CARMpe

A Theory of Synchrony and Asynchrony

He Jifeng, M.B. Josephs and C.A.R. Hoare
Programming Research Group
Oxford University Computing Laboratory

February 6, 1990

Abstract

Loosely-coupled (asynchronous) data flow networks are often constrasted to tightly-
coupled {synchronous) systems. We present CSP [10] as a unified theory for both types of
system, and deduce algebraic laws relating them. The theory may be useful in design and
implementation of systems from parts which take advantage of both paradigms.

Keywords: Asynchrony, Synchrony, Communicating Process.

Contents

1 Introduction 1
2 Preliminaries 3
3 The asynchronous subset of CSP 7
4 A CSP operator for asynchrony 10
5 Conclusion 13

6 Appendix 16

1 Introduction

¥

A process can in general be defined by its behaviour, which evolves as a sequence of communi-
cations with its environment. Each communication is either an input of a message on a named
input channel or the output of a message along a named output channel. When two processes
are connected, output channels of each of them are connected to like-named input channels of
the other. Networks of arbitrary complexity may thus be connected; but the behaviour of the
network may be treated, in practice and in theory, as that of a single process.

For a synchronous process, each communication involves simultaneous participation both of
the process and of the environment. If either of them is ready before the other, it must be
delayed at least until the other is ready too. Then the communication takes place, and both
process and environment may continue independently.

The problem with the implementation of synchronous networks is the delay and overhead
of synchronisation. Recent breakthroughs in the architecture of communicating microproces-
sors [transputers] have reduced these almost to insignificance; but programmers using older
operating systems [Unix] and communications technologies [ethernet] would be well advised to
ensure that their programs still work in spite of unsynchronised communication. Qur theory
may help in this task.

For an asynchronous process, all channels are capable of buffering an arbitrary number of
messages. Consequently, an output by the environment to the process is never delayed. Con-
versely, the environment may postpone indefinitely the acceptance of messages, without de-
laying the internal progress of the process.

The problem with the implementation of asynchronous processes is the provision of unbounded
buffering on each channel. In practice, programmers must ensure that programs still work in
spite of limited buffer size, and may have to complicate the program by feedback loops for
flow control. Our theory may help in this transformation,

The method of the paper is to show how asynchronous processes may be modelled as a partic-
ular simple and attractive closed class of synchronous processes. This permits proof a number
of elegant algebraic laws, which may be useful for transformation of programs expressed in
one formalism for execution on a mechanism implementing the other. The theory as a whole
may also be useful for designers and implementors of systems with components written and
executing in different paradigms.

This paper can read as a companion paper to [7]; the latter presents a complete mathematical
framework for the analysis and synthesis of asynchronous processes.

1

Summary

An infinite buffer may be expressed as a synchronous process BUF, which is always ready to
input a message, and is ready to output the earliest waiting message whenever one exists.. If
P is a synchronous process, a buffer can be attached to each of its input and output channels,
giving a result defined as P. It is shown in section 3 that all asynchronous processes can be
formed in this way,

Section 4 derives a number of algebraic laws, showing how the asynchronous operation ~

B P e e G Sy TP

The results reported in this paper are part of a wider programme of research devoted to
establish links between different notations, methods, and computational paradigms. The ob-
Jectives are to aid in the transformation of specifications, designs and programs from simple
mathematical abstractions to efficient computations in either hardware or software or both,
Other possible applications include the design and construction of systems involving a mixture
of language and computational paradigms.

Notation

The following CSP notion will be used in the later discussion. A communication is an event
that is described by a pair e.m, where ¢ is the name of the channel on which the communication
takes place and m is the value of the message being passed. We will use Mes to stand for the
set of messages.

Given P a process, outch(P) is the set of output channel names of P, and inch(P) the set of
input channel names of P. traces(P) is the set of finite sequences of communications which P
can exchange with its environment. failures(P) is the set of pairs (s, X), where s is a trace of
P and X is a set of channel names on which P may refuse to engage in any communication
after execution of the sequence s. divergences(P) is the set of sequences of communications
whose execution may causé the divergence of the process P. F(P) is the set of traces after
which P may refuse to output,

F(P) f {s | (s, outeh(P)) € failures(P)}

Note that

divergences(P) C F(P)
out_com(P) is used to denote the set of all output events of P, and in_com(P) the set of all
input events, which are supposed to be finite. aP stands for the alphabet (in the sense of
CSP) of process P, i.e.,
’ aP = in.com(P) U out_com(P)
The process P’ behaves the same as the process P except that all channel names are decorated
with a dash. For any sequence s of communications, s is the result of replacing channel names
in all communications in s by the decorated names, The set A’ is the result of replacing all
symbols in A by the corresponding dashed symbols. We adopt the convention that

Py = P
&Y = s

We will use [|,, P, to stands for the limit of an ascending chain {P,}.

The expression ¢ T A denotes the sequence ¢t when restricted to symbols in the set A. #t
is the length of the sequence ¢. The set A* is the set of all finite sequences (including the
empty sequence} which are formed from symbols in the set 4. We use Chaos to denote the
worst communicating process, whose behaviour is unpredictable and uncontrollable [10], Stop
is the process which performs no action.

and <> represent the empty set and the empty sequence respectively, Let u and v be
sequences. Their concatenation is denoted % - v, When u is a non-empty sequence. uo denotes
its first element, and fail(u) the sequence obtained by removing ug from u.

2 Preliminaries

The techniques we shall use for proving properties of asynchronous processes in the rest of
this paper are based on algebraic calculations, which in practice amounts to no more than
symbolic execution of input and output commands.

Two processes P and @ with outch(P) = inch(Q) may be joined together so that the output
channels of P are connected to the corresponding input channels of @, and the sequence of
messages output by P and input by @ along these lines are concealed from their common
environment. The result of the connection is denoted

P >> @

This definition is more general than that given in [10] because it simultancously connects
several channels, Formally it can be defined by

P >>.Q Y (P Q)\outch(P)

where || stands for the concurrency operator in CSP {10}, and \ the concealment operator, and
it is assumed that inch(P) is disjoint from outch(Q). For details we refer reader to [1, 16].

Now we intend to explore algebraic laws of the chaining operator >>, which are based on the
following basic laws presented in [10].

(1) Law of Concurrency
Let P = (z:B —» P(x))and Q@ = (y:C - Q()) Then P[[Q = (2: D — R| 5)

where

D = (BAC)U(B - aQ) U (C - aP)

R = Pz ifzeB
= P otherwise
S = Q(z) ifzel
= @ otherwise

(2) Laws of concealment
(a) (PAB)\C = P\(B U C)
(b)Y - P\C = & - (P\C) ifz¢cC
= P\C otherwise
(IfaP Na@ N C =fthen (P || Q\C = (P\C) || (Q\C).
(d) PA\C = P if C n(inch(P) U outch(P)) = §

(3) Laws of chaining .
The most useful algebraic property of >> is associativity
(a)(P>>@Q)>>R =P>>(Q >>R)

The chaining operator is also strict _
(b) Chaos >> Q@ = Chaos = P >> Chaos

The chaining operator distributes with the non-determinic choice operator N
()P >>(@QNR)=(P>>Q)N(P>>R)
(PNQ)>>R = (P>>R)N(Q >> R)

>> is a continuous operator:
() P >> ;@ = (P >> Qi)
Ui 2 >> @ = (P >> Q)

The following expansion law completes the algebraic definition of the chaining operator.

(e) The expansion law of >>
Let X C inch(P) Y C outch(P) V C inch(P) and W C outeh(Q)

P = luex (@2 = Pu(2)) | lhey (bns — By)
Q = lev Oty = Q(®) [lew (dme — Qc)

Then
P>>0 =iHYNV # @then (T\\U) else T’

where \\ stands for composite choice, and is defined by
™"N\U=T]Uu)ynu
The processes T and U are given by

T = |uex (ale = (Palz) >> Q) |
Lew (dme = (P >> Q.))

U Meeyny (£ >> Qu(ns))

The first line of the definition of T' describes the case when the external input by P takes
places first; in the second line the external output by @ takes place first.

The definition of U describes the case in which the internal communication takes place first,
so that the value ny is transmitted through the channel b from P to @, but the communication
is concealed. In all three cases, the process or processes which engage in communication make
the appropriate progress, and they continue to be chained by >>.

The main difficulty and complexity in the above law is the clause 7\\U which results from
the hiding on an internal communication [10).

The infinite buffer with an input channel [and an output channel » behaves like a process
BU Fi,, which is at all times ready to accept a message on its input channel !, and (whenever
possible) is ready to deliver to its output chaunnel r the earliest message which has been input
but not yet output. The state of this process can be identified with the sequence s of messages
which it has input but not output. Each incoming message @ is added to the right hand end
of 5 (to give s+ < 2 >); and the next outgoing message is given up by sy. The sequence s is
initially empty. Formally the process BUF, can be defined by a system of mutually recursive
equations, one for each value of s:

BUR, ¥ BUR,(<>)
where
BUR,(s) ¥ e BUR(<z>) if s=<>
BUFR,(s) ¥ (e — BUR,(s<o>)
| (rlso — BUF . (tail(s))) : otherwise

The following two laws presented in [2] are useful in deriving further properties of process
nTr " nand bl Ab il e acmdan

(f) If any two of A, B, A >> B are buffers, then so is the third.

(g) ¥ A, >> C, is a buffer with an input channel / and an output channel r for all s € 5,
then for any function g : Mes —» S the process

Mz — (Ag(a;) >> (rle — Cg(m)))

is a buffer.

If a buffer holds a message, then either an input from the input channel or the output of

that stored message may happen first
(h) BUF,(<m>) = BUF, >> (r'm - BUF,,)

Proof:
72 —» (BUF, >> (rloa - BUF,,))
= BUF, {law (f) and (g) of >>}
= {te - BUF.(<z>) {def of BUF,}

from which follows the conclusion.

The sequence of messages buffered up is immaterial when the messages are never read.
(i) BUF(<m>) >> Stop = BUF, >> Stop
Proof: For any finite sequence s we define

def

A, = BUF,(<m>-s) >> Stop
B. ¥ BUFR,(s) >> Stop
Then one has
A,
= Iz — (BUF (<m>-s <z >)>> Stop) {by the expansion law of >>}
= Tz - A3.<x>
B,
= 2 —» (BUF,(s-<a>) >> Stop) {by the expansion law of >>}

= l?.’,l'} - s>

which indicates that processes A and B satisfy the same guarded recursive equations. By
appealing to the unique fixed point theorem we reach the conclusion.

If the right component of a chain is only willing to accept an input, and the left compontent
BU Fi; has held a message, then the internal communication will take place instantaneously
(3) BUF (<m>) >> (rtz — P(z)) = BUF, >> P(m)

Proof:
LHS
= BUF, >> (rlm - BUF,,) >> (rtz —» P(z)) {law (h) of >>}
= BUF, >> BUE,, >> P(m) , {the ezpansion law of >>)
= RHS {law (f) of >>}

Parallel composition of independent processes is interchangable with the chaining operator
AANTE T et d /Y T 3222000 ahncnsnntn s P e d /Y 2l

(PL>> Q1) || (P2 >> Q2) = (Pl) >> (@1 Q2)

Proof:
LHS
= (21 || @)\outch(P)) || (P2 | Q2)\outch(Py)) {def of >>}
= (Pl @) | (P2 | @2))\(outch(P) U outeh(P;)) {law (c) (d) of the concealment}
= RHS _ {def of >>}
In the remainder of this paper we will use a useful function on sequences, duplic:
duplic{<>) L PIN
duplic(< e.m > £) o< c.m, ¢.m > -duplic(t) if ¢ € inch
o < dm, e.m > .duplie(?) if ¢ € outch

The function duplic ma,ps‘ the compufation history of a process P to one of the possible
computation histories of the buffered process INp || P! || OUTp where the interface processes
INp and OUTp are defined by

def

INp = ”aGinch(P) BUFﬂaG'

def
oUTp = ”t:Eoutch(P) BU Fu,

The subscript of the interfaces and buffers will be dropped if it is clear from the context.

Lemma 2.1
(1) t € traces(P) = duplic(t) € traces(INp || P! | OUTp)
(2) t € divergences(P) = duplic(t) € divergences(INp || P' || OUTp)
(3) (t, outch(P)) € failures(P) =
(duplic(t) T eI Np, inch(P')) € failures(INp)

A {duplic(t) T aP’, outch(P')) € failures(P')

A (duplic(f) T «OUTp, outch(P)) € failures(OUTp)
Proof: Direct from the definition of duplic and |].

Finally we introduce a binary relation on sequences of communications which represents the
way in which buffering can reorder communications on distinct channels, Define s < ¢ if there
exists a sequence u such that

s=uT (#ncom U out_com) A

u T (incom’ U out_com’) = duplic(t) | (in-com’ U out_com’) A
Va€incheu]aBUF,, = duplic(t) T aBUF, + A
Vegoutcheul aBUFy, = duplic(t) t a BUFy

Lemma 2.2
1) If both @ and b are distinct input channel names then < a.m, b.n >=<< b, a.m >.
¥
(2) If both ¢ and d are distinct output channel names then < can, don ><< d.n, cm >,
(3) Let @ € inch and ¢ € outeh, then < a.m, e.n >=< e, aam >.
4) < is respected by catenation: s; < #; and sp <t implies 81 - 82 < 21 - Lo,
P
Proof: (1) Taking u =< a.m, b, V.0, a'.m >.
(2) Taking w =< d'.n, ' .m, cmd.n >.
(3) Taking v =< a.m, ¢'.n, c.n, &.m >.
(4) From the fact that duplic(t; - ¢3) = duplic(?;) - duplic{ts).

3 The asynchronous subset of CSP

We postulate that the asynchronous processes are a subset of the synchronous processes,
namely, those processes P that satisfy the defining equation

P = IN >> P >> OUT

We justify this in two complementary ways: first it will be shown that the computation history
of the solutions of the defining equation actually meet those requirements on an asynchronous
process that are given in the relevant literature [6, 7, 4, 14} (theorem 3.3); and second, any
process satisfying those required properties is proved to be a solution of the defining equation
(theorem 3.4). The defining equation is known as the Foam Rubber Wrapper postulate when
used to characterize delay-insensitive circuits {14].

We start this section by exploring some simple facts about asynchronous processes:
Theorem 3.1

IfiP = IN >> @ >> OQUT, then P is asynchronous.

Proof:

IN >> P' >> 0oUT

= IN >> (IN >> Q >> 0UT) >> oUT {by the assumption}
= |lagineh(py (BUFai >> BUF:) >> Q

>> ”chutch(P) (BUFC',a' >> BUF:',C) {law (k) of >>}
= IN >> @ >> 0UT {lew (f) of >>}
= P {by the assumption}

Theorem 3.2
H P is asynchronous then P >> QUT = P = IN >> P.
Proof: Similar to theorem 3.1.

Here we recall a reordering relation [on sequences of communications introduced in [7, 4],
where s [T ¢ means s is obtainable from ¢ by moving inputs before outputs, and by changing
the interleaving of communications on distinct channels. Formally, C is defined as the smallest
binary relation with the following properties:

1. It is a preorder.
2. It is respected by catenation: s C t and 4 C v implies s-u T £+ .

3. The order in which the environment sends data along different input channels (say ¢ and
5
b) does not matter: < a.m, b.n >LC < b, a.m >.

4. Data on different output channels (say ¢ and d) may be received by the user in any order:
<em, dn >C<dn, com >,

5. If the environment can receive data on an output channel ¢ then it can still receive the
same data after sending further data along an input channel a:
<am,cn>LC<en,am>

In fact, the binary relation C is no more than the reflexive and transitive closure of the binary
relation <:
Lemma 3.1

C = Unpo 2"

Tho s Tmrnn lndtnin e 01 0

As mentioned in section 2, the interfaces IN and OUT are introduced to store inputs which
have been received from the environment, but have not been consumed, and outputs which
have been produced, but have not been delivered to the environment, respectively. This fact
can be formalised by the following lemma:
Lemma 3.2
u € traces(IN | P'|| OUT) =

v € out_com(P)*, w € in.com(P)* e (u T aP)-v C (a1 alP') w

Now comes one of the main results of this section:
Theorem 3.3
An asynchronous process P possesses the following properties

1. any trace can always be extended by an input event:
8 € traces(P) = s- < a.m >€ traces(P)

for any a.m € in_com(P).

2. any trace can be extended by a finite sequence of output events so that it refuses to

output:
s € traces(P) = 3t € out.com(P) e s-1 € F(P)

3. the set F'(P)} is non-empty and closed wrt. the reordering [t

F(PY£ 0 A (sCt A teF(P)= se F(P))

4. the set of divergences(P) is also closed wrt. the reordering £t

%
sE t A t€ divergences(P) => s € divergences(P)

5. If P diverges after its environment has received data from it, so does P before the
environment received that data:

s < c.m >€ divergences(P) = s € divergences(P)
for all e.m € out_com(P).

6. If P can engage in an unbounded amount of output before receiving an input from its
environment, then it is diverging:

s € traces(P) A (Vn,3t € out_com(P)ed#tt > n A st € traces(P)) = s € divergences(P)

-]

. (8, X)) € failures(P) iff
s € traces(P)
A (s € divergences(P)
V X Coutch(P) A 3t € out.com(PY* es-t€ F(P) A tT{X X Mes) =<>)

Proof: See appendix.

The more important result is the inverse of theorem 3.3: the properties (1)-(7) are indeed
characterised by the defining equation in the following sense:

Theorem 3.4

Any process that possesses the properties (1)-(7) in theorem 3.3 is asynchronous.

Proof: See appendix,

The defining equation gives us a complete subset of communicating sequential processes.
Theorem 3.5

The set of asynchronous processes is a complete partial order with least element Chaos.
Proof: Direct from the laws (¢) and (d) of the chaining operator.

The chaining operator is to asynchronous processes what sequential composition is to im-
perative programs.

Theorem 3.6 -

I both P and @ are asynchronous processes, sois P >> .

Proof:

P>>q
= (INp >> P' >> OUTp) >> (INg >> Q' >> OUTy) {by the assumption}
= INp >> (P' >> OUTp >> INg >> Q') >> OUTy {law (a) of >>}
= INp >> (P >> @) >> OUlIy {theorem 3.2}

Let C be a set of channel names, then P\C is a process which behaves like P except that
each occurrence of any communication along the channels in C is concealed. Asynchronous
processes are also closed wrt, the CSP concealment operator,
Theorem 3.7
H P is asynchronous, so is P\C. When C contains input channel names then P\C = Chaos.
Proof: Suppose that C' contains input channel name . From theorem 3.3 it follows that for
any n > 0 there is a sequence t of communications occurring along the channel @ such that
t € traces(P), which implies

<>€ divergences(P\C)

as required.

Now consider the case that C' only contains output channel names. Let

p ¥ outch(P) — C
d
ouri ¥ lep BUFp

Then one has

P\C
= (IN >> P >> OUT)\C {def of P}
= (IN || P'|| OUD)\(inch(P') U outch(P') U C) {def of >>}

= (IN (P [{leec BUF,JNC\C) || OUT1)\(inch(P') U D)
{law (¢) of the concealment}
= IN >> (P\C") >> oUTy {theorem3.2}

Putting two asynchronous processes with disjoint channels in parallel will produce an asyn-
chronous network.

Theorem 3.8

Let P and € be asynchronous processes with disjoint channels, then P || @ is also asyn-

chronous.
Proof:

rle
= (INp >> P' >> OUTp) || (INg >> Q' >> OUTq) {by the assumption}

FTAY DI AYIE NIl LN v e kI D

(INg 1| Q' | OUTa)\(inch(@') U outeh(@)) {def of >>)
(TN | 1) [| (P @' [| OUT» | OUT))\

(tnch(P") U outeh(P') U inch(Q') U outch(Q')) {law (c) of the concealment}
(INp || INg) >> (P')| Q") >> (OUTp || OUTY) {def of >>}

Let f be an injective function which maps the set of channel names of P onto a set of channel
names, We define the process f(P) as one which engages in the communication f(a).m when-
ever P would have engaged in a.m.

Theorem 3.9

If P is asynchronous, so is f(P).

Proof: Trivial.

4 A CSP operator for asynchfony

In this section we show how a CSP process can be mapped to an asynchronous process, and
explore the properties of this mapping. The theorems form the basis of an algebraic charac-
terisation of a theory of asynchronous processes.

We transform a CSP process to an asynchronous process by chaining it in between two inter-
faces which store its input and output respectively. Formally the mapping is defined by

PY N >> P >> oun)

From theorem 3.1 it follows that the above function always delivers an asynchronous process
as the result. For convenience the decoration ! will be dropped in the later discussion.

A buffer which can store at most one message can be defined by a simple recursion
Copy = 17z — rle — Copy

It is not asynchronous since it will refuse to input when already storing a message. The
function ~ maps this one-place buffer to an unhounded buffer:

BUFp >> Copy >> BUF., = BUF,,
The process Stop is always prepared to input, but never output and diverge, this is because

IN >> Stop >> OUT
= IN >> Stop {the expansion law of >>}
= Jacinen @72 — (IN(< a.x >) >> Stop) {the expansion law of >>)
= [oginen ¢’ = (IN >> (d'le —» BUF, o) >> Stop)
{law of (h) of >>}

= lacinek @72 — (IN >> Stop) {the expansion law of >>}

where det
{3
IN(Kaw>) = BUF«(<2>) [(leinch - (i} BUFhpr)

The asynchrony operator enjoys a number of algebraic properties,

Theorem 4.1

It is idempotent, strict, distributive wrt. non-determinic choice and continuous
(WP = P

[\ WAl N FTE wnn

BPNQE =Png "
(4) (Un Pn) = Ln Pa

Proof:
I
= IN >> P >> QUT {def of "}
= P {theorem 3.2}

The remaining conclusion follows from law (b), (¢} and (d) of >>.

If P and @ have disjoint channels, then it does matter if we put interfaces on them inde-
pendently or together:

Theorem 4.2 L
If P and @ have disjoint channels then (P || Q) = P| @ .
Proof:
Pl ey
= ”aeinch(P)Uinch(Q) BUFa,a’ >> (P ” Q) >> ”chui‘ch(P)Uoutch(Q) BUFc",c

{def of 7}
= (INp >> P >> OUTP)||(INg >> Q >> 0OUTy)
{law of (k) of >>}
- PG {def of °}
The asynchrony operator ~ also distributes through the chaining operator.
Theorem 4.3

(P>>Q)Y =(P>>)Y =P>>0

Proof:
(P >> Q)

= INp >> (P >> Q) >> 0UT, {def of =}
= INp >> (INp >> P >> OUTp >> Q) >> OUTyg {def of }
= INp >> (P >> (INg >> Q >> OUTy) >> OUTy {inch(Q) = outch(P)}
= (P >>Q) {def of 7}
= (INp >> P >> QUTp) >> (INQ >> Q >> 0UTy) {inch(P) = outch(Q)}
= P>>¢ {def of "}

The nested application of ~ in a guarded process can be removed.,

Theorem 4.4

(1) (elm — P) = (c'm — P)
(2) (e?z — P(z)) = (al2 — P(’n)) L
g") (ﬂfaex ale = Po(@) ey ctme = @) = (lex @2 = Pa(2) [Jey ctme — Q)

(1) Define
OUT(< em>) Z BUFuo(< m >) || (lucoutch—iey BUFara)
LHS
= IN >> (elm — P) >> 0UT {def of "}
= IN >> P >>Q0UT() {the expansion law of >>}
= IN >> P >> OUT(< eom >) {law (k) of >>}

= IN >> (clm— P) >> QUT {the expansion low of >>}

DIT £

(2) Similar to (1).
(3) Similar to (1).

The composite choice P\\Q can select @ internally before the environment offers the choice;
) plays the same role as a‘skip-guarded process in a guarded choice [5]. It will not matter if
@ has been chained between the interfaces or not.

Theorem 4.5 _

(P\Q) = (P\\@).

Proof: Similar to theorem 4.4.

The fact that the order in which an asynchronous process transmits messages on distinct
channels does not determine the order in which the environment receives data is described by
the following law.

Theorem 4.6 :

(chm — dln — P) = (dln — clm - PY.

Proof: Define

OUI(< em >, <dn>) Z BUFy(<m>) | BUFu(<n>) |lreoutchtody BUFuy

LHS
= (cm — (dln — P)YY {theorem 4.4}
= IN >> (dln — P) >> OUT(< ean>) {the expansion law of >>}
= IN >> P >> OUT(< dn>) >> OUT(< e.m >) {the expansion law of >>}
= IN >> P >> OUT(< em >, < dyn >) {law (B) of >>}
= RHS {by a mirror argument}

The order in which an asynchronous process waits for messages from distinct input channels
does not matter.

Theorem 4.7

(a?7v — by — P(z,y)) = (b7y — alz — P(z,y)) .

Proof: Similar to theorem 4.6.

If the right component of a chain is ready for an output, then that event can take place
first.

Theorem 4.8

(P >> (cm = Q) = (cm — (P >> Q))°

Proof: -
RHS
= INp >> (clm — (P >> Q)) >> 0UTy {def of ~}
= INp >> (P >> Q) >> OUTp(< em >) {the expansion law of >>}
= INp >> (P >> (cdm — Q)) >> OUIy {the expansion law of >>}
= LHS ‘ {def of "}

If both components of a chain of asynchronous processes are ready to communicate with each
other, then the internal message will be transferred instantaneously.

Theorem 4.9

(em — P) >> (et = Q=) = P >> Q(m)

Proof:

T Ire

= P >> 0UTp() >> INg >> (e?z — Qz)) >> OUTq

{the expansion law of >>}
= P >> OUTp(< eam>) >> (ctw — Q(z)) >> OUTy {law (R) of >>}
P >> 0UTp >> Q(m) >> OUTg {the expansion law of >>}
= RHS {theorem 3.2}

If the left component of a chain is waiting for an input from the environment, and the right
one is waiting to receive a message from the left one, then the chain will not make progress
until the environment sends it data,

Theorem 4.10

(a?z — P(z)) >> (c?y = Q) = (alz = (P(2)" >> (ety — Q)

Proof: Similar to theorem 4.9.

The effect of concealment is to allow any communication along the concealed channels to
occur autornatically and instantaneously, but make such occurrences totally invisible. Uncon-
cealed communications will remain unchanged.

Theorem 4.11

(1) (elm — PY\C = P\C provided that c € C

(2) (¢t —» PY\C = (c!m — P\CY provided that ¢ ¢ C

(3) (a?2 — P(2))'\C = (a?& — (P()\C))" provided that C N inch = §

Proof: .

(1) Let OUTy =4 Haeowtch(P)-(c} BU Fara.

LHS
= (IN >> P >> OUT(< em >)\C {the ezpansion law of >>}
= (N >> P >> (0OUTy || BUFu (< m>NN\C {def of OUT}

= (IN >> P >> (OUT; || (BUR.y(< m >\eD\C {c)
{law (¢) of concealment}

= (IN >> P >> (OUTy >> (BUFy; >> (clm - BUF; N\{I)HN\C — {¢}
{law (k) of >>}

= (IN >> P >> (OUTy >> (BUFs \{cH)\C — {c}
{law (b) of the concealment}

= RHS {law (¢) of the concealment}

(2) Similar to (1).
(8) Similar to (1).

The operator ~ is interchangable with the renaming operator,
Theorem 4.12

(f(PY) = £(P)

5 Conclusion

Asynchronous processes (data flow networks) have been well-studied before [3, 4, 6, 8, 9, 12, 13].
Our main contribution is to show how they can be formally related to synchronous processes
within the framework of CSP. This complements our earlier work in 7). The advantages of
our approach include

3

H

1. An axiomatic framework for the description of asynchronous processes. (Algebraic laws
presented in [10, 11] with the unique fixed point theorem allow us to prove properties
of asynchronous processes by symbolic execution of communications. The calculations
have been simplified by prior development of a calculus of pipes in section 2. Algebraic
methods seem often preferable to the direct manipulation of (finite and infinite) traces.)

2. The integration of asynchronous processes into the mathematical theory of Communi-
cating Sequential Processes. (Both synchronous processes and asynchronous processes
can be tackled in a unified conceptual framework. As a result, some techniques and tools
(e.g., [11]) being developed for specification and implementation of GSP processes can
be applied to design asynchronous systems effectively. In particular, the complete set of
C5P laws and its proof system provide a way of transforming networks of processes into
forms more suitable for sequential execution.)

Acknowledgement
This research was supported in part by the Science and Engineering Research Council of Great

Britain and by Esprit Basic Research Actions.

References

(1] S.D. Brookes, C.A.R. Hoare and A.W. Roscoe. A theory of communicating sequential
processes. J.ACM 31 (7}, (1984) 560-599.

[2] S.D. Brookes and A.W. Roscoe. An improved failures model for communicating sequential
processes. LNCS 197, Springer-Verlag, (1984) 281-305.

[3] M. Broy. Semantics of finite and infinite networks of concurrent communicating agents.
Distributed Computing 2 (1), (1987) 13-31.

[4] K.M, Chandy and J. Misra. Reasoning about networks of communicating processes. (Un-
published) Presented at INRIA Advanced NATO Study Institute on Logic and Models
for Verification and Specification of Concurrent Systems, France {1984).

[5] INMOS Ltd. Occam 2 Reference Manual. Prentice-Hall International Series in Computer
Sciences, (1985).

(6] B. Jonsson. A model and proof system for asynchronous processes. Proc. 4th ACM Symp.
on Pricinple of Distributed Computing {1985), 49-58.

[7) M.B. Josephs, C.A.R. Hoare and He Jifeng. A theory of asynchronous processes. submitted
to JLACM.

[8] G. Kahn. The semantics of a simple language for parallel processing. In Rosenfeld JL
(ed.) Information Processing 74. Proc of IFIP Congress 74, Amsterdam, North-Holland,
(1974) 471-475.

[9] R.M. Keller and P. Panangaden. Semantics of networks containing indeterminate opera-
tors. Distributed Computing 1, (1986) 235245,

[10] C.A.R. Hoaze. Commz:m‘cating Sequential Processes. Prentice-Hall International in Com-
puter Sciences, (1985).

[11] A.W. Roscoe and C.A.R. Hoare. The laws of occam programming. TCS. 60 (2), (1988)
177-229.

(12] J. Misra. Equational reasoning about non-deterministic processes. (1989).

[13] J. Staples and V.N. Ngoyen. 4 fizpoint semantics for nondeterministic data flow. J.ACM
32 (2), (1985) 411-444.

[14] J.T.Udding. Classification and Composition of Delay-Insensitive Circuits. Ph.D. Thesis,
Eindhoven University of Technology (1984).

6 Appendix

In the later proof we will use the following properties of the failure set of communicating
sequential processes in [10]s

(s, X) € failures(P} A Y CX = (s, Y)E failures(P)
s € divergences(P) A t€ (aP)" = s-t¢ divergences(P)

Proof of Theorem 3.3

(1)
s € traces{P)
= §€ traces(IN >> P' >> OUT) {P=1IN >> P' >> OUT}
= dJuss=ulaP A

u T alN € traces(IN) A

T aOUT € traces(OUT) A

u T P’ € traces(P') : {def of >>}
= Jues <am>=(w<am>)TaP A

(v-<am>)TalN = (utaIN) < am >€ traces(IN) A

(u- < am >)T aOUT = T aQUT € traces(OUT) A

(w-<am>)taP' = uTaP' € traces(P') {def of BUF}
= s < am>€ traces(IN >> P' >> OUT) {def of >>}
= & < am >€ traces(P) {P=IN >> P >> 0UT}

{2) Let u = duplic(s). Then from lemma 2.1 one has

s=uTaP A uloalN € traces(IN) A
u T aOUT € traces(OUT) A ut aP' € traces(P')

Now consider two cases:
(a) After the process P’ engages in u T P’ it will be able to deliver an unbounded amount of
output before receiving an input from its environment. In this case one has

¥n, 3v € out_com(P') e #v>n A (v T aP') v € traces(P")
= Vn, Iv € out_com(P') e
#v>n A
(v-v)TaIN = utalN € traces(IN) A
(u-v) T aOUT = (w1 aIN) v € traces(OUT) A

{u-v)taP = (u1aP') ve traces(P") {def of BUF}
= s € divergences(IN >> P’ >> OUT) {def of >>}
= 8 € divergences(P) {P=1IN >> P >> OUT}
=> s€ F(P) {def of F(P)}

(b) Otherwise there is a finite sequence v of outputs such that
((u T P’y v, outch(P")) € failures(P')

which implies that s- o' € F(P) as required.
(3) Since <>€ traces(P), from (2) it follows that

TH o maid mann YR L 2~ I DA

i.e., F(P) is nonempty.

=

=N

s=<tAte F(P)
s Xt A (t, outch(P)) € failures(P)
{def of F(P)}
s<tA
Jw e w = duplic(t) A w € traces(IN || P' || OUT) A
(w, outch(P) U inch(P') U outch(P")) € failures(IN || P' || OUT)
{lemma 2.1}
Ju,we s=uTaP A w=duplic(t) A
Va € inch{(P)su 1 aBUF,0 = wl aBUFyq A
utalP =wtaP' A
Ve € outch{PYeul aBUFy . = wl aBUF.,. A
(w, outch(P) U inch(P') U outch(P")) € failures(IN || P' || OUT)
{def of =}
Jues=uldP A
(u, outeh(P) U inch(P') U outch(P')) € failures(IN || P! || OUT)

{def of I}
(s, outch(P)) € failures(P)
_ {def of >>1}
s € F(P) {def of F(P)}

from which and lemma 2.2 we reach the conclusion

sCtAteP(P) > se€ F(P)

(4) Similar to (3).
(5 Similar to (3).
(6) Similar to (2).

(7)

=

=

(3X C outch(P), t € out.com(Py e s-t € F(P) A t1(X x Mes) =<>)
(3X C outeh(P), t € out_com(P)* es-t € F(P) A tT (X x Mes) =<> A
duplic(s) - t' € traces(IN || P' || OUT))
, {lemma 2.1}
(3X C outch(P), t € out — com{P)* ¢ £ (X x Mes) =<> A
((duplic(s) - '} T @IN, inch(P')) € failures(IN) A
s-te F(P) A
((duplic(s) - ¢') T «OUT, X) € failures(OUT))
{def of || and BUF}
(duplic(s) - t', inch(P") U outeh(P") U X) € failures(IN || P' || OUT)
{def of |1}
((duplic(s) - t') T aP, X) € failures(IN >> P' >> QUT)
{def of concealment}
(8, X) € failures(P) {P=1IN >> P >> 0UT}

It is easy to establish the remaining part of (7).

Proof of Theorem 3.4
Suppose that ¢} possesses the properties (1)-(7). Define
def '
§ = IN|Q|oUT

P Y oIN s> @ > our

First we want to prove that

divergences(P) = divergences{Q)

(a)
s € divergences(Q)
= duplic(s) € divergences(S) {lemma 2.1}
= s = duplic(s) T aQ € divergences(P) {def of the concealment}
On the other hand, let s € dévergences(P), one has either
(b)
Jue (s=uTa@ A ué€ divergences(S))
= Jue(s=ufald A uc traces(S) A
u T aQ’ € divergences(Q')) {def of S and ||}
= du,v,we (v € out_com{Q)* A w € incom(@)* A
s vC(ujeaQ) w A
u T aQ' € divergences(Q')) {lemma 3.2}
= Ju,v,we (v € outcom(Q) A w € incom(Q)* A
s vC (uta@Q"Y -w A
(v TaQ") v € divergences(Q'))
{def of divergences(Q)}
= dve (v € out—com(Q) As-v € divergences(Q)) {property (4)}
= 8 € divergences(Q) {property (5)}
or
(c)

Jue (s=uTa@ A u€ traces(S) A
Vn, 3o € outcom(Q)* ¢ #v>n A u.v € traces(S))
= Jue(s=utTa@ A uE traces(S) A
Y, 3v € outcom(Q') o #v>n A (vT aQ') v € traces(Q")

{def of S}
> Hdu,we (s=ulaQ A € traces(§) A
u T aQ’ € divergences(Q")) {property (6)}
= s G divergences(Q) {see (b)}

Combine (a), (b) and (c) we conclude that divergences(P) = divergences(Q).

Now we wish fo prove that
[UL SR, Ifa) . F S R 2 o 2

From (a)-(c) and property (7) we only need consider those failures (s, X) with

(d)

(¢)

=

=

=

=

s ¢ divergences(Q) A X C outch(Q)

(s, X) € failures(Q)
Jt € out_com{Q) e st € F(Q) A tT(X X Mes) =<>

{property (7)}
3t € out_com(Q)* o duplic(s) € traces(S) A t1(X x Mes) =<> A
duplic(s) - ' € traces(S) A s-t € F(Q) {lemma 2.1}
3t € out_com(Q)" o
(duplic(s) T aIN, inch(Q')) € failures(IN) A
(&', outeh(Q")) € failures(Q') A
((duplic(s) T aOUT) - ¥/, X) € failures(OUT)

{lemma 2.1}
It € out_com(Q))* o
(duplic(s) - ¢/, inch(Q') U outch(Q") U X) € failures(S) {def of |}
3t € out_com(Q)" » ((duplic(s) -t') T @, X) € failures(P)

{def of the concealment}
(s, X) € failures(P) {property of duplic}

(s, X) € failures(P) A s ¢ divergences(P)
Jue (s=ufa@ A
(v 1 oIN, inch(Q")) € failures(IN) A
(uT @', outch(Q")) € failures(Q') A

(v 1 aOUT, X) € failures(OUT)) {def of P and property (7)}
Ju, ve (v € out_com(Q)* AvT (X X Mes) =<> A
s=uTal A
scvC(utaQ’) A
(v 1 aQ’, outch(Q')) € failures(Q')) {lemma 3.2}

dve (v € out-com(Q)* A v1(X X Mes) =<>A s-v€ F(Q))
{property (3)}
(s, X) € failures(Q) {property (7)}

This completes the proof.

