
Swoop: A ‘Web’ Ontology Editing Browser

�

Aditya Kalyanpur1, Bijan Parsia2, Evren Sirin1,
Bernardo Cuenca Grau3, James Hendler1

University of Maryland, MIND Lab, 8400 Baltimore Ave,
College Park MD 20742, USA

{aditya, evren, hendler}1@cs.umd.edu, bparsia@isr.umd.edu2,
bernardo@mindlab.umd.edu3

Abstract

In this paper, we describe Swoop, a hypermedia inspired Ontology Browser and
Editor based on OWL, the recently standardized Web-oriented ontology language.
After discussing the design rationale and architecture of Swoop, we focus mainly
on its features, using illustrative examples to highlight its use. We demonstrate
that with its web-metaphor, adherence to OWL recommendations and key unique
features such as Collaborative Annotation using Annotea, Swoop acts as a useful
and efficient web ontology development tool. We conclude with a list of future plans
for Swoop, that should further increase its overall appeal and accessibility.

Key words: OWL, Ontology Engineering, Systems

1 Introduction: Design Rationale and Goals

Swoop is built primarily as a Web Ontology Browser and Editor, i.e., it is
tailored specifically for OWL [1] ontologies. Thus, it takes the standard Web
browser as the UI paradigm, believing that URIs are central to the under-
standing and construction of OWL Ontologies. The familiar look and feel of a
browser emphasized by the address bar and history buttons, navigation side
bar, bookmarks, hypertextual navigation etc are all supported for web on-
tologies, corresponding with the mental model people have of URI-based web
tools based on their current Web browsers (see Fig. 1).

� Please note that this paper is intended to be a systems and not a research paper

Preprint submitted to Elsevier Science 30 July 2005



Fig. 1. Swoop: A Web Ontology Browser. The layout resembles a familiar
frame-based website viewed through a Web browser. A navigation sidebar on the
left contains the multiple ontology list and class/property hierarchies for each on-
tology, while the center pane contains the various ontology/entity renderers for
displaying the core content. The history buttons (back, next) and address bar take
their familiar position at the top of the frame.

All design decisions are in keeping with the OWL nature and specifications.
Thus, multiple ontologies are supported easily, various OWL presentation syn-
tax are used to render ontologies, OWL reasoners can be integrated for consis-
tency checking, and open-world semantics are assumed while editing. To give
an example of the latter aspect, some ontology editors make the assumption
that an owl:FunctionalProperty can only allow one value in all cases thus
providing a single input component. However, this is not true in the case of
OWL ObjectProperties where multiple values (individuals) can exist for the
functional property, allowing the reasoner to infer equivalence between the
values.

A key point in our work is that the hypermedia basis of the UI is exposed
in virtually every aspect of ontology engineering — easy navigation of OWL
entities, comparing and editing related entities, search and cross referencing,
multimedia support for annotation, etc. — thus allowing ontology developers
to think of OWL as just another Web format, and thereby take advantage of
its Web-based features.

A diverse array of ontology related tasks can be performed in Swoop ranging
from collaborative annotation and data markup to ontology refactoring and
debugging. This makes Swoop accessible to both, novice users interested in

2



casual ontology building and use [2], and expert users interested in robust
ontology modeling and analysis.

2 Related Work

There exist numerous ontology development toolkits (many of which have
OWL support), that provide an integrated environment to build and edit on-
tologies, check for errors and inconsistencies (using a reasoner), browse mul-
tiple ontologies, and share and reuse existing data by establishing mappings
among different ontological entities.

However, we differentiate Swoop on several aspects. First, to our knowledge,
Swoop is the only ontology editor currently available that is catered wholly
towards OWL from the ground up and its design rationale reflects this. Sec-
ond, it contrasts with other ontology editors such as Protégé [3], OilED [4],
and OntoEdit [5] which either are, or were influenced by traditional KR de-
velopment tools and applications, and do not reflect “Webiness” in their UI
design. In particular, they do not fully support the use of hypertext to drive
the exploration and editing of ontologies.

Also, as mentioned in [6], there are several examples of current website-based
ontology tools(e.g. Ontosaurus [7], WebODE [8]), pOWL 1 ). However, we have
found that using a standard web-based server-client architecture for ontology
engineering suffers from being slow (esp. for large ontologies, and depending
on network traffic), and cumbersome for maintaining consistency while edit-
ing (eg. trapping input errors, changing/deleting objects but reloading from
browser cache etc), an argument also supported in [9]. In addition, such tools
can be difficult to extend to new functionalities via plug-in architectures (such
as the one used in Swoop). For these reasons, Swoop is developed as a separate
Java application that attempts to provide the look and feel of a browser-based
application, but with its specialized architecture designed to optimize OWL
browsing and to be extensible via a plug-in architecture.

3 Swoop Architecture

Swoop is based on the Model-View-Controller (MVC [10]) paradigm. The
SwoopModel component stores all ontology-centric information pertaining to
the Swoop Workspace (currently loaded ontologies, change-logs, checkpoints)
and defines key parameters used by the Swoop UI objects (such as selected

1 pOWL - http://powl.sourceforge.net

3



Fig. 2. Plugin-based Swoop Architecture

OWL entity, view settings for imports, QNames etc). Additionally, a Swoop-

ModelListener class is used to reflect changes in the UI based on changes in
the SwoopModel (using a suitably defined event-notification scheme). Con-
trol is handled through a plugin based system, which loads new Renderers

and Reasoners dynamically. The obvious advantage of a plugin framework is
to ensure modularity of the code, and encourage external developers to con-
tribute to the Swoop project easily. Finally, we note that the entire Swoop
code is written in Java, maintained in a subversion repository and makes use
of numerous third party libraries, the most prominent being the WonderWeb
OWL API [11] which is used as the underlying OWL representation model.

4 Swoop Features

In this section, we describe the features of Swoop that are in keeping with
its design rationale and goals mentioned earlier. In particular, we focus on
the unique aspects of ‘Web’ Ontologies and the corresponding tool support
needed to develop each aspect effectively. Note that all features mentioned
in this paper are with reference to the v2.2 release of Swoop, which can be
obtained at the Swoop website: http://www.mindswap.org/2004/SWOOP.

4.1 Ontologies based on the Web Architecture

The idea behind Web ontology development is different from traditional and
more controlled ontology engineering approaches which rely on high invest-
ment, relatively large, heavily engineered, mostly monolithic ontologies. For
OWL ontologies, which are based on the Web architecture (characterized as
being open, distributed and scalable), the emphasis is more on utilizing this
freeform nature of the Web to develop and share (preferably smaller) ontology
models in a relatively ad hoc manner, allowing ontological data to be reused
easily, either by linking models (using the numerous mapping properties avail-
able in OWL) or merging them (using the owl:imports command). Thus, it

4



becomes essential for a Web ontology development tool to scale to multiple
ontologies easily, and to allow tasks such as creation, browsing, editing, search,
reuse, linking, merge/split of OWL ontology models in the context of multiple
large distributed ontologies.

In order to attain this key requirement, Swoop ensures that users are free to
load multiple OWL ontologies in any manner they prefer. The easiest and
most direct way to load an OWL Ontology is by entering its physical URL
(Web or local file address) in the address bar. This action not only pulls
in the requested ontology, but also loads any imported ontologies (defined
using owl:imports) into Swoop automatically. The bookmarks feature can
be used to store, categorize and reload ontologies directly (as is the case in
standard web browsers). Finally, depending on user preference, an ontology
can also be brought into Swoop rather seamlessly during browsing/editing,
e.g., attempting to view or refer to an externally referenced entity while in a
particular ontology can load the external ontology automatically.

There are certain characteristics of OWL ontologies which are presented to
the user when a new ontology is brought into Swoop. The Ontology Renderer
plugins in Swoop accomplish this, and display statistics such as (see Fig. 3):

• the logical constructs used in the ontology model which determine the OWL
species level the ontology belongs to, i.e., OWL Lite, DL or Full

• the Description Logic (DL) expressivity of the ontology - a key factor in
determining complexity of reasoning

• number of classes, properties, individuals etc. (we intend to extend the gran-
ularity to axioms, e.g., no. of disjoint axioms, no. of nominals used etc.)

• annotations on the ontology object itself (including owl:imports)

4.1.1 Editing Web Ontologies

Consider a scenario in which a user is building an ontology for the University of
Maryland (UMD) for describing its administrative hierarchy (with concepts
such as Department, Faculty, Staff, Student etc). This user can make
use of existing concepts in well-known upper-level ontologies such as FOAF
or Cyc (for generic concepts such as Person), or in similar ontologies created
for other universities (such as Stanford or CMU). Another user interested
in building a finer-grained ontology than the one above, say for describing
his/her research group at UMD, can now use the UMD ontology to refer to
or define certain concepts. In this manner, the open development cycle of
create-link-share web ontologies ensures that a large amount of interrelated
semantic content is available in ontologies. Moreover, it satisfies one of the
fundamental necessities of effective ontology development for the Semantic
Web, that of semantic interoperability – instance data written in one ontology

5



Fig. 3. Swoop Ontology Renderers: display statistical information about the
ontology, annotations, DL expressivity and OWL species level.

can be transformed into data for another ontology provided the necessary links
exist.

In keeping with the above scenario, Swoop allows users to freely link (map
between) entities in different ontologies using a single common interface, which
lists each ontology loaded in Swoop along with its corresponding entity list
(see Fig: 4).

This seemingly simple feature underlines the true significance and power of
Web ontologies as described above, i.e., the ease in which ontological data can
be reused creating a semantic mesh of interlinked ontologies such that, as the
mesh grows larger and more interconnected, it becomes easier and more useful
for other web ontology developers/users to build and utilize specific ontology
models on the fly.

It is important to consider the scenario in which a user edits an external ontol-
ogy present at a URL under the control of a third party. In this case, though
the ontology could be considered as read-only, Swoop allows the ontology to
be modified and a local version of the ontology to be maintained separately
(since it cannot be exported to the URL). However, now, its new physical loca-
tion is used for reference in an owl:import axiom that specifies importing the
external ontology. In general, Swoop tracks import-links across the ontologies
in its environment, and when the physical location of an ontology is changed,
the corresponding import links are updated as well.

6



Fig. 4. Editing in Swoop: Clicking the ‘Add’ hyperlink next to an assertion head-
ing (e.g., Intersection of) pops up a window to specify corresponding new infor-
mation (e.g., the new intersection class). In this case, the user is specifying a class
Researcher from an external ontology mindswap as an intersection element

However, there are additional caveats to be considered while editing in a multi-
ple ontology setting as described above. For starters, it is essential to provide
a search feature to help users find related ontological information. Having
found such information, it then becomes critical to compare and analyze this
information in order to determine which parts, if any, are useful (verifying
relevance, accuracy etc). Finally, the user needs a flexible reuse scheme that
supports either borrowing the entire external ontology model if desired, or a
subset of it which is relevant, allowing suitable modifications if any. We deal
with each of these three caveats in detail as reflected in Swoop.

Search in Swoop essentially performs a lookup for entities (classes/ properties/
individuals) across single or multiple ontologies, among those that have been
loaded. The results are obtained as a set of hyperlinks (in keeping with the
hypermedia-based UI) allowing the user to browse the search results easily
(see Fig. 5).

During an extensive search/browsing process, the user may need to set aside
and revisit interesting search results. In Swoop we have a provision to store and
compare OWL entities via a Resource Holder panel (see Fig 6). Items can
be added to this panel at any time and they remain static there until the user
decides to remove or replace them at a later stage. This common placeholder
acts as an excellent platform for performing interesting engineering tasks such

7



Fig. 5. Ontology Search in Swoop for the keyword ‘Person’

as comparing differences in definitions of a set of entities; determining seman-
tic mappings between a specific pair of entities or simply storing entities for
reusing in another ontology.

Fig. 6. Resource Holder: used to compare 3 different definitions of the OWL Class
Person as specified in 3 different ontologies

4.1.2 Reusing OWL Data: The Partial Imports Problem

Having dealt with the important aspects of search and comparison of related
data in a multiple ontology setting, we are now left with the critical task
of reusing data efficiently. Note that all the constructs in RDFS/OWL (e.g.
owl:equivalentTo, rdfs:subClassOf) can be used to relate entities from
different ontologies. However, the actual semantics of the linked entities de-
pends on whether the corresponding ontologies import one another, e.g., if
class CA (in ontology A) is defined as equivalentTo class CB (in ontology

8



B), the semantics of CA differ depending on whether A imports B or not.
Thus, effectively, there are two ways in which users can reuse external onto-
logical data, i.e., either by simply linking to the external entity, or by linking
to the entity and importing the entire external ontology (using owl:imports).
Already, one of the key drawbacks of the above reuse scheme has become clear
– either users are forced to underspecify the semantics of their model by link-
ing to but not importing the external ontology (using the former approach),
or they are forced to overspecify their model by importing the entire seman-
tics, i.e. all axioms, of the imported ontology (using the latter approach).
Thus, there is no easy, direct solution for partial imports in OWL. Various
workarounds exist such as a brute-force syntactic scheme to copy/paste rele-
vant parts (axioms) of the external ontology, or a more elegant solution that
involves partitioning the external ontology while preserving its semantics and
then reusing (importing) only the specific partition as desired.

We have explored the latter solution for partitioning OWL Ontologies by trans-
forming them into an E-connection. Describing the theory and significance of
E-connections, their use in the context of OWL Ontologies and details of
the partitioning algorithm are beyond the scope of this paper. For more on
that visit http://www.mindswap.org/2004/multipleOnt. Here we briefly de-
scribe the process: an ontology dealing with numerous inter-related domains
is transformed into an E-connection which consists of sub-ontologies (parti-
tions) that each deal with a distinct domain. An obvious advantage of the
above modularity is that a user interested in reusing a concept from a partic-
ular domain, can import only the corresponding partition instead of the entire
original ontology.

4.2 Adhering to OWL Specifications: Presentation and Reasoning

Currently, various presentation syntax exist for rendering OWL ontologies
such as RDF/XML [12], OWL Abstract Syntax [13], and Turtle [14]. It is
important to support these different syntax while designing an open, Semantic
Web ontology engineering environment. One reason for this is that people tend
to have strong biases toward different notations and simply prefer to work in
one or another. A second is that some other tool might only consume one
particular syntax (with the RDF/XML syntax being the most typical), but
that syntax might not be an easy or natural one for a particular user. A
third is that it is important to support the “view source” effect, allowing cut
and paste reuse into different tools including text editors, markup tools, or
other semantic web tools. For these reasons, Swoop has default plugins for
all three presentation syntax mentioned above. Users are free to browse and

9



edit 2 ontological data, either at the level of a single entity (inline) or at the
level of the entire ontology as a whole, in any syntax as desired, switching
between syntax on a single click.

Fig. 7. Top: Concise Format Entity Renderer: displays all ontological informa-
tion about the OWL Class Semillon as a single Web document Bottom: Graph
Visualization plugin: displays a conceptual graph with nodes as classes and edges
as properties (restrictions and collections are concisely represented)

In addition to the default OWL presentation syntax, we are working on three

2 Note: Swoop v2.2 has support for inline editing in RDF/XML, the subsequent
release will allow for inline editing in the other two syntax as well

10



additional renderers to help users visualize and understand OWL ontologies
better (two of which are shown in Fig. 7). These include a Concise Format
entity renderer, where the idea is to generate a “Web document” that dis-
plays all information related to a particular OWL entity concisely in a single
pane; a Natural Language entity renderer that provides concise, accurate
NL paraphrases for OWL Concepts based on a variety of NLP techniques
[15]; and an OWL Graph visualization renderer based on TouchGraph
that displays concise conceptual graphs of the ontology model. Each of these
renderers provide a different view of the model, allowing users to understand
logical definitions and relationships better.

4.2.1 Reasoning in OWL

Having covered the presentation aspects of OWL ontologies, we now focus on
the reasoning support in Swoop. Note that OWL-DL is primarily based on de-
scription logic, with open-world semantics and a non unique name assumption
(UNA). Swoop strictly maintains the latter two aspects during editing, e.g.,
it does not try to ‘interfere’ with creating the KB (i.e., prevent the creation
of inconsistencies) by making any additional alterations or assumptions, and
accurately reflects the users’ actions based on open world semantics. As for
the DL reasoning, Swoop allows for special-purpose reasoner plugins that pro-
vide standard reasoner services such as satisfiability (of a single class as well
as consistency of the ontology), subsumption (between classes and between
properties), and realization (types of an instance). Additionally, reasoners can
support the optional explanations feature, which is used for sophisticated on-
tology debugging as explained later.

Swoop contains two additional reasoners (besides the basic Reasoner that
simply uses the asserted structure of the ontology): RDFS-like and Pellet

[16]. While the former is a lightweight reasoner based on RDFS semantics,
the latter, Pellet, is a powerful description logic tableaux reasoner. Pellet has
a number of advantages: It natively supports OWL, including a repairable
subset of OWL Full; it has extensive support for XML Schema datatypes; it
has ABox (a.k.a., instance) support; it covers the broadest range of OWL DL
of any reasoner that we know, including both SHIN(D), SHON(D), SHIO(D),
and various subsets of their union, SHOIN(D) (a.k.a., OWL DL); it is open
source and in active, public development. The last is very important for certain
debugging strategies which require access to the internals of the reasoner as
noted later.

The above reasoners provide a tradeoff between speed and quality of inference
results, e.g., the RDFS-like reasoner, while much faster than Pellet in exe-
cution, is unsound (results maybe inaccurate if the ontology is inconsistent)
and incomplete (does not list all possible inferences). Yet, in most cases, it

11



provides interesting and useful results for ontology authors, and moreover, the
reasoners can be used in conjunction to analyze the ontology quickly while
editing it. Fig. 8 illustrates the use and functionality of the various reasoners
in Swoop, by highlighting the difference in the results provided for the same
class definition in a given ontology.

Fig. 8. Using the Swoop Reasoners: Note the change in position of the class
NewPolicy in the subsumption graph when the reasoner selection changes. Initially,
it is known to be a subclass of Policy in the asserted (No Reasoner) mode; then
inferred to be a subclass of three distinct classes in the RDFS mode, and finally
found to be unsatisfiable in Pellet mode.

4.2.2 Ontology Debugging and Repair

DL reasoners such as Pellet, RACER [17], FACT [18] etc can be used to
detect inconsistencies in definitions of concepts (a.k.a. unsatisfiable concepts).
However, typically reasoners only report that a class is unsatisfiable, not why.
Moreover, they do not report on inter-dependencies (if any) of the unsatisfiable
classes, i.e., if a class directly depends on another for its unsatisfiability (e.g.,
by an existential property restriction on an unsatisfiable class). We argue that
both forms of explanation are essential for the purpose of debugging ontologies;
while the former can be used to understand and rectify problematic axioms /
class expressions, the latter can help prune out dependency bugs and let the
modeler focus on the root (source) of the problem alone.

We distinguish two families of reasoner-based techniques for supporting di-
agnosis of the form described above: glass box and black box techniques.
In glass box techniques, information from the internals of the reasoner is
extracted and presented to the user (typically used to pinpoint the type of
clash/contradiction and axioms leading to the clash). In black box techniques,

12



the reasoner is used as an oracle for a certain set of questions e.g., the standard
description logic inferences (subsumption, satisfiability, etc.) and the asserted
structure of the ontology is used to help isolate the source of the problems
(can be used to find dependencies between unsatisfiable classes). Presenting
the details of both approaches is beyond the scope of this paper, for more see
[19].

For now, we note that both forms of ontology debugging in Swoop is exposed
through reasoners which support the optional explanations service (Pellet by
default does this), and describe a simple example to illustrate the use of de-
bugging: Consider the case of the unsatisfiable class Koala depicted in Figure
9. Swoop displays a one line quasi-Natural Language description explaining
the cause of the clash in the class definition, followed by a list of the rele-
vant set of axioms from the ontology responsible for the clash. This provides
a direct pointer to the problematic part of the ontology as making this class
satisfiable involves removing or fixing any one of the axioms displayed.

Fig. 9. The set of axioms that support the inconsistency of Koala concept is displayed
in debug mode.

4.3 Extending the Swoop Framework for Collaborative, Distributed Web On-

tology Evolution

Till now we have seen how Swoop makes use of the Web-based nature of OWL
Ontologies and remains true to the OWL specifications while providing for an
open and scalable hypermedia-inspired ontology development environment.

13



Now, we extend the distributed nature of Web-based ontologies to support
collaborative ontology evolution in Swoop. Our goal is to allow a group of
ontology authors, possibly working in a remote environment (i.e., on separate
machines), to develop and evolve a set of OWL ontologies together. The set
of tasks we would like to support include:

• Easy Exchange of Ontological Data at different granularity levels such
as a set of ontologies/entities, a single ontology/entity or a change set.

• Collaborative Annotation for exchanging and discussing ideas during all
stages of the ontology development cycle

• Version Control for efficiently maintaining the ontologies over time by
logging all changes and regulating its progress

• Unit Testing to ensure that the ontology satisfies certain predetermined
criteria and goals

An underlying objective of the above tasks is to make full use of existing stan-
dards for representing, annotating and versioning ontological data, e.g., using
versioning constructs of OWL such as owl:versionInfo owl:priorVersion,
owl:backwardCompatibility and owl:deprecated.. where necessary.

We note that work towards this feature is still in progress. For now, we de-
scribe the middle two components (listed above) that are fairly well developed
and usable in their own right.

For collaborative annotation in Swoop, we use the Annotea framework
[20], which takes the idea of separating annotations about ontologies from the
core ontologies themselves and provides both a specific RDF based, extensible
annotation vocabulary, and a protocol for publishing and finding out-of-band
annotations (annotations that do not live inside the document being anno-
tated).

Annotea support in Swoop is provided via a simple plug in whose implemen-
tation is based on the standard W3C Annotea protocols [21] and uses the
default Annotea RDF schema to specify annotations (see Fig. 10). Any pub-
lic Annotea Server can then be used to publish and distribute the annotations
created in Swoop. The default annotation types (comment, advice, example,
etc) seem an adequate base for human oriented ontology annotations. One ex-
tension we have begun experimenting with is ”PrototypicalIllustration”, that
is, a photo or drawing that represents a typical or canonical instance of the
class.

We have extended the Annotea Schema with the addition of an OWL on-
tology for a new class of annotations — ontology changes (similar to [22]).
The “Change” annotation defined by the Annotea projected was designed to
indicate a proposed change to the annotated document, with the proposal
described in HTML-marked-up natural language. In our extended ontology,

14



Fig. 10. Annotea in Swoop: Collaborative Annotation and Discussion of OWL
Entities using the Annotea Client.

change individuals correspond to specific changes made in Swoop during edit-
ing. Note that Swoop uses the OWL API to model ontologies and their as-
sociated entities, benefiting from its extensive and clean support for changes.
The OWL API separates the representation of changes from the application
of changes. Each possible change type has a corresponding Java class in the
API, which is subsequently applied to the ontology (essentially, the Command
design pattern). These classes allow for the rich representation of changes, in-
cluding metadata about the changes.

The Swoop change annotations can be published and retrieved by Annotea
servers, or any other annotation distribution mechanism. The retrieved anno-
tations can then be browsed, filtered, endorsed, recommended, and selectively
accepted. A similar collaborative framework based on an interactive dialogue
was implemented in a more local (tool-specific) context in the WebOnto system
[9]. However, we decided to exchange annotations using the Annotea protocol
to make the collaboration less tool-specific (any Annotea client can be used
to discuss ontology annotations), and to allow users to arbitrarily extend the
Annotea schema the way we have for ontology-change sets. These change sets
also make it possible to define “virtual versions” of an ontology, by specifying
a base ontology and a set of changes to apply to it (a feature present since the
Swoop v2.2 release).

Note that in certain cases, changes may not be applicable to the ontology, if
the change operation refers to an entity that is not present (defined) in the

15



ontology. In such cases, a warning message is reported to the user describing
the reason for the change conflict.

Finally, regarding version control, Swoop supports ad hoc undo/redo of
changes (with logging) coupled with the ability to checkpoint and archive
different ontology versions. Each change set or checkpoint can be saved at
three different granularity levels - entity, ontology, workspace, which basically
specify its scope. While the change logs can be used to explicitly track the evo-
lution of an ontology 3 , checkpoints allows the user to switch between versions
directly exploring different modeling alternatives. Swoop also has the option
to save checkpoints automatically, i.e., during specific tasks such as loading
a new ontology, applying changes, removing or renaming an entity etc. Note
that each time a checkpoint is saved, a snapshot of the entity definition is
cached as well, and can be used to preview a checkpoint before reverting back
to it.

The ontology evolution framework in Swoop is modeled on Smalltalks notion
of change records and sets and is not as advanced as that in KAON [23], which
has a special-purpose API for systematically controlling composite changes,
applying change strategies and ensuring consistency during modification. In
the future, we plan to learn from and improve the flexibility of the evolution
scheme based on systems such as KAON.

5 Immediate Future Plans

Currently, search is implemented as a straightforward (sub)string matching
algorithm that looks in entity name declarations, and works very fast since all
indexing is native to Swoop. We are working on extending this naive search
algorithm (and the associated indexing scheme) to handle more complex regu-
lar expressions and to look inside entity annotations (such as rdfs:comment).
We are also investigating class expression search to support anonymous classes
(b-nodes) in queries such as ‘Find all classes which contain ∃p.C’, and more
advanced structural search to support queries such as ‘Find all classes C,

such that property p1, p2, p3 have C as its domain’. Using these various search
routines, users can customize their queries to find highly specific or generic
matches based on their interests.

We also plan on developing an Advanced Resource Holder that would
feature automatic dynamic tracking for selected entities, color coding diffs

between different entity definitions, and providing support for the editing of
mapping terms, such as ”owl:equivalentTo” between terms in different re-

3 Change logs can also be serialized in RDF/XML and exchanged among users

16



source panes. Additionally, the Swoop v2.2 release has preliminary support
for sound and complete conjunctive ABox queries written in RDQL [24]. We
plan to extend this feature to include hybrid TBox/ABox queries as well as
non-standard structural queries. Finally, since the OWL-API has support for
SWRL [25], we plan to develop an intuitive UI and integrate a Rule Engine
into Swoop for writing and processing rules.

6 Conclusion

In this paper, we describe Swoop, a hypermedia inspired Ontology Browser
and Editor based on OWL, the first standardized Web-oriented ontology lan-
guage. In designing Swoop, we take the familiar Web browser as our User
Interface (UI) paradigm, focusing on a simple and intuitive ontology devel-
opment interface. The primary goal has been to design a tool based on the
successful architecture of the Web itself, i.e., its open (ad hoc local and re-
mote multiple ontology support, various OWL Presentation syntax, extensible
plugin architecture), scalable (e.g., ontologies as large as NCI [26] with over
27000 classes can be loaded in Swoop is under 2 minutes), and distributed
(e.g., collaborative annotation support via Annotea). By doing the above, and
remaining true to the OWL specifications, we allow the Swoop user to take
advantage of the Web-based features of OWL.

Our secondary goal has been on overcoming the drawbacks, if any, of tradi-
tional ontology development tasks as applied to OWL. For instance, we have
presented a partitioning approach for OWL ontologies to solve the partial

owl:imports problem while facilitating ontology reuse. We have also presented
work on guiding the user through the process of ontology debugging and repair
(using explanations), where standard DL Reasoners do not provide additional
help.

Finally, we are working on extending Swoop to further aid various forms of
Web ontology development such as distributed, collaborative ontology evolu-
tion, the pieces of which already exist as separate Swoop components.

In this manner, with the strong platform Swoop provides for Web ontology
development and its easy extensibility, Swoop is both, accessible and useful,
for OWL developers and users.

17



7 Acknowledgments

The authors would wish to thank Ron Alford, Taowei David Wang, Vladimir
Kolovski, Daniel Hewlett, and Michael Grove for their contribution in devel-
oping Swoop and the associated API’s/plugins.

This work was completed with funding from Fujitsu Laboratories of Amer-
ica – College Park, Lockheed Martin Advanced Technology Laboratory, NTT
Corp., Kevric Corp., SAIC, National Science Foundation, National Geospatial-
Intelligence Agency, DARPA, US Army Research Laboratory, NIST, and other
DoD sources.

References

[1] M. Dean, G. Schreiber, OWL Web Ontology Language Reference W3C
Recommendation. http://www.w3.org/tr/owl-ref/.

[2] A. Kalyanpur, N. Hashmi, J. Golbeck, B. Parsia, Lifecycle of a casual web
ontology development process, in: Proceedings of the WWW2004 Workshop on
Application Design, Development and Implementation Issues in the Semantic
Web, May 18, 2004, 2004.
URL http://www.mindswap.org/ aditkal/WWW04COD.pdf

[3] N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson, M. Musen, Creating
semantic web contents with Protégé-2000, IEEE Intelligent Systems.

[4] S. Bechhofer, I. Horrocks, C. Goble, R. Stevens, OilEd: a reason-able ontology
editor for the Semantic Web, Proceedings of KI2001, Joint German/Austrian
conference on Artificial Intelligence.

[5] Y. Sure, M. Erdmann, J. Angele, S. Staff, R. Studer, D. Wenke, OntoEdit:
Collaborative ontology development for the Semantic Web, Proceedings of the
International Semantic Web Conference (ISWC).

[6] A. Kalyanpur, B. Parsia, J. Hendler, A tool for working with web ontologies, in:
In Proceedings of the International Journal on Semantic Web and Information
Systems, Vol. 1, No. 1, Jan - March, 2005.
URL http://www.mindswap.org/papers/Swoop-Journal.pdf

[7] A. Farquhar, R. Fickas, J. Rice, The Ontolingua server: A tool for collaborative
ontology construction, Proceedings of the 10th Banff Knowledge Acquisition
for Knowledge Based System Workshop (KAW95).

[8] J. Arṕırez, O. Corcho, M. Fernández-López, A. Gómez-Pérez, WebODE: a
scalable ontological engineering workbench, First International Conference on
Knowledge Capture (K-CAP).

18



[9] J. Domingue, Tadzebao and webonto: Discussing, browsing, and editing
ontologies on the web, in: 11th Knowledge Acquisition for Knowledge-Based
Systems Workshop, 1998.

[10] R. J. Erich Gamma, Richard Helm, J. Vlissides, Design patterns: Elements of
reusable object-oriented software, addison-wesley.

[11] S. Bechhofer, P. Lord, R. Volz, Cooking the semantic web with the owl api,
Proceedings of the International Semantic Web Conference.

[12] F. Manola, E. Miller, RDF Primer W3C Recommendation.
http://www.w3.org/tr/rdf-primer/.

[13] P. Patel-Schneider, P. Hayes, I. Horrocks, OWL Web
Ontology Language Semantics and Abstract Syntax W3C Recommendation.
http://www.w3.org/tr/2004/rec-owl-semantics-20040210/.

[14] D. Beckett, Turtle — Terse RDF Triple Language.
http://www.ilrt.bris.ac.uk/discovery/2004/01/turtle/.

[15] A. Kalyanpur, C. Halaschek-Wiener, V. Kolovski, J. Hendler, Effective nl
paraphrasing of ontologies on the semantic web(Technical Report).
URL http://www.mindswap.org/papers/nlpowl.pdf

[16] B. Parsia, E. Sirin, Pellet: An owl dl reasoner (poster).
http://www.mindswap.org/2003/pellet.

[17] V. Haarslev, R. Möller, Description of the racer system and its applications,
in: Proceedings International Workshop on Description Logics (DL-2001),
Stanford, USA, 1.-3. August, 2001, pp. 131–141.

[18] I. Horrocks, The FaCT system, 1998, pp. 307–312.
URL download/1998/t98-paper.ps.gz

[19] B. Parsia, E. Sirin, A. Kalyanpur, Debugging owl ontologies, in: The 14th
International World Wide Web Conference (WWW2005), Chiba, Japan, 2005,
to Appear.
URL http://www.mindswap.org/papers/debuggingOWL.pdf

[20] J. Kahan, M.-R. Koivunen, E. Prud’Hommeaux, R. Swick, Annotea: An
open RDF infrastructure for shared web annotations, Proc. of the WWW10
International Conference.

[21] R. Swick, E. Prud’Hommeaux, M.-R. Koivunen, J. Kahan, Annotea protocols,
http://www.w3.org/2001/Annotea/User/Protocol.html.

[22] M. Klein, N. Noy, A component-based framework for ontology evolution,
Workshop on Ontologies and Distributed Systems at IJCAI.

[23] L. Stojanovic, A. Maedche, B. Motik, N. Stojanovic, User-driven ontology
evolution management, in: EKAW ’02: Proceedings of the 13th International
Conference on Knowledge Engineering and Knowledge Management. Ontologies
and the Semantic Web, Springer-Verlag, London, UK, 2002, pp. 285–300.

19



[24] H. L. B. Andy Seaborne, RDQL - A Query Language for RDF.
http://www.w3.org/tr/owl-ref/.

[25] H. B. S. T. B. G. M. D. Ian Horrocks, Peter F. Patel-Schneider,
SWRL: A Semantic Web Rule Language Combining OWL and RuleM.
http://www.daml.org/2003/11/swrl/.

[26] J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, P. B., J. Oberthaler, The national
cancer institute’s thesaurus and ontology, Journal of Web Semantics 1 (1).
URL http://www.mindswap.org/papers/WebSemantics-NCI.pdf

20


