
Short-output universal hash functions and
their use in fast and secure message authentication

Long Hoang Nguyen and Andrew William Roscoe

Oxford University Department of Computer Science
Email: {Long.Nguyen, Bill.Roscoe}@cs.ox.ac.uk

Abstract. Message authentication codes usually require the underlining universal hash functions
to have a long output so that the probability of successfully forging messages is low enough for
cryptographic purposes. To take advantage of fast operation on word-size parameters in modern
processors, long-output universal hashing schemes can be securely constructed by concatenating
several instances of short-output primitives. In this paper, we describe a new method for short-
output universal hash function termed digest() suitable for very fast software implementation and
applicable to secure message authentication. The method possesses a higher level of security relative
to other well-studied short-output universal hashing schemes. Suppose that the universal hash
output is fixed at one word of b bits, then the collision probability of ours is 21−b compared to
6 × 2−b of MMH, whereas 2−b/2 of NH within UMAC is far away from optimality. In addition to
message authentication codes, we show how short-output universal hashing is applicable to manual
authentication protocols where universal hash keys are used in a very different and interesting way.

1 Introduction

Universal hash functions (or UHFs) first introduced by Carter and Wegman [6, 31] have many
applications in computer science, including randomised algorithms, database, cryptography and
many others. A UHF takes two inputs which are a key k and a message m: h(k,m), and produces
a fixed-length output. Normally what we require of a UHF is that for any pair of distinct messages
m and m′ the collision probability h(k,m) = h(k,m′) is small when key k is randomly chosen
from its domain. In the majority of cryptographic uses, UHFs usually have long outputs so that
combinatorial search is made infeasible. For example, UHFs can be used to build secure message
authentication codes or MAC schemes where the intruder’s ability to forge messages is bounded
by the collision probability of the UHF. In a MAC, parties share a secret universal hash key and
an encryption key, a message is authenticated by hashing it with the shared universal hash key
and then encrypting the resulting hash. The encrypted hash value together with the message is
transmitted as an authentication tag that can be validated by the verifier. We note however that
our new construction presented here applies to other cryptographic uses of universal hashing,
e.g., manual authentication protocols as seen later as well as non-cryptographic applications.

Since operating on short-length values of 16, 32 or 64 bits is fast and convenient in ordinary
computers, long-output UHFs can be securely constructed by concatenating the results of mul-
tiple instances of short-output UHFs to increase computational efficiency. To our knowledge, a
number of short-output UHF schemes have been proposed, notably MMH (Multilinear-Modular-
Hashing) of Halevi and Krawczyk [9] and NH within UMAC of Black et al. [4]. We note that
widely studied polynomial universal hashing schemes PolyP, PolyQ [14] and GHASH [24] can
also be designed to produce a short output. While polynomial based UHFs only require short
and fixed length keys, they suffer from two unpleasant properties relating to security and com-
putational efficiency as will be discussed later in the paper.

Our main contribution presented in Section 3 is the introduction of a new short-output UHF
algorithm termed digest(k,m) that can be efficiently computed on any modern microprocessors.
The main advantage of ours is that it provides a higher level of security regarding both collision
and distribution probabilities relative to MMH and NH described in Section 4. Our digest()

algorithm operates on word-size parameters via word multiplication and word addition instruc-
tions, i.e. finite fields or non-trivial reductions are excluded, because the emphasis is on high
speed implementation using software.

Let us suppose that the universal hash output is fixed at one word of b bits then the collision
probability of ours is 21−b compared to 6 × 2−b of MMH, whereas 2−b/2 of NH is much weaker
in security. For clarity, the security bounds of our constructions as well as MMH and NH are
independent of the length of message being hashed, which is the opposite of polynomial universal
hashing schemes mentioned earlier. For multiple-word output universal hashing constructions as
required in MACs, the advantage in security of ours becomes more apparent. When the universal
hash output is extended to n words or n× b bits for any n ∈ N∗, then the collision probability
of ours is 2n−nb as opposed to 6n × 2−nb of MMH and 2−nb/2 of NH. There is however a trade-
off between security and computational cost as illustrated by our estimated operation counts
and software implementations of these constructions. On a 1GHz AMD Athlon processor, one
version of digest() (where the collision probability εc is 2−31) achieves peak performance of 0.53
cycles/byte (or cpb) relative to 0.31 cpb of MMH (for εc = 2−29.5) and 0.23 cpb of NH (for
εc = 2−32). Another version of digest(k,m) for εc = 2−93 achieves peak performance of 1.54
cpb. For comparison purpose, 12.35 cpb is the speed of SHA-256 recorded on our computer. A
number of files that provide the software implementations in C programming language of NH,
MMH and our proposed constructions can be downloaded from [1] so that the reader can run
them and adapt them for other uses of the short-output universal hash schemes.

We will briefly discuss the motivation of designing (and the elegant graphical structure of)
our digest() scheme which, we have recently discovered, relates to the well-studied multiplicative
universal hashing schemes of Dietzfelbinger et al. [7], Krawczyk [12, 13] and Mansour et al. [18].
The latter algorithms are however not efficient when the input message is of a significant size.

Although researchers from cryptographic community have mainly studied UHFs to construct
message authentication codes, we would like to point out that short-output UHF on its own has
found applications in manual authentication protocols [2, 8, 15, 17, 19, 10, 20–23, 25, 30]. In the
new family of authentication protocols, data authentication can be achieved without the need of
passwords, shared private keys as required in MACs, or any pre-existing security infrastructures
such as a PKI. Instead human owners of electronic devices who seek to exchange their data
authentically would need to manually compare a short string of bits that is often outputted
from a UHF. Since humans can only compare short strings, the UHF ideally needs to have a
short output of say 16 or 32 bits. There is however a fundamental difference in the use of universal
hash keys between manual authentication protocols and message authentication codes, it will
be clear in Section 5 that none of the short-output UHF schemes including ours should be used
directly in the former. Thus we will propose a general framework where any short-output UHFs
can be used efficiently and securely to digest a large amount of data in manual authentication
protocols.

While existing universal hashing methods are already as fast as the rate information is gen-
erated, authenticated and transmitted in high-speed network traffic, one may ask whether we
need another universal hashing algorithm. Besides keeping up with network traffic, as excellently
explained by Black et al. [4] — the goal is to use the smallest possible fraction of the CPU’s
cycles (so most of the machine’s cycles are available for other work), by the simplest possible
hash mechanism, and having the best proven bounds. This is relevant to MACs as well as manual
authentication protocols where large data are hashed into a short string, and hence efficient
short-output UHF constructions possessing a higher (or optimal) level of security are needed.

Acknowledgements:

Long Nguyen’s work on this paper was supported by a research grant from the US Office
of Naval Research. Andrew William Roscoe’s was partially supported by funding from the US
Office of Naval Research.

The authors would like to thank Dr. Andrew Ker at the Oxford University Department of
Computer Science for his help with statistical analysis of the digest constructions.

Progresses on the security proof of our digest functions were first made when Long Nguyen
visited Professor Bart Preneel and Dr. Frederik Vercauteren at the Computer Security and Indus-
trial Cryptography (COSIC) research group at the Katholieke Universiteit Leuven in September
and October 2010. The authors would like to thank them for their time and support as well as
Drs Nicky Mouha and Antoon Bosselaers at COSIC for pointing out the relevance of the multi-
plicative universal hashing scheme of Dietzfelbinger et al.[7] and the literature on hash function
implementation and speed measurement for benchmarking.

We also received helpful comments from many anonymous referees as well as had fruitful
discussions and technical feedbacks from Professor Serge Vaudenay and Dr. Atefeh Mashatan
when Long Nguyen visited the Security and Cryptography Laboratory (LASEC) at the Swiss
Federal Institute of Technologies (EPFL) in February and March 2011. The feedbacks signifi-
cantly improve the technical quality and presentation of the paper. Long Nguyen would like to
thank them for their time and support.

2 Notation and definitions

We define M , K and b the bit length of the message, the key and the output of a universal hash
function. We denote R = {0, 1}K , X = {0, 1}M and Y = {0, 1}b.

Definition 1. [12, 13] A ε-balanced universal hash function, h : R×X → Y , must satisfy that
for every m ∈ X \ {0} and y ∈ Y : Pr{k∈R}[h(k,m) = y] ≤ ε

Many existing UHF constructions [4, 9, 12, 13] as well as our newly proposed scheme rely on
(integer or matrix) multiplications of message and key, and hence non-zero input message is
required; for otherwise h(k, 0) = 0 for any key k ∈ R.

Definition 2. [13, 27] A ε-almost universal hash function, h : R ×X → Y , must satisfy that
for every m,m′ ∈ X (m 6= m′): Pr{k∈R}[h(k,m) = h(k,m′)] ≤ ε

Since it is useful particularly in manual authentication protocols discussed later to have both
the collision and distribution probabilities bounded, we combine Definitions 1 and 2 as follows

Definition 3. An εd-balanced and εc-almost universal hash function, h : R×X → Y , satisfies

– for every m ∈ X \ {0} and y ∈ Y : Pr{k∈R}[h(k,m) = y] ≤ εd
– for every m,m′ ∈ X (m 6= m′): Pr{k∈R}[h(k,m) = h(k,m′)] ≤ εc

3 Integer multiplication construction

We first discuss the multiplicative universal hashing algorithm of Dietzfelbinger et al. [7] which
obtains a very high level of security. Although this scheme is not efficient with long input data,
it strongly relates to our digest() method that make use of word multiplication instructions.

We note that there are two other universal hashing schemes which use arithmetic that com-
puter likes to do to increase computational efficiency, namely MMH of Halevi and Krawczyk [9]
and NH of Black et al. [4]. Both of which will be compared against our construction in Section 4.

3.1 Multiplicative universal hashing

Suppose that we want to compute a b-bit universal hash of a M -bit message, then the universal
hash key k is drawn randomly from R = {1, 3, . . . , 2M − 1}, i.e. k must be odd. Dietzfelbinger
et al. [7] define:

h(k,m) = (k ∗m mod 2M) div 2M−b

It was proved that the collision probability of this construction is εc = 21−b on equal length
inputs [7]. While this has a simple description, for long input messages of several kilobytes or
megabytes, such as documents and images, it will become very time consuming to compute the
integer multiplication involved in this algorithm.

digest(k,m)

m1m2m3

k1 k4k3k2

*

k = k1 || k2 || k3 || k4
m = m3 || m2 || m1

digest(k,m) = m1*k1 + (m1*k2 div 2b)+ m2*k2 + (m2*k3 div 2b) + m3*k3 + (m3*k4 div 2b) (mod 2b)

Fig. 1. A b-bit output digest(k,m): each parallelogram represents the expansion of a word multiplication between
a b-bit key block and a b-bit message block.

3.2 Word multiplicative construction

In this section, we will define and prove the security of a new short-output universal hashing
scheme termed digest(k,m) that can be calculated using word multiplications instead of an
arbitrarily long integer multiplication as seen in Equation 1 or an example from Figure 1.

Let us divide message m into b-bit blocks 〈m1, . . . ,mt=M/b〉. An (M + b)-bit key k =

〈k1, . . . , kt+1〉 is selected randomly from R = {0, 1}M+b. A b-bit digest(k,m) is defined as

digest(k,m) =

t∑
i=1

[mi ∗ ki + (mi ∗ ki+1 div 2b)] mod 2b (1)

Here, * refers to a word multiplication of two b-bit blocks which produces a 2b-bit output,
whereas both ‘+’ and

∑
are additions modulo 2b. It should be noted that (div 2b) is equivalent

to a right shift (>> b).

To see why this scheme is related to the multiplicative method of Dietzfelbinger et al. [7], one
can study Figure 1 where all word multiplications involved in Equation 1 are elegantly arranged

into the same shape as the overlap of the expanded multiplication between m and k.1

Operation count. To give an estimated operation count for an implementation of digest(),
which will be subsequently compared against universal hashing schemes MMH and NH, we
consider a machine with the same properties as one used by Halevi and Krawczyk [9]:2

– (b = 32)-bit machine integers, and arithmetic operations are done in registers.

– A multiplication of two 32-bit integers yields a 64-bit result that is stored in 2 registers.

A pseudo-code for digest() on such machine may be as follows. For a ’C’ implementation, please
see [1].

digest(key,msg)
1. Sum = 0
2. load key[1]
3. for i = 1 to t
4. load msg[i]
5. load key[i+ 1]
6. 〈High1, Low1〉 = msg[i] ∗ key[i]
7. 〈High2, Low2〉 = msg[i] ∗ key[i+ 1]
8. Sum = Sum+ Low1 +High2
9. return Sum

This consists of 2t = 2M/b word multiplications (MULT) and 2t = 2M/b addition modulo
2b (ADD). That is each message-word requires 1 MULT and 2 ADD operations. As in [9],
a MULT/ADD operation should include not only the actual arithmetic instruction but also
loading the message- and key-words to registers and/or loop handling.

The following theorem shows that the switch from a single (arbitrarily long) multiplication
of Dietfelbinger et al. into word multiplications of digest() does not weaken the security of
the construction. Namely the same collision probability of 21−b is retained while optimality in
distribution is achieved. Moreover this change not only greatly increases computational efficiency
but also removes the restriction of odd universal hash key as required in Dietfelbinger et al.

Theorem 1. For any t, b ≥ 1, digest() of Equation 1 satisfies Definition 3 with the distribution
probability εd = 2−b and the collision probability εc = 21−b on equal length inputs.

Proof. We first consider the collision property. For any pair of distinct messages of equal length:
m = m1 · · ·mt and m′ = m′1 · · ·m′t, without loss of generality we assume that m1 > m′1.

3 A
digest collision is equivalent to:

t∑
i=1

[mi ∗ ki + (mi ∗ ki+1 div 2b)] =

t∑
i=1

[m′i ∗ ki + (m′i ∗ ki+1 div 2b)] (mod 2b)

1 If we further ignore the effect of the carry in (word) multiplications of both digest() and the scheme of
Dietzfelbinger et al. then they become very similar to the Toeplitz matrix based construction of Krawczyk [12,
13] and Mansour et al. [18] discussed in Annex A. Such a carry-less multiplication instruction is available in a
new Intel processor [3].

2 Although this is a 32-bit machine, the same operation count is applicable to a (2b = 64)-bit machine. In the
latter, a multiplication of two 32-bit unsigned integer is stored in a single 64-bit register, and High and Low
are the upper and lower 32-bit halves of the register.

3 Please note that when mi = m′i for all i ∈ {1, . . . , j} then in the following calculation we will assume that
mj+1 > m′j+1.

There are two possibilities as follows.

WHEN m1 −m′1 is odd. The above equality can be rewritten as

(m1 −m′1)k1 = y (mod 2b) (2)

where

y = (m′1k2 div 2b)−(m1k2 div 2b)+

t∑
i=2

[
(m′i −mi) ∗ ki + (m′i ∗ ki+1 div 2b)− (mi ∗ ki+1 div 2b)

]
We note that y depends only on keys k2, . . .,kt+1, and hence we fix k2 through kt+1 in our anal-
ysis. Since m1 −m′1 is odd, i.e. m1 −m′1 and 2b are co-prime, there is at most one value of k1
satisfying Equation 2. The collision probability is therefore εc = 2−b < 21−b.

WHEN m1 −m′1 is even. A digest collision can be rewritten as

(m1 −m′1)k1 + (m1k2 div 2b)− (m′1k2 div 2b) + (m2 −m′2)k2 = y (mod 2b) (3)

where

y = (m′2k3 div 2b)−(m2k3 div 2b)+

t∑
i=3

[
(m′i −mi) ∗ ki + (m′i ∗ ki+1 div 2b)− (mi ∗ ki+1 div 2b)

]
We note that y depends only on keys k3, . . .,kt+1. If we fix k3 through kt+1 in our analysis, we
need to find the number of pairs (k1, k2) such that Equation 3 is satisfied. We arrive at

εc = Prob{
0≤k1<2b

0≤k2<2b

} [
(m1 −m′1)k1 + (m1k2 div 2b)− (m′1k2 div 2b) + (m2 −m′2)k2 = y (mod 2b)

]
Let us define

m1k2 = u2b + v

m′1k2 = u′2b + v′

Since we assumed m1 > m′1, we have u ≥ u′ and (m1 −m′1)k2 = (u− u′)2b + v − v′.
– When v ≥ v′: (m1k2 div 2b)− (m′1k2 div 2b) = (m1 −m′1)k2 div 2b

– When v < v′: (m1k2 div 2b)− (m′1k2 div 2b) = [(m1 −m′1)k2 div 2b] + 1

Let c = m1 −m′1 and d = m2 −m′2 (mod 2b), we then have 1 ≤ c < 2b and:

εc ≤ p1 + p2

where
p1 = Prob{

0≤k1<2b

0≤k2<2b

} [
ck1 + (ck2 div 2b) + dk2 = y (mod 2b)

]
and

p2 = Prob{
0≤k1<2b

0≤k2<2b

} [
ck1 + (ck2 div 2b) + dk2 = y − 1 (mod 2b)

]
Using Lemma 1, we have p1, p2 ≤ 2−b, and thus εc ≤ 21−b.

As regards distribution, since m = m1 · · ·mt > 0 as specified in Definition 3, without loss of
generality we can assume that m1 ≥ 1. If we fix k3 through kt+1 and for any y ∈ {0, . . . , 2b− 1},
then the distribution probability εd is equivalent to:

εd = Prob{
0≤k1<2b

0≤k2<2b

} [
m1k1 + (m1k2 div 2b) +m2k2 = y (mod 2b)

]
Since 1 ≤ m1 < 2b, we can use Lemma 1 to deduce that εd = 2−b. ut

Lemma 1. Let 1 ≤ c < 2b and 0 ≤ d < 2b, then for any y ∈ {0, . . . , 2b − 1} we have

Prob{
0≤k1<2b

0≤k2<2b

} [
ck1 + (ck2 div 2b) + dk2 = y (mod 2b)

]
= 2−b

Proof. We write c = s2l with s odd and 0 ≤ l < b. Since s and 2b are co-prime, there exist a
unique inverse modulo 2b of s, we call it s−1. Our equation now becomes:

2lsk1 + (2lsk2 div 2b) + ds−1sk2 = y (mod 2b)

Let sk1 = γ (mod 2b−l) and sk2 = α2b−l + β (mod 2b), we then have 0 ≤ γ < 2b−l and
0 ≤ α < 2l. The above equation becomes:

2lγ + α+ ds−1(α2b−l + β) = y (mod 2b)

2lγ + α(1 + ds−12b−l) + βds−1 = y (mod 2b)

2lγ + αx = z (mod 2b)

where x = 1 + ds−12b−l (mod 2b) which is always odd because l < b, and z = y − βds−1

(mod 2b). Since z is independent of γ and α, we fix z in our analysis. We can then use Lemma 2
to derive that there is a unique pair (γ, α) satisfying the above equation.

Since 0 ≤ γ < 2b−l and 0 ≤ α < 2l, γ and α together determine b bits of the combination
of k1 and k2. Consequently there are at most 2b different pairs (k1, k2) satisfying the condition
that we require in this lemma. ut

Lemma 2. Let 0 ≤ l < b and x ∈ {1, 3, . . . , 2b − 1} then for any z ∈ {0, . . . , 2b − 1} there is
a unique pair (γ, α) such that 0 ≤ γ < 2b−l, 0 ≤ α < 2l, and 2lγ + αx = z (mod 2b).

Proof. If there exist two distinct pairs (γ, α) and (γ′, α′) satisfying this condition, then

2lγ + αx = 2lγ′ + α′x = z (mod 2b)

which implies that
2l(γ − γ′) = (α′ − α)x (mod 2b)

This leads to two possibilities.

– When α′ = α then 2l(γ − γ′) = 0, which means that 2b−l|(γ − γ′). The latter is impossible
because 0 ≤ γ, γ′ < 2b−l and γ 6= γ′.

– When α′ 6= α and since x is odd, we must have 2l|(α′ − α). This is also impossible because
0 ≤ α, α′ < 2l.

ut

REMARKS. The bound given by Theorem 1 for the distribution probability (εd = 2−b) is tight:
let m = 0b−11 and any y and note that any key k = k1k2 with k1 = y satisfying this equation
digest(k,m) = y. The bound given by Theorem 1 for the collision probability εc = 21−b also
appears to be tight, i.e. it cannot be reduced to 2−b. To verify this bound, we have implemented
exhaustive tests on single-word messages with small value of b. For example, when b = 7, we look
at all possible pairs of two different (b = 7)-bit messages in combination with all (2b = 14)-bit
keys, the obtained collision probability is 2−7 × 1.875.

We end this section by pointing out that truncation is secure in this digest construction. For
any b′ ∈ {1, . . . , b− 1}, we define

truncb′(digest(k,m)) =

t∑
i=1

[mi ∗ ki + (mi ∗ ki+1 div 2b)] mod 2b
′

(4)

where truncb′() takes the first b′ least significant bits of the input. We then have the following
theorem whose proof is very similar to the proof of Theorem 1, and hence it is not given here.

Theorem 2. For any n, t ≥ 1, b ≥ 1 and any integer b′ ∈ {1, . . . , b − 1}, truncb′(digest())
of Equation 4 satisfies Definition 3 with the distribution probability εd = 2−b

′
and the collision

probability εc = 21−b
′

on equal length inputs.

 d1 d2 d3

m1m2m3

k3 k6k5k4
*

k = k1 || k2 || k3 || k4 || k5 || k6
m = m3 || m2 || m1

digest
MW

(k,m) = d1 || d2 || d3

d1 = m1 * k1 + (m1 * k2 div 2b) + m2 * k2 + (m2 * k3 div 2b) + m3 * k3 + (m3 * k4 div 2b) (mod 2b)
d2 = m1 * k2 + (m1 * k3 div 2b) + m2 * k3 + (m2 * k4 div 2b) + m3 * k4 + (m3 * k5 div 2b) (mod 2b)
d3 = m1 * k3 + (m1 * k4 div 2b) + m2 * k4 + (m2 * k5 div 2b) + m3 * k5 + (m3 * k6 div 2b) (mod 2b)

k2k1

Fig. 2. A 3b-bit (or three-word) output digestMW (k,m): each parallelogram represents the expansion of a word
multiplication between a b-bit key block and a b-bit message block.

3.3 Extending digest()

If we want to use digest functions as the main ingredient of a message authentication code, we
need to reduce the collision probability without increasing the word bitlength b that is dictated
by architecture characteristics. One possibility is to hash our message with several random and
independent keys, and concatenate the results. If we concatenate the results from n independent
instances of the digest function, the collision probability drops from 21−b to 2n−nb. This solution
however requires n times as much key material.

A much better and well-studied approach is to use the Toeplitz-extension: given one key we
left shift the key by one word to get the next key and digest again. The resulting construction is
called digestMW (), where MW stands for multiple-word output. The structure of digestMW ()
is again graphically illustrated by an example in Figure 2 that shows a close connection between
digestMW () and the multiplicative universal hashing scheme of Dietfelbinger et al.

We define a n-blocks or (n× b)-bit output digestMW (k,m) as follows. We still divide m into
b-bit blocks 〈m1, . . . ,mt=M/b〉. However, an (M + bn)-bit key k = 〈k1, . . . , kt+n〉 will be chosen

randomly from R = {0, 1}M+bn to compute a nb-bit digest.
For all i ∈ {1, . . . , n}, we then define:

di = digest(ki···t+i,m) =

t∑
j=1

[mjki+j−1 + (mjki+j div 2b)] mod 2b

And
digestMW (k,m) = 〈d1 · · · dn〉

The following theorem and its proof show that digestMW () enjoys the best bound for both
collision and distribution probabilities that one could hope for.

Theorem 3. For any n, t ≥ 1 and b ≥ 1, digestMW () satisfies Definition 3 with the distribu-
tion probability εd = 2−nb and the collision probability εc = 2n−nb on equal length inputs.

Proof. We first consider the collision property of a digest function. For any pair of distinct
messages of equal length: m = m1 · · ·mt and m′ = m′1 · · ·m′t, without loss of generality we
assume that m1 > m′1. Please note that when t = 1 or mi = m′i for all i ∈ {1, . . . , t− 1} then in
the following calculation we will assume that mt+1 = m′t+1 = 0.

For i ∈ {1, . . . , n}, we define Equality Ei as

Ei :

t∑
j=1

[
mjki+j−1 + (mjki+j div 2b)

]
=

t∑
j=1

[
m′jki+j−1 + (m′jki+j div 2b)

]
(mod 2b)

and thus the collision probability is: εc = Prob{k∈R}[E1 ∧ · · · ∧ En].

WHEN m1 −m′1 is odd. We proceed by proving that for all i ∈ {1, . . . , n}

Prob[Ei is true | Ei+1, . . . , En are true] ≤ 2−b

For Equality En, the claim is satisfied due to Theorem 1. We notice that Equalities Ei+1 through
En depend only on keys ki+1, . . . , kn+t, whereas Equality Ei depends also on key ki. Fix ki+1

through kn+t such that Equalities Ei+1 through En are satisfied. We prove that there is at most
one value of ki satisfying Ei. To achieve this we let

z = (m′1ki+1 div 2b)−(m1ki+1 div 2b)+
t∑

j=2

[
(m′j −mj)ki+j−1 + (m′jki+j div 2b)− (mjki+j div 2b)

]
we then rewrite Equality Ei as

(m1 −m′1)ki = z (mod 2b)

Since we assumed m1 −m′1 is odd, there is at most one value of ki satisfying this equation.

WHEN m1 − m′1 is even. We write m1 − m′1 = 2ls with s odd and 0 < l < b, and s′ =
(m′2 −m2)s

−1. We further denote ski = xi2
b−l + yi for i ∈ {1, . . . , n+ t}, where 0 ≤ xi < 2l and

0 ≤ yi < 2b−l.
For i ∈ {1, . . . , n}, if we define bi ∈ {0, 1} and

f(yi, xi+1) = 2lyi + xi+1[(m2 −m′2)s−12b−l + 1] (mod 2b)

g(ki+2, . . . , ki+t) = (m′2ki+2 div 2b) +
t∑

j=3

[
m′jki+j−1 + (m′jki+j div 2b)

]
−

(m2ki+2 div 2b)−
t∑

j=3

[
mjki+j−1 + (mjki+j div 2b)

]
(mod 2b)

then, using similar trick as in the proof of Lemma 1, Equality Ei can be rewritten as

(m1 −m′1)ki + ((m1 −m′1)ki+1 div 2b) + (m2 −m′2)ki+1 = g(ki+2, . . . , ki+t)− bi (mod 2b)

2lski + (2lski+1 div 2b) + (m2 −m′2)s−1ski+1 = g(ki+2, . . . , ki+t)− bi (mod 2b)

2lyi + xi+1 + (m2 −m′2)s−1(xi+12
b−l + yi+1) = g(ki+2, . . . , ki+t)− bi (mod 2b)

2lyi + xi+1[(m2 −m′2)s−12b−l + 1] = s′yi+1 − bi + g(ki+2, . . . , ki+t) (mod 2b)

f(yi, xi+1) = s′yi+1 − bi + g(ki+2, . . . , ki+t) (mod 2b)

Putting Equalities E1 through En together, we have

E1 : f(y1, x2) = s′y2 − b1 + g(k3, . . . , k1+t) (mod 2b)

E2 : f(y2, x3) = s′y3 − b2 + g(k4, . . . , k2+t) (mod 2b)

E3 : f(y3, x4) = s′y4 − b3 + g(k5, . . . , k3+t) (mod 2b)

...
...

...

En−1 : f(yn−1, xn) = s′yn − bn−1 + g(kn+1, . . . , kn+t−1) (mod 2b)

En : f(yn, xn+1) = s′yn+1 − bn + g(kn+2, . . . , kn+t) (mod 2b)

We fix kn+2 through kt+n. We note that there are 2b−t values for yn+1 and two values for bn. For
each pair (yn+1, bn) there is a unique pair (yn, xn+1) satisfying Equality En due to Lemma 2.
Similarly, for each tuple 〈yn, kn+1, bn−1, bn〉 there is also a unique pair (yn−1, xn) satisfying
Equality En−1. We will continue this process until we reach the pair (y1, x2) in Equality E1.
Since Equalities E1 through En do not depend on x1 and there are 2l values for x1, there will be
at most 2l2n2b−l = 2n+b different tuples 〈k1 · · · kn+1〉 satisfying Equalities E1 through En. And
thus the collision probability εc = 2n+b/2(n+1)b = 2n−nb.

Similar argument also leads to our bound on the distribution probability εd = 2−nb. ut

REMARKS. Even though Theorems 1 and 3 address the collision property of an almost uni-
versal hash function, their proofs can be easily adapted to show that our constructions are
also εc-almost-∆-universal [9] as in the case of the MMH scheme considered in the next sec-
tion. The latter property requires that for every m,m′ ∈ X where m 6= m′ and a ∈ Y :
Pr{k∈R}[digest(k,m)− digest(k,m′) = a] ≤ εc.

Operation count. The advantage of this scheme is the ability to reuse the result of each word
multiplication in the computation of two adjacent digest output words as seen in Figure 2 and
the following pseudo-code, e.g. the multiplication m1k2 is instrumental in the computation of
both d1 and d2. Using the same machine as specified in subsection 3.2, each message-word there-
fore requires (n+ 1) MULT and 2n ADD operations.

A pseudo-code for digestMW () on such machine may be as follows

digestMW (key,msg)
1. For i = 1 to n
2. d[i] = 0
3. load key[i]
4. For j = 1 to t
5. load msg[j]
6. load key[j + n]
7. 〈High[0], Low[0]〉 = msg[j] ∗ key[j]
8. For i = 1 to n
9. 〈High[i], Low[i]〉 = msg[j] ∗ key[j + i]
10. d[i] = d[i] + Low[i− 1] +High[i]
11. return 〈d[1] · · · d[n]〉

4 Comparative analysis

In this section, we mainly compare our new digest scheme against well-studied universal hashing
algorithms MMH of Halevi and Krawczyk [9] and NH of Black et al. [4] described in Subsec-
tions 4.1 and 4.2 respectively. Since digest() can be extended to produce multiple-word output

as in the case of MMH and NH to build MACs, our analysis consider both single- and multiple-
word output schemes. We note that NH is the building block of not only UMAC but also
UHASH16 and UHASH32 [4]. For completeness, we will discuss another widely studied UHF
family based on polynomial over finite field, e.g. PolyP, PolyQ, PolyR [14] and GHASH [24].
While the polynomial universal hashing schemes only require short keys, they suffer from two
unpleasant properties: (1) the collision probability decreases linearly with the message length,
and (2) they are less efficient, especially in software implementation, than our digest functions
as well as MMH and NH due to the involved modular arithmetic operations.

The properties of the three main schemes – MMH, NH and digest() – are summarised in
Table 1 where the upper and lower halves correspond to single-word (b bits) and respectively
multiple-word (nb bits) output schemes for any n ≥ 1. This table indicates that the security
level obtained in our digest algorithm is higher than both MMH and NH with respect to the
same output length. In particular, the collision probability of digest() is a third of MMH, while
NH must double the output length to achieve the same order of security. For multiple-word
output schemes, this advantage in security of our proposed digest algorithm becomes even more
significant as seen in the lower half of Table 1.

Scheme Key length MULTs/word ADDs/word εc εd Output bitlength

digest M + b 2 2 21−b 2−b b

MMH M 1 1 6× 2−b 22−b b

NH M 1/2 3/2 2−b 2−b 2b

digestMW M + nb n+ 1 2n 2n−nb 2−nb nb

MMHMW M + (n− 1)b n n 6n × 2−nb 22n−nb nb

NHMW M + 2(n− 1)b n/2 3n/2 2−nb 2−nb 2nb

Table 1. A summary on the main properties of digest(), MMH and NH. MULT operates on b-bit inputs, whereas
ADD operates on inputs of either b or 2b bits.

We end this section by providing implementation results in Table 2 of Section 4.3. As de-
scribed earlier, C files which contain the implementations of NH, MMH and digest() as well as
their multiple-word output versions can be downloaded from [1] which allows readers to test the
speed of the constructions for themselves.

4.1 MMH

Fix a prime number p ∈ [2b, 2b + 2b/2]. The b-bit output MMH universal hash function is defined
for any k = k1, . . . , kt and m = m1, . . . ,mt as follows

MMH(k,m) =

[[[
t∑

i=1

mi ∗ ki

]
mod 22b

]
mod p

]
mod 2b

It was proved in [9] that the collision probability of MMH is εc = 6 × 2−b as opposed to only
21−b of digest(). By using the same proof technique presented in [9], it is also not hard to show
that the distribution probability of MMH is εd = 22−b, as opposed to 2−b of digest().

Following is the pseudo-code of MMH take from [9].

MMH(key,msg)
1. SumHigh = SumLow = 0
2. for i = 1 to t

3. load msg[i]
4. load key[i]
5. 〈ProdHigh, ProdLow〉 = msg[i] ∗ key[i]
6. SumLow = SumLow + ProdLow
7. SumHigh = SumHigh+ ProdHigh+ carry
8. Reduce 〈SumHigh, SumLow〉 mod p and then mod 2b

For single-word output, each message word in MMH requires 1 (b×b) MULT and 1 ADD modulo
22b. We note however that this does not include the cost of the final reduction modulo p. For
n-word output MMH, using “the Toeplitz matrix approach”, the scheme is defined as

MMHMW (k,m) = MMH(k1···t,m) ‖ MMH(k2···t+1,m) ‖ · · · ‖ MMH(kn···t+n−1,m)

MMHMW obtains εc = 6n2−nb and εd = 22n−nb, which are considerably weaker than digestMW ()
(εc = 2n−nb, εd = 2−nb).

4.2 NH

The 2b-bit output NH universal hash function is defined for any k = k1, . . . , kt and m =
m1, . . . ,mt, where t is even, as follows

NH(k,m) =

t/2∑
i=1

(k2i−1 +m2i−1)(k2i +m2i) mod 22b

The downside of NH relative to MMH and our digest method is the level of security obtained,
namely with a 2b-bit output, which is twice the length of both digest() and MMH, NH was
shown to have the collision probability εc = 2−b and the distribution probability εd = 2−b, which
are far from optimality. Its computational cost is however lower than the other twos, i.e. each
message-word requires only 1/2 (b× b) MULT, 1 ADD modulo 2b, and 1/2 ADD modulo 22b.

Following is the pseudo-code of NH.

NH(key,msg)
1. SumHigh = SumLow = 0
2. for i = 1 to t/2
3. load msg[2i− 1]
4. load msg[2i]
5. load key[2i− 1]
6. load key[2i]
7. Left = msg[2i− 1] + key[2i− 1]
8. Right = msg[2i] + key[2i]
9. 〈ProdHigh, ProdLow〉 = Left ∗Right
10. SumLow = SumLow + ProdLow
11. SumHigh = SumHigh+ ProdHigh+ carry
12. return 〈SumHigh, SumLow〉

For 2n-word output, also using “the Toeplitz matrix approach”, we have εc = 2−nb and εd = 2−nb.
Each message-word requires n/2 MULT and 3n/2 ADD operations as seen below.

NHMW (k,m) = NH(k1···t,m) ‖ NH (k3···t+2,m) ‖ · · · ‖ NH(k2n−1···t+2(n−1),m)

digest MMH NH

Output εc Speed Output εc Speed Output εc Speed
bitlength (cpb) bitlength (cpb) bitlength (cpb)

32 2× 2−32 0.53 32 6× 2−32 0.31 64 2−32 0.23
64 22 × 2−64 1.05 64 62 × 2−64 0.57 128 2−64 0.39
96 23 × 2−96 1.54 96 63 × 2−96 0.76 192 2−96 0.62
160 25 × 2−160 2.13 160 65 × 2−160 1.37 320 2−160 1.15
256 28 × 2−256 3.44 256 68 × 2−256 2.31 512 2−256 1.90

Table 2. Performance (cycles/byte) of digest, MMH and NH constructions. In each row, the length of NH is
always twice the length of MMH and digest.

4.3 Implementations of MMH, NH and digest constructions

We have tested the implementations of digest(), MMH, NH as well as their multiple-word output
versions on a workstation with a 1GHz AMD Athlon(tm) 64 X2 Dual Core Processor (4600+
or 512 KB caches) running the 2.6.30 Linux kernel. All source codes were written in C making
use of GCC 4.4.1 compiler. The number of cycles elapsed during execution was measured by the
clock() instruction in the normal way (as in UMAC [29]) in our C implementations [1].

For comparison, we recompiled publicly available source codes for SHA-256 and SHA-512 [26]
whose reported speeds on our workstation are 12.35 cpb and 8.54 cpb respectively.

For application of these primitives in MACs, normally each universal hash key is generated
once out of a short seed and reused for a period of time, and hence previously reported speeds for
MMH and NH within UMAC in [4, 9] and our results do not include the cost of key generation.

Table 2 shows the results of the experiments, which were averaged over a large number of
random and long data inputs of at least 8 kilobytes. The speeds are in cycles/byte or cpb. Our
digest constructions, at the cost of higher security, are slightly slower than MMH and NH due to
extra multiplication operations, but still considerably faster than standard cryptographic hash
functions SHA-256 and SHA-512.

4.4 Polynomial universal hashing schemes

Since our emphasis of this paper is on fast software implementation of universal hash functions,
we have so far mainly considered UHF algorithms using simple arithmetic operations available
in most ordinary computers. In this section, we will study another well-studied class of UHF
based on polynomial over finite fields, including PolyP, PolyQ, PolyR [14] and GHASH within
Galois Counter Mode or GCM [24].

For simplicity, we will give a simple version of polynomial universal hashing that is the core of
PolyP, PolyQ, PolyR and GHASH. Let the set of all messages be {m = 〈m1, . . . ,mt〉;mi ∈ Fp},
here p is the largest prime number less than 2b and the message length is M = tb bits. For any
key k ∈ Fp, we define:

Poly(k,m) = m1 +m2k +m3k
2 + · · ·+mtk

t−1 (mod p)

Such a scheme does have two nice properties as follows

– The key length of the b-bit output Poly() scheme is fixed at b bits regardless of the message
length. In contrast, MMH, NH and digest() all require the key length to be greater than or
equal to message length.

– Poly() provides collision resistance for both equal and unequal length messages. Suppose that
the bit lengths of two different messages m and m′ are bt and bt′, then the collision probability
is max{t − 1, t′ − 1}/p. On the other hand, MMH, NH and digest() only ensure collision

resistance for equal length data, but not unequal length messages. The latter is intuitively
because unequal length messages in digest(), MMH and NH require unequal length keys,
which make them incomparable for collision analysis.

Regarding the first property, as mentioned earlier all of the short-output constructions are usually
used to build MACs which reuse a single key for a period of time. Consequently long key
generation from a short seed that is done once in a while for digest(), MMH or NH will not
affect their practical uses in message authentication codes. Without taking into account key
generation, MMH, NH and digest functions are significantly faster than PolyP32, PolyQ32 and
PolyP64 whose peak performance in Pentium II assembly are 3.69, 3.86 and 6.86 cpb as reported
by Krovetz and Rogaway [14]. In addition to 1 MULT and 1 ADD, Poly() requires an extra
reduction modulo p per each message word as seen in the pseudo-code below.4

The main disadvantage of a polynomial universal hashing scheme is that its collision prob-
ability depends on the length of messages, which is the opposite of MMH, NH and digest().
Namely, the collision probability of the above scheme is ε = (t − 1)2−b that is no where near
the level of security obtained by our digest function when message is of a significant size. The
security downside of polynomial universal hash functions does have a negative impact on their
use in manual authentication protocols where short-output but highly secure universal hash
functions are required.

Following is the pseudo-code for Poly().

Poly(key,msg)
1. load msg[1]
2. Sum = msg[1]
3. for i = 2 to t
4. load msg[i]
5. Sum = (Sum+msg[i] ∗ key) mod p
6. return Sum

5 Short-output universal hash functions in manual authentication protocols

In addition to MAC schemes, short-output universal hash functions have found use in manual
authentication protocols as explained below.

In the following scheme, parties A and B want to authenticate their public data mA/B to
each other without the need for passwords, shared private keys as in MACs, or pre-established
security infrastructures such as a PKI. Instead authentication is bootstrapped from human trust
and interactions.

The authenticated data mA/B might include public keys, images or videos, and so can be of
significant size. Using notation taken from authors’ work [20–23] the N -indexed arrow (−→N)
indicates an unreliable and high-bandwidth (or normal) link where messages can be maliciously
altered, whereas the E-indexed arrow (−→E) represents an authentic and unspoofable (or em-
pirical) channel. The latter is not a private channel (anyone can overhear it) and it is usually
very low-bandwidth since it is implemented by humans, e.g., human conversations or manual
data transfers between devices. hash() is a cryptographic hash function. Long random keys kA/B

are generated by A/B, and kA is kept secret until after kB is revealed in Message 2. Operators
‖ and ⊕ denote bitwise concatenation and exclusive-or.

4 In line 5 of the pseudo-code of Poly() the operation Sum+msg[i]∗key can overflow or be bigger than 22b, and
hence reduction modulo p must be done carefully to obtain the correct result. For example, one might compute
y = msg[i] ∗ key mod p first, which is followed by Sum = (Sum+ y) mod p.

A pairwise manual authentication protocol [2, 15, 17, 20]

1.A −→N B : mA, hash(A ‖ kA)
2.B −→N A : mB, kB
3.A −→N B : kA
4.A←→E B : h(k∗,mA ‖ mB)

where k∗ = kA ⊕ kB
To ensure both devices agree on the same data mA ‖ mb, their human owners manually compare
the universal hash value in Message 4. As human interactions are expensive, the universal hash
function needs to have a short output of b ∈ [16, 32] bits.

As seen from the above protocol, the universal hash key k∗ always varies randomly and
uniformly from one to another protocol run. In other words, no value of k∗ is used to hash more
than one message because kA/B instrumental in the computation of k∗ are randomly chosen
in each protocol run. This is fundamentally different from MACs which use the same private
key to hash multiple messages for a period of time, and hence attacks which rely on the reuse
of a single private key in multiple sessions are irrelevant in manual authentication protocols.
What we then want to understand is the collision and distribution properties of the universal
hash function. We stress that this analysis is also applicable to group manual authentication
protocols [16, 20–22, 30].

Should digest(), MMH or NH (or UHASH16/32) be used directly in Message 4 of the above
protocol, random and fresh keys kA/B of similar size as mA ‖ mB must be generated whenever
the protocol is run.5 Obviously one can generate a long random key stream from a short seed via
a pseudo-random number generator, but it can be computationally expensive especially when the
authenticated data mA/B are of a significant size. Of course we can use one of the polynomial
universal hashing functions (e.g. PolyP32, PolyQ32 or PolyR16 32 all defined in [14]) which
require a short key. But since humans only can compare short value over the empirical channel,
it is intolerable that the security bound of the universal hash function degrades linearly along
with the length of data being authenticated.

One possibility suggested in [2, 8, 25] is to truncate the output of a cryptographic hash
function to the b least significant bits:

h(k,m) = truncb (hash(k ‖ m))

Although it can be computationally infeasible to search for a full cryptographic hash collision,
it is not clear whether the truncated solution is sufficiently secure because the definition of a
hash function does not normally specify the distribution of individual groups of bits.

What we therefore propose is a combination of cryptographic hashing and short-output
universal hash functions. We want to stress that among MMH, NH and digest(), the least
preferable scheme would be NH because it needs to double output length to achieve the same
order of security as MMH and digest(). The length of universal hash functions must be short in
manual authentication protocols because humans can only compare short strings efficiently and
accurately.

Without loss of generality, we use our digest method in the following construction which
is also applicable to MMH and NH. Let hash() be a B-bit cryptotgraphic hash function, e.g.
SHA-2 or SHA-3. First the input key is split into two parts of unequal lengths k = k1 ‖ k2,
where k1 is B+ b bits and k2 is at least 80 bits. Then our modified digest construction digest′()
which takes an arbitrarily length message m is computed as follows

digest′(k,m) = digest(k1, hash(m ‖ k2))
5 Suppose that the bitlengths of input data and output are M and b then digest() requires M + b bits and both

MMH and NH requires M bits for the key.

We hash the concatenation of m and k2 to make it much harder for the intruder to search for
hash collision because a large number of bits of the hash input will not be controlled by the
intruder. Consequently the intruder cannot carry out effective off-line searching.

We denotes θc the hash collision probability on random messages of hash(), and it should
be clear that θc � 2−b given that b ∈ [16, 32]. The following theorem will demonstrate that this
construction preserves both the collision probability except a tiny bias due to the hash function
and the distribution probability of digest() regardless of what hash() is. It also removes the
restriction on equal length input messages because the hash function hash() always produces a
fixed length value.6

Theorem 4. digest′() satisfies Definition 3 with the distribution probability εd = 2−b and
the collision probability εc = 21−b + θc.

Proof. Let l1 and l2 denote the bitlengths of keys k1 and k2 respectively.

We first consider collision property of digest′(). For any pair of distinct messages m and m′,
as key k2 varies uniformly and randomly the probability that hash(m ‖ k2) = hash(m′ ‖ k2) is
bounded above by θc. So there are two possibilities:

– When hash(m ‖ k2) = hash(m′ ‖ k2) then digest(k1, hash(m ‖ k2)) = digest(k1, hash(m′ ‖
k2)) for any key k1 ∈ {0, 1}l1 .

– When hash(m ‖ k2) 6= hash(m′ ‖ k2) then digest(k1, hash(m ‖ k2)) = digest(k1, hash(m′ ‖
k2)) with probability 21−b.

Consequently the collision probability of digest′() is

θc + (1− θc)21−b < θc + 21−b

As regards distribution probability of digest′(), we fix message m of arbitrarily length and a
b-bit value y in our analysis.

For each value of k2, there will be at most 2l1−b different keys k1 such that

digest(k1, hash(m ‖ k2)) = y

Since there are 2l2 different keys k2, there will be at most 2l1−b2l2 = 2l1+l2−b different pairs
(k1, k2) or different keys k such that digest(k1, hash(m ‖ k2)) = y. The distribution probability
of digest′() is therefore 2−b ut

We end this section by pointing out that the shortness of UHF output required in manual
authentication protocols further implies that UHFs with optimal (or nearly optimal) collision
probability are much more sought here than in message authentication codes. Although our
proposed digest′() scheme is very near to optimality, we might want to go further. To our
knowledge, this is possible but at the expense of involving arithmetic that computers less like to
do than word multiplication and addition even when the input data is short. These are bit-wise
matrix multiplications in the well-studied Toeplitz matrix hashing construction of [12, 18] that
we mentioned in Footnote 1 and finite fields modular reductions in polynomial universal hashing
schemes of [5, 11, 28]. Both of these are discussed in Annexes A and B.

6 We note that there is a subtle difference between digest′() and PolyR16 32() of [14] which is defined as follows
PolyR16 32(k,m) = PolyQ32(k1,PolyQ16(k2,m2) ‖ m1). Here PolyQ32 and PolyQ16 produce 32- and 16-bit
outputs respectively. The idea here is to hash short messages directly with PolyQ16, but hash significant longer
messages with a hybrid scheme. As a result PolyR16 32 is faster than PolyQ32, but its collision probability is
still dependent on message length. This is not the case with digest′(), which partly explains why we need to a
rather longer key of K = B + b+ 80 bits to reach εc = 21−b regardless of the message length.

References

1. http://www.cs.ox.ac.uk/publications/publication5935-abstract.html

2. Simple Pairing White Paper. See: www.bluetooth.com/NR/rdonlyres/
0A0B3F36-D15F-4470-85A6-F2CCFA26F70F/0/SimplePairing WP V10r00.pdf

3. http://software.intel.com/en-us/articles/

carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode/

4. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Rogaway. UMAC: Fast and Secure Message Authentication.
CRYPTO, LNCS vol. 1666, pp. 216-233, 1999.

5. B. den Boer. A simple and key-economical unconditional authentication scheme. Journal of Computer Security
2 (1993), 65-71.

6. J.L. Carter and M.N. Wegman. Universal Classes of Hash Functions. Journal of Computer and System
Sciences, 18 (1979), 143-154.

7. M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable randomized algorithm for the
closest-pair problem. Journal Algorithms, 25 (1997), 19-51.

8. C. Gehrmann, C. Mitchell and K. Nyberg. Manual Authentication for Wireless Devices. RSA Cryptobytes,
vol. 7, no. 1, pp. 29-37, 2004.

9. S. Halevi and H. Krawczyk. MMH: Software Message Authentication in the Gbit/second Rates. FSE, LNCS
vol. 1267, pp. 172-189, 1997.

10. ISO/IEC 9798-6, L.H. Nguyen, ed., 2010, Information Technology – Security Techniques – Entity authentica-
tion – Part 6: Mechanisms using manual data transfer.

11. T. Johansson, G.A. Kabatianskii, and B. Smeets. On the relation between A-Codes and Codes correcting
independent errors. Advances in Cryptology, EUROCRYPT 1993, LNCS vol. 765, 1-11.

12. H. Krawczyk. LFSR-based Hashing and Authentication. Advances in Cryptology, CRYPTO 1994, LNCS vol.
839, 129-139.

13. H. Krawczyk. New Hash Functions For Message Authentication. Advances in Cryptology - Eurocrypt 1995,
LNCS vol. 921, pp. 301-310.

14. T. Krovetz and P. Rogaway. em Fast Universal Hashing with Small Keys and no Preprocessing: the PolyR
Construction. Information Security and Cryptology - ICICS 2000, LNCS vol. 2015, pp. 73-89, Springer, 2000.

15. S. Laur and K. Nyberg. Efficient Mutual Data Authentication Using Manually Authenticated Strings. LNCS
vol. 4301, pp. 90-107, 2006.

16. S. Laur and S. Pasini. SAS-Based Group Authentication and Key Agreement Protocols. In Public Key Cryp-
tography - PKC 2008, 11th International Workshop on Practice and Theory in Public-Key Cryptography, pp.
197-213.

17. A.Y. Lindell, Comparison-based key exchange and the security of the numeric comparison mode in Bluetooth
v2.1, in: Proceedings of the Cryptographers’ Track at the RSA Conference 2009 on Topics in Cryptology,
Lecture Notes in Computer Science, Vol. 5473, M. Fischlin, ed., Springer, 2009, pp. 66-83.

18. Y. Mansour, N. Nisan and P. Tiwari. The Computational Complexity of Universal Hashing. Proceedings of
the 22nd Annual ACM Symposium on Theory of Computing, pp. 235-243, 1990.

19. A. Mashatan and D. Stinson. Practical Unconditionally Secure Two-channel Message Authentication. Designs,
Codes and Cryptography 55 (2010), 169-188.

20. L.H. Nguyen and A.W. Roscoe. Authentication protocols based on low-bandwidth unspoofable channels: A
comparative survey. Journal of Computer Security 19(1): 139-201 (2011).

21. L.H. Nguyen and A.W. Roscoe. Efficient group authentication protocol based on human interaction FCS-
ARSPA 2006, pp. 9-31.

22. L.H. Nguyen and A.W. Roscoe. Authenticating ad-hoc networks by comparison of short digests. Information
and Computation 206(2-4) (2008), 250-271.

23. L.H. Nguyen and A.W. Roscoe. Separating two roles of hashing in one-way message authentication. FCS-
ARSPA-WITS 2008, pp. 195-210.

24. National Institute of Standards and Technology. Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D, November, 2007.

25. S. Pasini and S. Vaudenay. SAS-based Authenticated Key Agreement. Public Key Cryptography - PKC 2006:
The 9th international workshop on theory and practice in public key cryptography, LNCS vol. 3958, pp.
395-409.

26. Please see: http://www.aarongifford.com/computers/sha.html

27. D.R. Stinson. Universal Hashing and Authentication Codes. Advances in Cryptology - Crypto 1991, LNCS
vol. 576, pp. 74-85, 1992.

28. R. Taylor. An Integrity Check Value Algorithm for Stream Ciphers. Advances in Cryptology, CRYPTO 1993.
LNCS vol. 773, Springer-Verlag, pp. 40-48, 1994.

29. The source code and performance of UMAC can be found on this website: http://fastcrypto.org/umac/

30. J. Valkonen, N. Asokan and K. Nyberg. Ad Hoc Security Associations for Groups. In Proceedings of the
Third European Workshop on Security and Privacy in Ad hoc and Sensor Networks 2006. LNCS vol. 4357,
pp. 150-164.

31. M.N. Wegman and J.L. Carter. New Hash Functions and Their Use in Authentication and Set Equality.
Journal of Computer and System Sciences, 22 (1981), 265-279.

A Toeplitz universal hashing

We first give the definition of a Toeplitz matrix.

Definition 4. A Toeplitz matrix A is a (not necessary square) matrix where each left-to-right
diagonal is fixed, i.e. for all pairs of indexes (i, j): Ai,j = Ai+1,j+1.

If we want to compute a b-bit universal hash of a M -bit message m, then (M + b− 1)-bit key k
is drawn randomly from R = {0, 1}M+b−1. We can generate a Toeplitz matrix A(k) of M rows
and b columns from key k, i.e. we assume a linear map from (F2)

M+b−1 to the set of Toeplitz
matrices in (F2)

M×b.
Krawczyk [12] and Mansour [18] independently introduce the following scheme, where the

symbol ‘×’ in Equation 5 represents a product of vector m and matrix A(k) over F2.

hT (k,m) = m×A(k) (5)

If key k is drawn randomly from R, then the collision probability is 2−b which is optimal. For
use in manual authentication protocols of Section 5, we define h(k,m) = hT (k1, hash(m ‖ k2))
where k = k1 ‖ k2. This obtains εc = 2−b+θc where θc is the hash collision probability of hash().

B Polynomial universal hashing

We first define the following n-bit output polynomial universal hashing scheme PHn,p adapted
from [5, 11, 28], where p is the largest prime number less than 2n. This unversal hash function
takes a n-bit key k ∈ Fp and a 2n-bit data m = m1 ‖ m2, and produces an output in Fp.

PHn,p(k,m) = k ∗m1 +m2 (mod p)

It is not difficult to show that the collision probability of this construction is 1/p.
Suppose that we can hash an arbitrarily long message m into a 4b-bit value by using a

cryptographic hash function then our construction uses two different instances of the above
polynomial hashing scheme, namely PHb,p1 and PH2b,p2 where p1 and p2 are the biggest prime
numbers less than 2b and 22b respectively.

h(k,m) = PHb,p1(k1,PH2b,p2(k2, hash(m ‖ k3)))

Here k = k1 ‖ k2 ‖ k3, where k1 ∈ Fp1 , k2 ∈ Fp2 and k3 is at least 80 bits.
The collision probability of this construction is therefore εc = 1/p1 + 1/p2 + θc, where θc

denotes the hash collision probability on random messages of hash(). Since p2 � p1 and 1/p1 �
θc, we can deduce that εc ≈ 1/p1 ≈ 2−b.

