The Mathematics of Programming
C.A.R. Hoare

Cambridge 4th April, 1985

summary

Computer programming is a profession in which the talents of a mathematician

are most urgently needed and can be most effectively employed. The mathematics

of programming is an exciting topic for research, with great promise of original
and useful results. 1Its subject matter and methods are those of discrete pure
mathematics, but the challenge and excitement are those of applied mathematics
and engineering - to design and deliver a reliable product performing a valuable

service of a kind that is usually new and sometimes spectacular.

1. The Problem

Stored program digital computers must be the most reliable mechanisms ever built

by man. Millions of computers throughout the world, and thousands in space, are
executing millions of instructions per second for millions of seconds without

a single error in any of the millions of bits from which each computer is made.

In spite of this, nobody trustsa computer, and their lack of faith is amply justified.
The fault lies not in the computer hardware, but in the programs which control

it - programs replete the errors, oversights, inadequacies and misunderstandings

of the programmers who compose them, There are some large and widely used programs
in which hundreds of new errors are discovered each month; and even when they

are corrected, the error rate remains constant over several decades. Indeed,

it is suspected that each correction introduces on average more than one new error.
Statistical estimation offers the dubious comfort that only a negligible proportion
of all the errors in these programs will ever be discovered, before the programs are

superceded by new products, which are, of course, egually unreliable.

Now computers are beginning to be used increasingly in life-critical applications,
where the correction of errors on discovery is not an acceptable option - for
example in industrial process control, nuclear reactors, weapons systems, station-
keeping of ships at sea, aero engines, and railway signalling. The engineers

in charge of these projects are naturally worried about the correctness of the
programs performing these tasks, and they have suggested a number of expedients
for tackling the problem. . Unfortunately, many of these methods are of limited
efffectiveness, because they are based on false analogies rather than a true
appreciation of the nature of computer programs and the activity of programming.
Let me give some examples of four methods which have been proposed and used to

increase confidence in the reliability of programs.

1.1 The sword of Damocles

The first method is the simplest, and requires no technical insight. I illustrate
it with a story. When Brunel's ship the 88 Great Britain was launched into the
river Thames, it made such a big splash that several spectators on the opposite
bank were drowned. Nowadays on launching a ship, the force of entry into the

water is reduced by rope tethers which are designed to break at carefully calculated

intervals.,

When the first computer was installed in the Mathematish Centrum in Amsterdam

it was used to calculate the appropriate intervals and breaking strains of these
tethers. In order to ensure the correctness of the program which did the calculations,
the programmers were invited to watch the launching from the first row of the
ceremonial viewing stand set up on the opposite bank; fortunately they accepted

and they survived.

-3

A similar solution has been proposed for programs which control the propeller
and steering of ship which has to keep station in rough seas very close to the
leg of an e¢il drilling rig. Unfortunately, when the programmer resigns his
highly paid residential sinecure on board the ship, is this because of boredom

or sea-sickness, or from fear of something worse?

1.2 Eyeballing

When the early American artificial satellites were controlled by computer, the
programs were written by outside contractors. Like all such products, when
delivered they were subjected to quality control. This was done by visual
inspection of the absolute binary code of the programs, rows and rows of raw
digits, zerces and ones. They could not use .any higher level programming language,
since assemblers and compilers are large programs, and therefore even less to

be trusted than the programs which they compile.

In spite of this, a massive suite of programs was constructed to assist in the
eyeballing, for example to reconstruct the assembly code and flow charts f£rom
the binary. These charts were then annotated by human checkers with assertions
about scaling factors of the arithmetic operations; and machine assistance was
provided to check that the scaling factor would not vary each time the program

loops.

The fundamental flaw in this approach is that when checking something you should
always check it against something else, which is either known to be reliable,

or which is similarly checked. To check the absolute binary code against absolutely
nothing is a fearsome task, and requires inspired guesswork to reconstruct the
documentation, designs and specifications. No wonder checking can be even more
expensive than the original production of the code, which progresses in the more
natural direction from abstract to concrete, from specification through design

to the code,

The basic mistake in eyeballing is that the checking is done far too late: it
1s & fundamental principle of quality control that what should be checked is not
the product but the methods by which it is produéed. It is only by improving

methods that quality can be assured.

1.3 Heroic Testing

Programs that control critical processes can often be tested by running them initially
in a simulated enviromment, for example inside a fast mainframe computer, Suppose
that the simulation runs many times faster than real time. Thus in one year it

may be possible to simulate say a thousand year's operation of the process, and

check all the answers given by the program. If there are only a few errors detected,
it is then quite unlikely that any such errxor will cccur within the first ten

years of actual live running, and this constitutes the whole design life of the

program. Contd/....4

-

This appealing method suffers from a number of devastating drawbacks. The first

o
and least of them is that the delay before installation of a working program is

usually unacceptable,

The second flaw is philosophical: it is morally very difficult to risk people's
lives on a program with known bugs. And yet to 'correct' the known bugs would
not only be wholly ineffective; it would be quite disastrous,since it could introduce

a completely unknown batch of new bugs intce the population.

The third is a practical flaw. What happens if ten errors are detected in the
thousand year test? This gives a quite unacceptable risk that an error will occur
in the ten years of actual use, But the only remedy is to rewrite the whole program
and start the test again, By that time, the whole project will have lost its

value and relevance.

The fourth is a logical flaw: the method depends on the correctness of the simulation
environment and on that of the checking program. Yet if the checking program
is correct, why not use it as part or whole of the program which controls the |

real industrial process?

The fifth drawback fortunately makes the previous foﬁr irrelevant: it is only
in very simple and increasingly rare applications that it is possible to run a
simulation, even on the fastest supercomputers, at a rate fastexr than real time;
and it is ridiculous to simulate a program for a hundred times its design life

before putting it into service.

1.4 Diversity

In many life-critical applications, the problem of hardware reliability requires
installation of three or more identical computers, with a voting circuit at their
output, to ensure that every action has the agreement of at least two of them.

The likelihood of two or more computers going wrong simultaneously is very much
smaller than just one. Since the hardware is available, the same redundancy technique
can be cheaply applied to software, by writing three or more independent programs,

and loading a different one into each computer.

In hardware, redundancy is designed to counter transient errors, such as might

be caused by an occasional alpha-particle impinging on the silicon, It does

not deal with persistent faults, which must be cured by manual (or automatic) replacement
of compeonents. Unfortunately, in software there is no reason to suppose ef}ors

are transient; a single erroneous subscript can cause the program to be overwritten,

so that it never works again. To guard against this, the hardware is usually

designed to clear the store and reload the program after each cycle of operation,
Unfortunately this severely restricts the range of applications and~algorithms

which may be protected by redundancy. For example, it is impossible to accumulate

past readings, to integrate or to smooth them,

~5-

A second weakness in this method is that there is no reason to suppose that errors
in programs produced by independent programmers will be independent. Quite the
reverse, there is good evidence that programmers are subject to the same kinds

of misunderstandings and oversights - for example, forgetting to test for an

extreme case, or omitting to provide for zero iterations of a loop.

But there is one new circumstance that will make diversity impractical on large
systems. In many real time applications, the response of a computer depends on
details of the timing of the signals which it requndsto - for example, the
arrival of an interrupt. Thus two correct programs which receive signals at
slightly different times can give different results, both of them correct.
Unfortunately, a hardware voting circuit cannot know this, and will invoke
unnecessary alarms. In spite of vigorous efforts to prevent it, this is what
actually occurred on the first attempted launch of the first space shuttle, the
Columbia, in the first highly spectacular public failure of a computer program.
And it was actually caused by the very technique designed to'increase reliability.
Yet this is the technique which is nowadays commonly required and implemented

in life-critical applications.

1.5 Summary

I have described four methods which have been used in the past to tackle the problem
of program reliability; and I have described and even mocked their limitations

and inadequacies. But please don't think I am advocating abandonment of these
methods. Certainly not: they have proved reasonably effective so far, and they
must continue te be used until some better scolution is established, and preferably
for some time after. In matters of safety, I recommend belt, braces, as well

as thick underwear. But when proper effective methods for achieving program
reliability have become established, I predict that the methods I have described

go far will play a very minor role.

Cont/.....56

2. The Sclution

A proper solution to the problem of program reliability must be based not just
on current practice,or on analogies with other branches of engineering, but on
a full understanding of the nature of computers and the programs that control

them. I claim that this understanding is to be obtained from mathematics; and

I present this claim in the following four theses:

1, Computers are Mathematical machines. Every aspect of their behaviour
igs defined with mathematical precision; and every detail can in principle

be deduced from this definition by the laws of pure mathematics.

2, Computer programs are mathematical expressions describing the instructions
which the computer will follow with unprecedented accuracy, reliability

and speed.

3. A computer programming language is a mathematical theory, including
concepts, notations, axioms, and theorems which enable the conseqguences
of every design decision taken by a programmer to be rigorously deduced

from nothing but the text of the program.

4. From these premises I conclude that programming is a mathematical activity,

whose reliable practice reguires only the determined application of

traditional methods of mathematical understanding, calculation and proof.

I shall illustrate this conclusion by showing a small fragment of the elementary
mathematics of computer programming, nothing more advanced than the simple kind
of algebra of arithmetic operations which we learn at school. First, we must

learn to say:

'Let P and Q be programs'

But how can they be? - programs can be enormous - millions of lines of FORTRAN
code! How can all that complexity be squashed into just a single letter or even

two letters P and Q7

Well numbers can be pretty big too; yet we can't even start doing mathematics

until we allow them to be represented by a few little letters,

If P andQ are programs, so is (P;Q}. A computer executes this program by first

executing P; and when P successfully terminates, it executes Q. 1In familiar

programming languages like FORTRAN and BASIC the operatoxr of sequential composition

is represented by a change to a new line

P
Q

so that the program P is written above the program Q.

_7...
However, this vertical formatting is not conducive to mathematical reasoning,
and the semicolon of PASCAL and the mathematical calculus of relations is much
to be preferred., It enables us to formulate our first algebraic law, the

associativity of sequential composition
(P;Q);R = P;(Q;R)

Our next notation is a constant, the program 'skip' which terminates successfully
without doing anvthing or changing anything. Thus it has the same effect as a

CONTINUE in FORTRAN or a remark in BASIC:
REM IS5 JUST LIKE SKIP

The algebraic law which defines the essential property of ‘skip' is that it is

unit of sequential composition !

skip;P P;skip = P

The conditional I write with the condition b in the middle
P<b ¥ Q “p if b else Q"

This is executed by first testing the condition b, If b is true, P is executed,
and if b is false, Q is executed. Conditionals are written in BASIC using jumps

and labels,

410 IF b THEN GOTO 560

411 @

550 GOTO 593

560 P

593'ééM T0 FILL IN THE LINE

The reason why I have preferred an infix notation < b » is that it simplifies the expression

other conditionals <c», anxd it admits distribution of ; from the right.
PE{bt @QfchPR = @fbiQ et (Pfctr)
(P 4o P QiR = (P;R) ¢ b} (QiR)

Enthusiasts for BASIC or FORTRAN are invited to translate these laws into their
favourite notations - and then try using them to reason about their programs.
My final example is the assignment

x:=f (%)
which is executed by evaluating the function f at the current value of x and
assigning the result as the new value of x, An important example of an algebraic
law of assignment is that successive assignments to the same variable can be

amalgamated by substitution
(x:=f(x}); x:=g{x)) = =x:i=g(f{x))

contd/..... 8

-8-

In most programming languages this law is subject to a number of complicated
qualifications., When choosing or designing a programming language, it is a good
idea to avoid such complications, to simplify reasoning about programs and their

correctness.

In BASIC and FORTRAN for assignment you have to use a plain equal sign = instead

of the := sign adopted in PASCAL, for example
X=3x%
or even X=xXx+1

If the designers of these programming languages were deliberately trying to make
it difficult to reason mathematically about computer programs, they could not

have chosen better notations for their nefarious purposes.

Programming in BASIC is like doing long division in Roman numerals. Roman numerals
are very convenient for carving on stone, and they are not too bad for addition.
For multiplication, they present problems; but division is next to impossible.

The only known method is to guess the answer, multiply out, and correct it if

it is wrong - in exactly the same way as BASIC programmers are taught now to

write their program, test it and correct it if it is wrong.

Once you have seen the mathematical basis of computer programming, it is clearly
foolish to seek reliability of programs by any other method than by sound and
familiar methods of calculation and proof, checked where necessary by other
mathematicians or even by computer. In mathematics we don't use the sword of
Damocles. Did they offer Isaac Newton free accommodation in an elegant mansion
built for the purpose in the middle of a firing range, just to ensure that canon
balls fly in a parabola? In mathematics we rarely use a test to destruction. Did
they test the binomial theorem on a hundred thousand numbers, to ensure it would
work on the hundred occasions it was needed? In mathematics we do not use
diversity. We know the grocer's assistant who adds the figures five times, and
compares the different results, but we don't regard him as a mathematician. We
know topologists who give five different definitions of continuity, but thatk not
to ensure that at least three of them will work when the others fail? An in
mathematics we do not use Roman numerals any more. An Should we go on teaching

BASIC to schoolchildren, on the grounds that it runs better on stone-age Computers?

._9._.
Before this happens, we need to know much more about the mathematics of programming.
In this talk I have given a sample of half a dozen algebraic laws about seguential
programs, I know about eighty laws in all, and these are sufficient to characterise
a complete theory of sequential programming. Further laws are required for concurrent

programming, of the kind likely to be required in life-critical applications.

This is only a start. You would not expect to solve serious problems in science
and engineering just by algebraic laws, though these form a very necessary basis,

taken for granted in all subseguent reasoning on the subject.

To discover and formulate and prove the validity of new methods of developing
correct programs is like discovering new methods of solving differential eguations,
It is not something which programmers and computer scientists can do by themselves.
Like other scientists and engineers before us, we need the utmost assistance of
good research mathematicians who are willing to turn away from the traditional
branches of mathematics which they have studied at length from books, and start
thinking from first principles about a new branch of their subject. It is only

by continuous exploration of such new branches that mathematics can retain its

vigour and intellectual rewards,

I believe that this will be an exciting and important branch of mathematics. Its
subject matter and methods appear to be those of discrete pure mathematics, but

the challenée is that of applied mathematics and engineering - to design, develop
and deliver a reliable product meeting requirements of a kind that are often new

and sometimes spectacular.

