recovery action. Incorporate
invariants and other assertions into code for start-up checks,
software audit, and dump analysis and diagnosis. Finally, exploit
and strengthen the assertions that you already find in legacy code,
so that their valuable role is repeated again and again when the
code is evolved for subsequent releases.

In fact, there are so many ways of exploiting an assertion during its
lifetime that there is no need to know in advance which of the uses
will be most valuable in each case. Once an assertion has been
recorded, it can be used and re-used to meet the evolving needs of
the project. ' '

Acknowledgements

N,

