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Abstract. The dynamic nature of ontology development has motivated the formal
study of ontology evolution problem. This paper addresses contraction —the prob-
lem of retracting information that should no longer hold in an ontology. We survey
existing model and formula based semantics to contraction and investigate their
properties for the description logics DL-Lite and EL, which underpin the QL and
EL profiles of OWL 2. Our results suggest that these contraction semantics, which
are well-understood and well-behaved for propositional logics, are intrinsically
problematical in the context of ontology languages. We believe that a starting
point for addressing these problems might be the recent semantics proposed in [1].

1 Introduction

Ontologies written in the Web Ontology Language (OWL) [2] and its revision OWL 2 [3]
are widely used in applications. The formal underpinning of OWL is based on Description
Logics (DLs) – knowledge representation formalisms with well-understood computa-
tional properties [4]. A DL ontology K consists of a TBox T , describing schema-level
domain knowledge, and an ABox A, providing data about specific individuals.

Ontologies are not static entities, but rather they are frequently modified when new
information needs to be incorporated, or existing information is no longer considered
valid. The impact of such changes on the semantics of the ontology, however, is difficult
to predict and understand. This dynamic nature of ontologies motivates the study of
ontology evolution problems from both foundational and practical perspectives [5–12, 1].

In this paper, we focus on a particular aspect of evolution, namely contraction – the
process of “retracting” information that should no longer hold [13, 14]. From a logic-
based perspective, the desirable properties of contraction are dictated by the principle of
minimal change [13], according to which the semantics of the ontology should change
“as little as possible”, thus ensuring that the contraction has the least possible impact.

Logic-based semantics derived from the principle of minimal change have been
studied in the more general context of ontology evolution and update. These semantics
are either model-based (MBS) or formula-based (FBS). Under both types of semantics,
evolution of ontologyK results in another ontologyKop in which the required information
is incorporated, retracted, or updated; the difference is in the way Kop is obtained.

Under MBS the modelsM ofK (i.e., the set of all first order interpretations satisfying
K) evolves into a setM′ of interpretations that are “as close as possible” to those inM
(w.r.t. some notion of distance between interpretations); then, Kop is the ontology that
axiomatisesM′ [7–9, 15, 16]. Under FBS, Kop is a finite subset of the deductive closure
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of K satisfying the evolution requirements, with FBS differing in their subset selection
mechanism. FBS have been less studied in the context of ontologies [8, 17].

Approaches to ontology contraction typically adopted in practice are, however,
syntactic [6, 10, 18, 19]. For example, to retract an axiom α entailed by K, it suffices to
compute a maximal subset of K that does not entail α. This solution complies with a
syntactical notion of minimal change: retracting α results in the deletion of a minimal set
of axioms, and the structure of K is maximally preserved. By removing axioms from K,
however, we may also be retracting consequences of K other than α, which are intended.
Identifying and recovering such intended consequences is an important issue.

In this paper we compare different syntactic, model-based, and formula-based seman-
tics for ontology contraction, and study their basic properties. We consider two scenarios,
which are important for many ontology design and management tasks:

– TBox contraction, where the axiom α to be retracted is a TBox axiom; and
– ABox contraction, where α is an ABox assertion, and the TBox of the original

ontology cannot be modified as a result of the contraction.

OWL TBoxes are extensively used in the clinical sciences, and ontologies such as
SNOMED are subject to frequent modifications that involve retracting TBox conse-
quences [20]. ABox contraction is important for applications relying on widely-used
reference TBoxes. For example, experimental results on gene extraction can be described
using an ABox according to standard gene TBoxes. New experiments may imply that
facts about specific genes no longer hold, which should be reflected in the ABox; at the
same time, TBoxes should clearly not be affected by these manipulations of the data.

In our formal study of ontology contraction problems we will put special emphasis
on expressibility: given a DL-ontology K, an axiom α to be retracted, and a “protected”
part P ofK, we will study whether aDL-ontologyKop entailed byK exists – an optimal
contraction – such that (i)Kop 6|= α, (ii)Kop |= P , and (iii)Kop is “as similar as possible”
to K according to the notion of minimal change in the semantics under consideration.

Our framework is general, and applies to arbitrary first-order languages. When
studying expressibility problems, however, we provide results for two prominent (fam-
ilies of) DLs: DL-Lite [21] and EL [22]. which underpin OWL 2 QL and OWL 2 EL,
respectively. We show that existing inexpressibility results obtained for the problem
of update and revision in DL-Lite under MBS [8, 15] also hold for contraction with
minor modifications; furthermore, we conjecture that these results might hold even if the
optimal contraction of a DL-Lite ontology is allowed to be expressed in full first-order
logic. Concerning FBS, we focus on two semantics: the so-called bold semantics [8] and
WIDTIO semantics [8, 23]; in both cases, we show inexpressibility results that apply to
both TBox and ABox contraction in EL.

Furthermore, we show that existing MBS, FBS, and syntactic approaches to ontology
contraction are rather incompatible. Although one would expect FBS approaches to
behave better in terms of expressibility, this is not always the case; in particular, we
identify simple cases for which inexpressibility can be shown in the FBS approach, but
which can be easily captured using a model-based semantics.

Our results suggest that classical approaches to ontology contraction, which are well-
understood and well-behaved for propositional logics, are intrinsically problematical in
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DL concepts, roles axioms

EL C := ⊥ | > | A | ∃R.C | C1 u C2 C1 v C2

DL-Lite
C := ⊥ | > | A | ∃R.> C1 v C2, C1 v ¬C2, C v C1 u C2,
R := P | P− (funct R), R1 v R2

concepts, roles semantics

⊥, > ∅, ∆I , resp.
C1 u C2 CI1 ∩ CI2
∃R.C {a | ∃b s.t. (a, b) ∈ RI , b ∈ CI}
R− {(a, b) | (b, a) ∈ RI}

axiom semantics

C1 v C2 CI1 ⊆ CI2
C1 v ¬C2 CI1 ⊆ ∆I \ CI2
(funct R) RI is functional
R1 v R2 RI1 ⊆ RI2

Fig. 1. Syntax and semantics of EL and DL-Lite concepts, roles and axioms

the context of ontology languages. A starting point for addressing these problems might
be the semantics in [1], which unifies and extends FBS and syntactic approaches: the
challenge remains to extend this semantics to encompass also MBS contraction.

2 Preliminaries

We discuss contraction in the context of first-order logic (FOL). Our work, however, is
motivated by description logic ontologies, so we will use DL terminology throughout
the paper. We assume standard definitions of (function-free) FOL signature, predicates,
formulae, sentences, interpretations and models, satisfiability, and entailment.

An ontology K = T ∪ A consists of finite sets of first-order sentences T (the TBox)
and ground atoms A (the ABox). In the most general setting, a description logic can
be defined as a recursive set of ontologies closed under renaming of constants and the
subset relation. Predicates in DL signatures are typically restricted to be unary (atomic
concepts) or binary (atomic roles). DLs use a specialised syntax, where variables are
omitted, and which provides operators for constructing complex concepts and roles from
simpler ones, as well as a set of axioms.

We consider two (families of) DLs: DL-Lite [21] and EL [22]. The syntax of (the
variants of) DL-Lite and EL considered here are given in Figure 1, where A is an atomic
concept, C, C1, and C2 are arbitrary concepts, and > and ⊥ are special concepts which
are mapped by every interpretation to the domain and the empty set, respectively. TBoxes
in DL-Lite are restricted: first, > cannot occur on the left-hand side of axioms; second,
for each R2 s.t. R1 v R2 ∈ T , it holds that T 6|= (funct R2) and T 6|= (funct R−2 ).

Let DL and DL′ be DLs with DL′ ⊆ DL. The closure ClDL′(K) of K ∈ DL w.r.t.
DL′ is the set of all DL′-axioms α entailed by K.

The evaluation of DL-Lite and EL concepts and axioms under I = (∆I , ·I) is also
given in Figure 1. We adopt the standard name assumption and assume that cI = c for
each constant c; that is, we do not distinguish between constants and domain elements.

3 The Ontology Contraction Problem

As already mentioned, contraction can be seen at a high level as the process of retracting
an axiom α that holds in an ontology K while preserving a protected part P of K.
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The following notion of a contraction setting formalises the basic requirements that
K, α and P must satisfy for the contraction process to make sense.

Definition 1. Let DL be a DL. A DL-contraction setting is a triple C = (K,P, α), with
K = T ∪ A a DL-ontology, α a DL-axiom s.t. K |= α, and P a DL-ontology s.t.
K |= P and P 6|= α. We say that C is a TBox-contraction setting if α is a TBox axiom in
DL; C is an ABox contraction setting if α is an ABox assertion in DL and P |= T . ut

A contraction for a DL-setting C = (K,P, α) can now be defined as a DL-ontology
Kop that preserves P and in which α no longer holds. Furthermore, since Kop should not
add new information to K, we also require Kop to be entailed by K.

Definition 2. Let C = (K,P, α) be a DL-contraction setting. We say that Kop ∈ DL is
a contraction for C if (i) K |= Kop; (ii) Kop |= P; and (iii) Kop 6|= α. ut

The properties that an “optimal” contraction needs to satisfy are dictated by the
principle of minimal change according to which the semantics of the ontology should be
changed “as little as possible”, thus ensuring that modifications have the least possible
impact. Hence, the contraction problem can be understood at a high level as follows:

[CONTRACT]: Is a given DL-ontology Kop an optimal contraction for a given
DL-contraction setting C = (K,P, α)?; in other words, is Kop a contraction for C
such that no other contraction K′op for C is “more similar” to K that Kop?

Thus, optimal contractions are those that are “as similar to K as possible”. The notion
of optimal contraction immediately suggests the following expressibility problem.

[EXPRESS]: Does an optimal contraction exist for a given DL-contraction setting?

Contraction semantics essentially differ in their formalisation of optimality. These
can roughly be divided into three groups, which we shall discuss next: model-based
semantics (MBS), formula-based semantics (FBS), and syntactic approaches.

4 Syntactic Contraction

Approaches to ontology contraction typically adopted in practice are essentially syntactic
[6, 10, 18]. In particular, to retract an axiom α entailed by K, it suffices to compute a
maximal subset Kop of K that does not entail α. Thus, retracting α results in the deletion
of a minimal set of axioms and hence the structure of K is maximally preserved. In this
setting, optimal contractions can be defined as follows.

Definition 3. Let C = (K,P, α) be aDL-contraction setting. A contractionKop for C is
syntactically optimal ifKop⊆K and no contractionK′ for C exists s.t.Kop⊂K′⊆K. ut

In this case, [CONTRACT] and [EXPRESS] essentially amount to entailment
checking. Furthermore, practical algorithms for computing such optimal Kop have been
implemented in ontology development platforms. By adopting this approach to con-
traction, however, we may inadvertently retract consequences of K that are “intended”.
Identifying and recovering such intended consequences is an important issue.

Example 4. Let C = (K,P, α), where K = {A v BuC,A v ∃R.AuC}, P = ∅, and
α = A v C. Clearly, Kop = ∅ is syntactically optimal. By computing Kop, however, we
have also retracted consequences of K unrelated to α, i.e., A v B and A v ∃R.A. ut
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Ii |= K I0 I1

J0 J1 J2

Ji |= P
Ji 6|= ↵

L ✓ #

s
a

Gglobal:

local: set: number:

atoms:
symbols:

Approach

Type of distance
Distance is 
built upon

J3

Fig. 2. Model-based contraction semantics: example and notation.

5 Model-Based Contraction

Intuitively, under an MBS a contraction Kop for a setting C = (K,P, α) is optimal if the
set of models Mod(Kop) of Kop is precisely the union of the models Mod(K) of K and
the set of interpretations I such that (i) I |= P , (ii) I 6|= α; and (iii) I is “minimally
distant” from the models of K [13, 24, 25].

Calvanese et al. [8] considered two notions of “minimal distance”, which they called
local and global. We next define these semantics in the context of our framework.

Definition 5. Let C = (K,P, α) be a DL-contraction setting, and let dist(·, ·) be a
distance function between interpretations. For I an interpretation, let loc min(I,P, α)
be the set of interpretations J s.t., J |= P , J 6|= α, and on J the value of dist(I,J ) is
minimal for the given I. Then, Kop ∈ DL is L-optimal for C if the following holds:

Mod(Kop) = Mod(K) ∪⋃
I|=K loc min(I,P, α). ut

Thus, under local semantics, the models of I of K are considered one by one and
Mod(K) is extended with those models J of P such that J 6|= α and J is minimally
distant from I. The specific distance under consideration can vary, but it typically maps
each pair of interpretations to either a number or a subset of some fixed set.

To get a better intuition of local semantics, consider the left hand side of Figure 2,
which depicts two models I0 and I1 of K and four interpretations J0, . . . ,J3 which
satisfy P but not α. The distance between Ii and Jj is represented by the length of the
line connecting them; solid lines correspond to minimal distances, and dashed lines to
distances that are not minimal. In this case, J0 must be included in Mod(Kop) because
of I0, and J2,J3 must be included in Mod(Kop) because of I1.

Definition 6. Let C = (K,P, α) be a DL-contraction setting, and dist(·, ·) a distance
function between interpretations. For an interpretation J , let dist(Mod(K),J ) =
minI∈Mod(K) dist(I,J ). Furthermore, let glob min(K,P, α) be the set of interpreta-
tions J s.t. J |= P , J 6|= α, and for each interpretation J ′ such that J ′ |= P and
J ′ 6|= α it does not hold that dist(Mod(K),J ′) < dist(Mod(K),J ).

Then, Kop ∈ DL is G-optimal for C if the following condition holds:

Mod(Kop) = Mod(K) ∪ glob min(K,P, α). ut

If we consider again Figure 2 and assume that the distance between I0 and J0 is the
global minimum, then J2 and J3 are not included in Mod(Kop).

Finally, note that ifKop is optimal (either locally or globally), thenKop is a contraction
for C, as in Definition 2. Furthermore, L-optimal and G-optimal contractions are also
clearly unique modulo logical equivalence.
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5.1 Measuring Distance Between Interpretations.

Classical MBS semantics were originally developed for propositional theories [23]. In
this setting, interpretations can be seen as finite sets of propositional symbols, and the
symmetric difference “	” between such sets can be used to define specific distance
functions. More precisely, we can define I	J as the set (I \J )∪(J \I) and introduce
the following two distance functions, where |I 	 J | is the cardinality of the set I 	 J :

dist⊆(I,J ) = I 	 J and dist#(I,J ) = |I 	 J |. (1)

Distances under dist⊆ are compared using set inclusion: dist⊆(I1,J1) ≤ dist⊆(I2,J2)
iff dist⊆(I1,J1) ⊆ dist⊆(I2,J2). Finite distances under dist# are natural numbers and
are compared in the standard way.

These distances can be extended to DL interpretations in two ways. First, one can
consider interpretations I and J as sets of atoms, in which case the symmetric difference
I	J and the corresponding distances are defined as in the propositional case. In contrast
to the propositional case, however, I 	 J (and hence also distances) can be infinite. We
denote the distances in Equation (1) as dista⊆(I,J ) and dista#(I,J ), respectively.

Finally, one can also define distances at the level of the concept and role symbols in
the signature Σ underlying the interpretations:

dists⊆(I,J ) = {S ∈ Σ | SI 6= SJ }, and dists#(I,J ) = |{S ∈ Σ | SI 6= SJ }|.

To sum up, we can classify MBS semantics along three dimensions, which in turn
lead to eight different MBS semantics for contraction: (1) local vs. global approach,
(2) atom-based vs. symbol-based distances; and (3) set inclusion vs. cardinality to
compare symmetric differences.

These three dimensions are depicted on the right-hand side of Figure 2. We denote
each of the resulting eight semantics by using a combination of three symbols, indicating
the choice in each dimension, e.g., La# denotes the local semantics where the distances
are expressed in terms of cardinality of sets of atoms. We can then define Lyx-optimality
(respectively, Gy

x-optimality) as in Definition 5 (respectively, as in Definition 6) by using
the specific distances determined by the values of x and y.

Since in the propositional case there is no distinction between atom and symbol-based
semantics, we use our notation without superscripts for propositional MBS. The classical
local MBS by Winslett [26] and Forbus [27] correspond to L⊆, and L#, respectively.
Borgida’s semantics [28] is a variant of L⊆. The classical global MBS proposed by
Satoh [29] and Dalal [30] correspond to G⊆, and G#, respectively.

Definition 7. Let DL be a DL and let My
x with M ∈ {L,G}, x ∈ {⊆,#}, and

y ∈ {s, a} be an MBS contraction semantics. We sayDL is closed under My
x-contraction

(or My
x-contraction is expressible in DL) if for each DL-contraction setting C, an

ontology Kop ∈ DL exists such that Kop is My
x-optimal.

Analogously, DL is closed under TBox (resp. ABox) My
x-contraction if for each

TBox (resp. ABox) DL-contraction setting C, an My
x-optimal Kop ∈ DL exists. ut
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5.2 Challenges in Capturing MBS Contractions.

MBS contraction is not always expressible in lightweight DLs, such as DL-Lite and EL.
Inexpressibility problems mainly originate from the inability of these logics to express
disjunction, as shown in the next proposition [8].

Proposition 8. Let K be either a DL-Lite or an EL ontology. If K |= A(a)∨B(b), with
A,B atomic concepts, then either K |= A(a) or K |= B(b).

We next illustrate inexpressibility issues for DL-Lite and EL under each of the eight
MBS contraction semantics introduced in this paper. We start with TBox contraction.

Example 9. Let DL ∈ {DL-Lite, EL} and let C = (K,P, α), where K = {A v
B u C,A(a)}, P = {A(a)}, and α = A v B u C. Pick an MBS semantics My

x and
assume Kop ∈ DL exists s.t. Kop is My

x-optimal for C.
First, observe that the following conditions hold for each I ∈ Mod(K) and each J |=

P s.t. J 6|= α (both seen as sets of atoms): (i) B(a), C(a) ∈ I; (ii) either {B(a)} ⊆
dist⊆(I,J ) or {C(a)} ⊆ dist⊆(I,J ) for J ∈ Mod(Kop); (iii) 1 ≤ dist#(I,J ) for
J ∈ Mod(Kop); (iv) if J is such that B(a) /∈ J and C(a) /∈ J , then J /∈ Mod(Kop).

Now, consider the following models: J1 = {A(a), B(a)}, and J2 = {A(a), C(a)}.
From Items (ii) and (iii) we conclude that Ji ∈ loc min({A(a), B(a), C(a)},P, α).
Then, we can use items (i) and (iv) to conclude thatKop |= B(a)∨C(a). By Proposition 8,
we must have either Kop |= B(a) or Kop |= C(a). But then, since items (ii) and (iii)
ensure that Kop 6|= B(a) and Kop 6|= C(a), we obtain a contradiction. ut

Observe next that similar issues arise for ABox contraction under local MBS.

Example 10. Let DL = EL and let K = (T ,A) be the following DL-ontology:

T = {A v ∃R.B, B u C v ⊥}; A = {A(a), R(a, b), B(b), C(c), C(d)}.

Finally, let C be the DL-contraction setting defined by K, P = T ∪ {A(a)}, and
α = R(a, b). Pick a local MBS semantics Lyx and assume Kop ∈ DL exists s.t. Kop is
Lyx-optimal for C. Consider the following interpretations:

I0 : AI = {a}, BI = {b}, CI = ∆I \ {b}, RI = {(a, b)};
J1 : AI = {a}, BI = {b, c}, CI = ∆I \ {b, c}, RI = {(a, c)};
J2 : AI = {a}, BI = {b, d}, CI = ∆I \ {b, d}, RI = {(a, d)}.

Clearly, I0 |= K and one can check that J1,J2 ∈ loc min(I0,P, α). Moreover, since
J1 6|= C(c) and J2 6|= C(d), we have Kop 6|= C(c) and Kop 6|= C(d). At the same time,
one can show that Kop |= C(c) ∨ C(d). Proposition 8 then leads to a contradiction.

Inexpressibility of DL-Lite ABox contraction can be shown analogously by taking
A, P , and α as before and using a TBox T = {A v ∃R.>, ∃R−.> v B, B v ¬C},
which “mimics” the behaviour of the EL-TBox considered before. ut

Theorem 11. Let DL ∈ {DL-Lite, EL} and let M ∈ {L,G}, x ∈ {⊆,#} and y ∈
{s, a}. Then, DL is not closed under TBox My

x-contraction. Furthermore, DL is not
closed under ABox Lyx-contraction.
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These inexpressibility results can be overcome by allowing fewer models in optimal
contractions. To this effect, one can define a partial order � on models where J1 � J2
if J1 changes certain aspects of Mod(K) less than J2; then, Kop can only have models
that are �-minimal. For example, in [7] changes in concepts rather than roles were
preferred. Formally, J1 �RK J2 if there is I ∈ Mod(K) such that dists⊆(I,J2) contains
a role and dists⊆(I,J1) contains only concepts. Another example of � is to order the
signature of K, e.g., A � B if B is a “more important concept” than B; that is, if
dista⊆(I,J2) = {A(a)} and dista⊆(I,J1) = {B(a), B(b)}, then J1 � J2 since J2
changes a more important concept A.

Definition 12. Let � be a partial order on the class of all first-order interpretations
and min� the class of interpretations minimal w.r.t. �. Let C = (K,P, α) be a DL-
contraction setting. We say that Kop ∈ DL is [�,L]-optimal for C if it holds that:

Mod(Kop) = Mod(K) ∪
⋃
I|=K

(loc min(I,P, α) ∩min�) .

Finally, Kop ∈ DL is [�,G]-optimal for C if the following condition holds:

Mod(Kop) = Mod(K) ∪ (glob min(K,P, α) ∩min�) . ut
We next show that this solution can lead to even more severe inexpressibility problems;
in particular, optimal contractions might not even be expressible with FOL ontologies.

Example 13. Let DL = ELFI, which extends EL with functionality and inverses. Let
C be defined by α = A(a1), P = T , and the following DL ontology K = T ∪ A:

T = {A v ∃R.B, B v ∃R.A, AuB v ⊥, (functR), (functR−)}, A = {A(a1)}.
Each model I of K is of one of the following two types (see Figure 3): (i) I contains
a cycle of the form R(a1, a2), . . . , R(a2n, a1) for some n ∈ N such that for each
1 ≤ k ≤ 2n we have A(ak) ∈ I if k is odd and B(ak) ∈ I if k is even; (ii) I contains
an infinite R-chain R(a1, a2), . . . R(ak, ak+1), . . . such that for each k ≥ 1 we have
A(ak) ∈ I if k is odd and B(ak) ∈ I if k is even.

Assume there exists a FOL ontology Kop that is [�RK,Gs
⊆]-optimal for C. By Def-

inition 12, Mod(Kop) consists of following two disjoint sets of models: Mod(K) and
S = glob min(K,P, α) ∩min�. Observe that S consists of the models obtained from
Mod(K) as described next (see r.h.s. of Figure 3). If I is of Type (i), then one has to
drop all atoms of the form A(ak) and B(ak) for each ak involved in the cycle, which
gives us again a cyclic model; let S1 be the set of all such models. If I is of Type (ii),
then one must drop only A(a1), which yields a model with an infinite chain; let S2
be the set of all such models. Clearly, S1, S2, and Mod(K) are mutually disjoint. The
following ontology has exactly S2 as models: K2 = T ∪ {∃R.B(a1),¬A(a1)}. We
next use the locality property of FOL to show that no FOL ontology K1 exists s.t.
Mod(K1) = S1. Assume such K1 exists and consider J1 containing an R-cycle of even
length, and J2 containing an R-cycle of odd length. If the cycle’s length is big enough,
K1 cannot distinguish between J1 and J2; thus, J2 ∈ Mod(K1), a contradiction. Finally,
Mod(Kop ∧ ¬K ∧ ¬K2) = S1, which contradicts the fact that S1 cannot be captured by
a FOL ontology. Hence, no optimal Kop exists.3 ut

3 We denote with ¬K(i) the formula obtained by negating the conjunction of all formulas inK(i).
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Fig. 3. Models illustrating issues with FOL expressibility of contraction

6 Formula-Based Contraction

Given a contraction setting C, the bold semantics [8] selects a maximal subset of the
closure of the corresponding ontology that is a contraction for C.

Definition 14. Let C = (K,P, α) be a DL-contraction setting andM(C) the class of
maximal subsets S of ClDL(K) s.t. S |= P and S 6|= α. Then, Kop ∈ DL is BS-optimal
for C if there exists S ∈ M(C) such that Kop ≡ S. ut
Note that under Bold semantics Kop is not unique in general (even modulo equivalence).
There have been several proposals for combining all elements ofM(C) into a single set
of formulas [8, 23, 26]. Under Cross-Product (CP) semantics, an optimal evolution is
equivalent to the “disjunction” of all relevant maximal subsets of the closure, whereas
under When In Doubt Throw It Out (WIDTIO) semantics, one takes the “intersection”.

Definition 15. Let C=(K,P, α) be a DL-contraction setting. Then, Kop∈DL is CP-
optimal for C if Kop≡{

∨
S∈M(C)(

∧
β∈S β)}, WIDTIO-optimal if Kop≡

⋂
S∈M(C) S . ut

Expressibility of optimal contractions can now be defined in the obvious way.

Definition 16. Let DL be a DL and let S∈{BS,CP,WIDTIO} be an FBS contraction
semantics. We say DL is closed under S-contraction (or S-contraction is expressible in
DL) if for each DL-contraction setting C, an S-optimal Kop ∈ DL exists. ut

Intuitively, CP has the advantage of not “losing information”; however, CP-optimal
contractions can be exponentially larger than the original ontology, even if its closure
is a finite set. In addition, even if we consider a DL-Lite contraction setting C, the
corresponding CP-optimal contraction for C may not be expressible in DL-Lite, since a
language with disjunction may be required. In contrast, WIDTIO-optimal contractions
for DL-Lite are always expressible, but important information may be lost.

Thus, both CP and WIDTIO semantics are somewhat problematic, even for lan-
guages such as DL-Lite, where the deductive closure is always a finite set. In contrast, BS
semantics is well-behaved for DL-Lite: optimal contractions always exist; furthermore, in
the case of ABox contraction they are also unique and computable in polynomial time [8].
In general, however, BS-optimal contractions are non-unique for TBox contractions.

6.1 Expressibility issues for EL.

Unfortunately, as soon as we consider logics such as EL, for which the closure of an
ontology can be infinite, WIDTIO and BS semantics lead to inexpressibility problems.
This is illustrated by the following example (adapted from Lemma 19 in [1]).
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Example 17. Let C = (T ,P, α) be the EL contraction setting defined as follows:

T = {Z v ∃R.A,A v ∃R.A,∃R.B v B,A v B}; α = A v B; P = T \ {α}

Furthermore, for each k ∈ N, let

γk = Z v ∃Rk.(A uB), βk = Z v ∃Rk.B, Λk = {γi | 1 ≤ i ≤ k}.

For each k ∈ N, observe that γk |= βk, Λk 6|= βk+1, and γk ∈ ClEL(T ); also, P ∪Λk 6|=
α. Let Top be BS-optimal for C; we then have Top |= βk for each k ∈ N. Furthermore,
for each finite S ⊆ ClEL(T ) there is n such that P ∪Λn |= S . Thus, such n = n0 exists
for Top and hence Λn0 6|= βn0+1 and by monotonicity of FOL, Top 6|= βn0+1 and we
obtain a contradiction to the maximality of Top; hence, Top cannot be BS-optimal. ut

We formalize the intuition from the example in the next theorem (which is an
adaptation of Theorem 20 from [1]).

Theorem 18. EL is not closed under TBox BS-contraction.

A similar inexpressibility result can be obtained for ABox contraction.

Example 19. Let C = (A, ∅, α) be the EL-ABox contraction setting defined by A =
{A(a), R(a, a)}, and α = R(a, a). Then, for each k ∈ N, we have αk = ∃Rk.A(a)
is in ClEL(A). Clearly,

⋃
k{αk} 6|= α. Thus, if an EL BS-contraction Aop for C exists,

then Aop |= αk for each k. One can show that no such finite Aop exists. ut

Theorem 20. EL is not closed under ABox BS-contraction.

Examples 17 and 19 can also be used to illustrate inexpressibility of WIDTIO-
optimal contractions. Indeed, observe that in Example 19 every maximal subset Aop of
ClEL(A) contains the infinite set

⋃
k{αk}.

Theorem 21. EL is not closed under ABox and TBox WIDTIO-contraction.

6.2 FBS vs MBS

We next show that some contraction settings for which no MBS-optimal contraction
exists can be easily captured using FBS (and vice versa). Thus, there seem to be certain
key points of “incompatibility” between model-based and formula-based contraction
semantics, which require further investigation.

Example 22. Consider the setting C in Example 9. LetA′ = {A(a), B(a), C(a)}. Under
BS semantics we have two optimal contractions, namely K1

op = A′ ∪ {A v B} and
K2

op = A′ ∪ {A v C}, which are both in DL-Lite and EL.
Next, recall the EL-setting C from Example 10. There is a unique (modulo equiva-

lence) BS-optimal contraction for C, namely Kop = K \ {α}.
Finally, recall Example 19. Under all model-based contraction semantics considered

in this paper, the optimal contraction for C can be shown to be Aop = {A(a)}. ut
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6.3 Extending the Formula Based Approach

As already discussed, formula-based semantics are well-behaved for DLs such as DL-Lite,
where the closure of an ontology is always finite [8, 15]. FBS are, however, problematic
for DLs like EL, which do not provide such guarantee. Inexpressibility issues for BS-
semantics originate from the requirement that optimal contractions for C = (K,P, α)
must be equivalent to a maximal subset S of ClDL(K) satisfying P but not α; if ClDL(K)
is infinite, it might be that no such S is equivalent to a finite set of DL formulas.

FBS are also problematic from a modeling point of view: in contrast to syntactic
approaches, they do not distinguish between the axioms in the closure that are explicit in
K, and those that are implied. Ontologies, however, are the result of a time-consuming
modeling process, and thus contractions should also aim at preserving the structure of K.

In [1], these limitations of FBS approaches were addressed (at least partly). On the
one hand, the semantics in [1] provides a “bridge” between syntactic and FBS approaches;
on the other hand, this semantics provides a distinction between the languages DL in
which both K and the resulting contraction are expressed, and the language LP (the
preservation language), which expresses the entailments of K that must be maximally
preserved. The principle of minimal change is reflected along two dimensions:

(i) structural, where the explicit axioms in K are maximally preserved;
(ii) deductive, where the consequences in ClLP(K) are maximally preserved.

Definition 23. Let C = (K,P, α) be a DL-contraction setting and let LP ⊆ DL. A
contraction Kop for C is SD-optimal4 for C and LP if (i) Kop ∪ {β} |= α, for each
β ∈ K \ Kop; and (ii) Kop ∪ {γ} |= α, for each γ ∈ ClLP(K) \ ClLP(Kop). ut

The notion of expressibility can be formalised as in Definition 16 in the obvious way.
Note that the preservation language LP provides “control” over the consequences to be
preserved. Furthermore, syntactic contractions can be easily captured by taking LP to
be the empty set. We next illustrate SD-contractions with an example.

Example 24. LetDL = EL and let LP be the DL consisting of all atomic subsumptions
of the form A v B. Let K = {A v B,B v C} and let α = A v B. Clearly,
Kop = {B v C,A v C} is an SD-optimal contraction for LP and C = (K, ∅, α). ut

As shown in [1], there exist practically relevant DLs DL and LP such that, on the
one hand,DL is closed under SD-contraction for LP and, on the other hand, ClLP(K) is
in general an infinite set forK ∈ DL. For example, one may considerDL to be the set of
acyclic EL ontologies – roughly speaking, those EL ontologies that do not entail cyclic
axioms involving existential quantifiers on the right hand side of the axiom (e.g., axioms
such as A v ∃R.A). Many EL ontologies such as SNOMED, satisfy such acyclicity
condition. In this setting, restrictions to LP also apply (see [1] for details).

7 Conclusion and Future Work

In propositional logic, contraction is always expressible under both MBS and FBS. In
the case of propositional MBS, contraction results are finite sets of finite models, which

4 SD stands for Structural-Deductive
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can always be axiomatised as a set of propositional formulas. The problem of interest in
the propositional case is the complexity of axiomatisation [23]. For FBS the situation is
similar: deductive closure of any propositional theory is a finite set (modulo equivalence);
thus, BS, CP, WIDTIO, or SD-optimal contractions always exist. Again, the challenge
here is the complexity of optimal contraction computation [23].

However, as soon as we move from propositional to first-order logic (and even to
computationally well-behaved fragments such as Description Logics), we are also forced
to leave propositional paradise. As we have shown, inexpressibility issues arise in rather
simple cases for both FBS and MBS. These results suggest that classical approaches
to contraction are intrinsically problematical in the context of ontologies. A starting
point for addressing these problems might be the semantics in [1], which unifies and
extends FBS and syntactic approaches; the challenge remains to extend this semantics to
encompass also MBS contraction —an inspiring problem for future work.

Interesting further steps include: (i) understanding the impact of the standard-names
assumption on expressibility and computation of contraction, (ii) better understanding
FOL inexpressibility (e.g., see Example 13) (iii) isolating fragments of DL-Lite and EL
for which contraction is well-behaved (see preliminary results in [1, 15]),
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