
Will My Ontologies Fit Together?
A preliminary investigation.

Bernardo Cuenca Grau, Ian Horrocks,
Oliver Kutz, and Ulrike Sattler

School of Computer Science, The University of Manchester, UK

1 Motivation

In realistic applications, it is often desirable to integrate different ontologies1

into a single, reconciled ontology. Ideally, one would expect the individual on-
tologies to be developed as independently as possible, and the final reconciliation
to be seamless and free from unexpected results. This allows for the modular
design of large ontologies and facilitates knowledge reuse tasks. Few ontology
development tools, however, provide any support for integration, and there has
been relatively little study of these issues at a fundamental level. Understanding
at this fundamental level would help us predict, for example, what logical con-
sequences to expect from the integrated ontology, and whether the integration
of ontologies preserves some desirable properties of its parts.

To the best of our knowledge, the problem of predicting and controlling
the consequences of ontology integration has has been tackled only in [4]. The
authors propose a set of reasoning services (with decidability and complexity
results) to check whether, through integration with other ontologies, desirable
properties of an ontology have been destroyed.

In this paper, we propose first steps towards a different approach, the so-
called normative approach.2 We specify certain properties that one would like
to preserve in the integration and devise a set of restrictions that, when ad-
hered to, guarantee to preserve these properties. Thus, while the approach of
[4] determines the preservation of desirable properties ex post, our methodology
prescribes some restrictions that guarantee the preservation of desirable prop-
erties. We introduce two ‘integration scenarios’ that, we believe, capture some
of the common practices in ontology engineering, and postulate desirable prop-
erties that should be satisfied by the integrated ontology. We provide syntactic
restrictions on the use of shared vocabulary that guarantee the preservation of

1Throughout this paper, we do not distinguish between ontologies and TBoxes.
2Thanks to Frank Wolter for coining this expression.



these properties. The two basic ontology integration scenarios we analyze here
are the following:

1. Foundational integration: an ontology is integrated with a foundational
(or “upper”) ontology. The foundational ontology describes more general
terms, and may be domain independent.

2. Broadening integration: two ontologies describing different (and largely
independent) domains are integrated to cover a broader subject area.

We define, for each scenario, semantic properties that one might want to be
satisfied by the integrated ontology, that is, we specify how the consequences of
the integrated ontology relate to those from its parts. Next, we specify syntac-

tic constraints on the ontologies to be integrated and show that they guarantee
these properties: these syntactic constraints are referred to as compliance con-
ditions. Furthermore, we sometimes need global semantic safety constraints on
the ontologies used in the integration. In this paper, we use a condition called
localness, which is identical to a condition found in [3].

Clearly, the syntactic constraints depend on the DL used in the ontologies,
and mainly concern the way the symbols occurring in the different ontologies
(their signatures) are used. Finally, we discuss whether these constraints are
realistic for the scenario, i.e., whether users could be expected to stick happily
to these constraints in order to ensure that the integrated ontology will satisfy
the desired semantic properties. Since all constraints are purely syntactic, they
are decidable in polynomial time, and preliminary tests indicate that many
ontologies satisfy the constraints already.

We assume the reader to be familiar with the basics of description logics
and use, throughout this paper, axiom for any kind of TBox, RBox, or ABox
assertion, and Sig(T ) for the set of concept and roles names in T . This paper
is accompanied by a technical report [2].

2 Integration Scenarios

Suppose that two ontologies T1, T2 are to be integrated in some application. The
ontologies may be the result of a collaborative ontology development process and
may have been designed in a coordinated way by different groups of experts,
or they may have been simply “borrowed” from the Web. In any case, we
assume that they have both been tested and debugged individually prior to the
integration and, hence, are consistent and do not contain unsatisfiable concept
names. To capture this notion, we call an ontology T instantiable if there exists
a model I of T s.t. AI �= ∅ �= RI for all concept and role names A, R in the



signature of T .3

In the simplest case, one would construct an integrated ontology T by simply
taking the union of the two ontologies T1, T2. In general, the ontologies T1 and
T2 may be related and share symbols in their signatures Sig(T1) and Sig(T2).4

We will first postulate the semantic properties that T should satisfy in order
to capture the modeling intuitions of each scenario, and then to investigate
“acceptable” syntactic restrictions on the Ti that make sure that T will behave
as expected. The intuition is simple: the more liberal the syntactic constraints
including the use of shared symbols, the more freedom is given to the modeler,
but the less likely it is that the integrated ontology will behave as desired.

2.1 Foundational Integration

Often, interoperability between different domain ontologies Tdom and their data
is achieved through the use of a foundational (or “upper”) ontology Tup. A
well designed foundational ontology should provide a carefully conceived high
level axiomatization of general purpose concepts. Foundational ontologies, thus,
provide a structure upon which ontologies for specific subject matters can be
based.

A prominent example of an ontology conceived as the integration of a foun-
dational ontology and a set of domain ontologies is GALEN [8], a large medical
ontology designed for supporting clinical information systems. The foundational
ontology contains generic concepts, such as Process or Substance. The domain
ontologies contain concepts such as Gene or Research Institution, which are
specific to a certain subject matter. The domain ontologies in GALEN are con-
nected to the foundational ontology through subsumption relations between con-
cept and role names. For example, Microorganism in one of the domain ontolo-
gies is a subconcept of Organism in the foundational ontology: Microorganism �
Organism. Some prominent ontologies, such as CYC, SUMO and DOLCE have
been designed specifically to be used in applications as foundational ontologies.
For example, given a large dataset about chemicals annotated with concepts
in a certain biomedical ontology, e.g., the National Cancer Institute Thesaurus
(NCI) [5], one may want to annotate it semi-automatically with concepts of a
different ontology. For such a purpose, one may align organic chemicals in NCI
to substances in SUMO using the axiom: Organic Chemical � Substance. Simi-
larly, one may want to use a foundational ontology to generalize the roles of a
given domain ontology. For example, a University ontology may use SUMO to

3For T a TBox in a logic whose models are closed under disjoint unions, such as SHIQ,
T is instantiable if all concept and role names in T are satisfiable.

4There may be some previous reconciliation w.r.t. symbols, e.g., to identify different sym-
bols in the two ontologies that have the same intended meaning [7]. This is a separate problem,
often referred to as ontology alignment, which we do not address here.



generalize the role writes as follows: writes � authors , where authors is defined
in SUMO and does not occur in the University ontology.

Foundational ontologies are well-established ontologies that one does not
control and, typically, does not fully understand. When one of these ontologies
is borrowed from the Web and integrated in an application, it is especially
important to make sure that the merge preserves their semantics. In particular,
we do not want the classification tree in Tup to change as a consequence of
the merge. This property can be conveniently formalized by the notion of a
conservative extension [4].

Definition 1 The TBox T = T1 ∪ T2 is a conservative extension of T1 if, for

every axiom α in the signature of T1: T |= α implies T1 |= α.

Clearly, if T is a conservative extension of T1 and T1, T2 are consistent, then so is
T . However, conservativeness is a much stronger condition than instantiability:
even if T is instantiable, new (and probably unintended) subsumptions between
(possibly complex) concepts in T1 may still occur as a consequence of the merge.

In general, it may still be tolerable, and even desirable, to allow new sub-
sumptions to occur in the domain ontology as a consequence of the integration
and, in such a case, T will not be a conservative extension of Tdom.

Also, the notion of a conservative extension is not sufficient to capture all
the intended and unintended consequences. In particular, one would not ex-
pect concept names originally in Tup to be subsumed by concepts originally
in Tdom. In other words, the rôles of the foundational and domain ontologies
should not be inverted after the merge. In contrast, new subsumptions may
and should be entailed between concepts (respectively roles) in Tdom and con-
cepts (roles) in Tup. For example, since the shared concept Substance is sub-
sumed by SelfConnectedObject in SUMO, it is expected that T = TNCI ∪TSUMO

will entail the subsumption Organic Chemical � SelfConnectedObject, where
Organic Chemical occurs in NCI, but not in SUMO, whereas SelfConnectedObject
occurs in SUMO, yet not in NCI.

Next, we specify syntactic restrictions that will ensure these “nice” properties
of T = Tup∪Tdom. Given the examples, it seems reasonable to limit the coupling
between Tup and Tdom to subsumptions relating concept (role) names in Tdom and
concept (role) names occurring in Tup.

Definition 2 The pair � = �Tup, Tdom� is f-compliant5 if, for S = Sig(Tup) ∩
Sig(Tdom) the shared signature, concept and role names A, R ∈ S occur in Tdom

only in axioms of the form B � A and S � R respectively, where B, S ∈
Sig(Tdom) \ S.

5“f” stands for “foundational”.



f-compliance suffices for capturing the coupling between the foundational and
the domain ontologies in GALEN. However, is f-compliance enough to guarantee
our “nice” properties for T = Tup ∪ Tdom? A simple example will provide a
negative answer: just assume that Tdom contains a GCI of the form � � A; after
the merge, every concept in Tup will be subsumed by A ∈ Sig(Tdom) and, thus,
the foundational ontology does not act as such anymore.

As mentioned above, we use an additional safety condition—called localness—
which is defined as follows [3]: if I = (∆I , .I) and J = (∆J , .J ) are interpre-
tations such that ∆J = ∆I ∪ ∇, where ∇ is a non-empty set disjoint with ∆I ,
AJ = AI for each concept name, and RJ = RI for each role name, then J is
called the expansion of I with ∇. Intuitively, the interpretation J is identical
to I except for the fact that it contains some additional elements in the inter-
pretation domain. These elements do not participate in the interpretation of
concepts or roles. Now, local ontologies are precisely those whose models are
closed under domain expansions, i.e., T is local if, for every I |= T and every
set ∇ disjoint with ∆I , the expansion J of I with ∇ is a model of T .

Intuitively, local ontologies contain only GCIs with a limited “global” effect.
Examples of non-local axioms are GCIs that fix the size of the domain in every
model of the ontology (e.g. � � bob for a nominal bob), or GCIs that establish
the existence of a “universal” named concept (e.g. � � Car). In contrast, role
domain and range and concept disjointness are local. In order to show that
localness is a reasonable condition to impose, we have implemented a localness
checker, tested it on about 800 ontologies available on the Semantic Web, and
found that less than 1% of them contain non-local axioms. In [2], we provide
the proofs of our initial results, a precise syntactic characterisation of localness
for SHIQ and further details on our experimental results.

Theorem 1 Let � = �Tup, Tdom� be f-compliant. If Tdom is a local SHOIQ
TBox, Tup is a SHIQ TBox (not necessarily local), and T = Tup ∪ Tdom is

instantiable, then

1. T = Tup ∪ Tdom is a conservative extension of Tup,

2. T �|= A � B, for all concept names A ∈ Sig(Tup) and B ∈ Sig(Tdom) \ S,

and

3. T �|= R � S, for all role names R ∈ Sig(Tup) and S ∈ Sig(Tdom) \ S.

This theorem states that our desirable properties are indeed preserved after
the merge and, most importantly, the rôles of the foundational and domain
ontologies are preserved (Items 2 and 3). Note, however, that f-compliance does
not suffice for ensuring the instantiability of the merge: only if T is consistent
and free from unsatisfiable names do the guarantees provided by the theorem
apply. Although instantiability, as opposed to conservative extensions, can be
easily checked using a reasoner, one might want to strengthen the theorem (and



the corresponding syntactic restrictions) to ensure the instantiability of T as
well. Also, note that localness certainly is a too restrictive safety condition
since it rules out “harmless” GCIs as well. The investigation of new f-compliance
conditions that ensure the instantiability of the integrated ontology and of less
strict safety conditions is the focus of our ongoing work.

2.2 Broadening Integration

In this scenario, an ontology T1 is to be integrated with another T2 that describes
in more detail one or more of the domains that are only touched on in T1. For
example, we may wish to integrate the Wine Ontology [9] with an ontology
describing, in more detail, the regions in which wines are produced or the kinds
of grapes they contain.

The Wine Ontology illustrates a common pattern: although ontologies usu-
ally refer to a core application domain, they also refer to other secondary do-
mains that deal with different objects. This modeling paradigm is not only
characteristic of small and medium sized ontologies, but also occurs in large,
high-quality knowledge bases, written by groups of experts. A prominent ex-
ample is the NCI Thesaurus [5], a huge ontology covering areas of basic and
clinical science. The core of NCI is focused on genes; other subject matters de-
scribed in the ontology include diseases, drugs, chemicals, diagnoses treatments,
professional organizations, anatomy, organisms, and proteins.

In this scenario, concepts in the core application domain can be defined in
terms of concepts in the secondary domains. For example, in the Wine Ontology,
a Bordeaux is described as a Wine produced in France, where France is defined in
the Regions ontology: Bordeaux � Wine � ∃producedIn.France In NCI, the gene
ErbB2 is an Oncogene that is found in humans and is associated with a disease
called Adrenocarcinoma.

ErbB2 � Oncogene � ∃foundIn.Human � ∃associatedWith.Adrenocarcinoma

Concepts in secondary ontologies, however, do not use the core concepts in
their definitions, i.e., regions are not defined in terms of wines or diseases in
terms of genes. Note, in this connection, that a ‘broadening scenario’ in this
interpretation is closely related to the way ontologies would be integrated using
the framework of E-connections, but is rather mimicking than directly adopting
the syntax and semantics of E-connections [6].

Ontologies following this pattern can evolve by expanding their domain of
discourse with knowledge about new subject matters. For example, we may
extend the Wine ontology by representing the kinds of dishes each wine is most
appropriate for, or NCI by adding information about useful publications on
cancer research. This evolution process will typically consist of adding a new



“secondary” ontology, either developed by a group of experts, or borrowed di-
rectly from the Web. As a consequence, this ontology should be “good” as it is,
and thus we want to make sure that it will not be affected by the integration,
i.e., we should require T = Tcore ∪ Tside to be a conservative extension of Tside.

Furthermore, since we assume Tcore and Tside to cover different aspects of
the world, we require that the merged ontology T does not entail subsumptions
in any directions between non-shared concept names A ∈ Sig(Tcore) and B ∈
Sig(Tside). This condition ensures that the ontologies actually describe different
objects.

Let Tcore and Tside be ontologies with signatures Score = Ccore ∪ Rcore and
Sside = Cside ∪Rside, let the shared signature S = Score ∩Sside contain only con-
cept names, and let Rout ⊆ Rcore be a distinguished subset of roles. Intuitively,
the roles in Rout connect objects in different ontologies. Some concepts in Tcore

are defined in terms of restrictions on these roles; for example, the Bordeaux
wines are related to France via the role producedIn and the ErbB2 oncogenes
with organisms and diseases through the roles foundIn and associatedWith, re-
spectively.

Definition 3 The pair � = �Tcore, Tside� is b-compliant if: 1) S = Score∩Sside =
Ccore∩Cside, ∅ �= Rout ⊆ Rcore; 2) for every role inclusion axiom R � S ∈ Tcore,

either both R,S ∈ Rout or both R,S /∈ Rout; 3) for every GCI C1 � C2 ∈ Tcore,

C1, C2 can be generated using the following grammar:

Ci ← A|C �D|¬Ci|∃R.Ci|∃P.A�| ≥ nR.Ci| ≥ nP.A�

where A ∈ Ccore \Cside, C, D and Ci are concepts generated using the grammar,

A� ∈ Cside, R /∈ Rol(Rout), and P ∈ Rout.

As a consequence, concept names in Tside can only be used in Tcore through
restrictions on the “outgoing” relations. Condition 2) makes sure that the hier-
archies for the two kinds of roles are disconnected from each other. It turns put
that the Wine Ontology and the “modules” that can be extracted from NCI [3]
are local and b-compliant. As in the foundational scenario, the theorem requires
the instantiability (and thus the consistency) of the merged ontology T .

Theorem 2 Let � = �Tcore, Tside� be b-compliant. If Tcore is a local SHOIQ
TBox, Tside is a local SHIQ TBox, and T = Tcore ∪ Tside is instantiable, then

1. T = Tcore ∪ Tside is a conservative extension of Tside,

2. For all A ∈ Sig(Tcore)\S and B ∈ Sig(Tside): T �|= A � B and T �|= B � A,

3. For all R ∈ Sig(Tside) and S ∈ Sig(Tcore): T �|= R � S and T �|= S � R,

4. For all R ∈ Rout and S ∈ Rcore \Rout: T �|= R � S and T �|= S � R.



3 Outlook

So far, the problem of predicting and controlling the consequences of ontol-
ogy integration has been largely overlooked by the Ontology Engineering and
Semantic Web communities.

In this paper, we have formalized two basic scenarios for ontology integration.
In each case, we have identified a set of semantic properties that the integrated
ontology should satisfy and, under certain simplifying assumptions, we have
shown how these properties can be guaranteed by imposing certain syntactic

constraints on the ontologies to be integrated.
So far we have been very conservative in both the (syntactic) compliance

and safety conditions (localness) in the scenarios. In the future, we aim at
investigating how these can be relaxed in each case without losing the nice
properties of the integrated ontology. We expect that our results will constitute
the basis for a normative methodology for ontology integration that is both
well-founded and understandable to modelers, and that can be supported by
ontology development tools.
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A Preliminaries and Notation

In the following, by a (background) logic L we shall mean one of the description
logics SHIQ or SHOIQ. A logic L comes with a signature SL = CSL ∪RSL ,
where CSL is a set of concept names, and RSL is a set of role names. Generally,
by a signature S = CS ∪RS we mean any set of concept and role names.

The set CSL may have a subset ISL ⊆ CSL of nominals (when L is SHOIQ).
Usually, when the logic L is clear from the context, we will refer to such sets
just as S, CS, etc. The signature Sig(α) (respectively Sig(T )) of an axiom α
(respectively a TBox T ) denotes the set of concept and role names occurring in
it. Given a background logic L and a signature S, we use ConL(S) and RolL(S)
to denote the set of concepts and roles, respectively, that can be constructed
in the logic L using only concept and role names in S. Again, if the logic L
is clear from the context, we usually use simply Con(S) and Rol(S). Moreover,
let Sub(T ) (Sub(C)) denote the set of sub-concepts (defined in the usual way)
occurring in a TBox T (concept C).

B LocalOntologies

In order to assess the “globality” of a GCI, we introduce the notion of a domain

expansion.

Definition 4 (Domain Expansion) Let I = (∆I , .I) and J = (∆J , .J ) be

interpretations such that:

1. ∆J = ∆I ∪∇, where ∇ is a non-empty set disjoint with ∆I;

2. AJ = AI for each concept name;

3. RJ = RI for each role name.

We say that J is the expansion of I with ∇.

Intuitively, the interpretation J is identical to I except for the fact that it
contains some additional elements in the interpretation domain. These elements
do not participate in the interpretation of concepts or roles. The following
question naturally arises: if I is a model of T , is J also a model of T ? Local

ontologies are precisely those whose models are closed under domain expansions.

Definition 5 (Localness) A concept C is local if, for every interpretation I
for C and every non-empty set ∇ disjoint with ∆I, the expansion J of I with

∇ verifies:

CJ = CI .



Otherwise, we say that C is non-local. For a logic L and a signature S, we

denote by LocalL(S) the set of local concepts that can be constructed in L using

only concept names and roles in S. Again, we usually abbreviate this to Local(S).
Let T be a TBox. We say that T is local if, for every I |= T and every set

∇ disjoint with ∆I, the expansion J of I with ∇ is a model of T .

Thus, local concepts are those whose interpretation remains invariant under
domain expansions, and local TBoxes are those whose class of models is closed
under domain expansions. The following theorem establishes the syntactic coun-
terpart to the notion of localnessof a concept:

Theorem 3 Let L be a logic, S its signature, and C a concept in Con(S), then:

• If C is a concept name (including nominals) then C ∈ Local(S).

• If C is of the form ∃R.D or ≥ nR.D then C ∈ Local(S).

• If C of the form D � E then: C ∈ Local(S) iff D ∈ Local(S) or E ∈
Local(S).

• If C of the form ¬D then: C ∈ Local(S) iff D /∈ Local(S).

Furthermore, for every pair of interpretations I,J s.t. J is an expansion of I
with ∇, if C /∈ Local(S) then CJ = CI ∪∇.

Using Theorem 3, we can easily find an effective procedure for deciding
localnessof a Tbox:

Theorem 4 Let T be consistent. T is local iff it does not contain a GCI C � D
such that C is non-localand D is local.

Clearly, the problem of deciding whether C ∈ Local(S) for some logic L and
its signature S is polynomial in the length |C| of the concept C. Thus, as a
direct consequence of Theorem 4, the problem of deciding whether a consistent
ontology T is local is polynomial w.r.t the size |T | of T .

Proofs of these results are provided in [3].

C Proofs

C.1 Proof of Theorem 1

Let Tdom be a local SHOIQ TBox, Tup a (not necessarily local) SHIQ TBox,
and assume the pair � = �Tup, Tdom� is f-compliant and that T = Tup ∪ Tdom is
instantiable. We have to show that:

1. T = Tup ∪ Tdom is a conservative extension of Tup.



2. There are no concept names A ∈ Sig(Tup) and B ∈ Sig(Tdom) \S such that
T |= A � B.

3. There are no role names R ∈ Sig(Tup) and S ∈ Sig(Tdom) \ S such that
T |= R � S.

where S = Sig(Tup) ∩ Sig(Tdom). We begin by constructing a special model
for T given models for Tup and T . Let I = (∆I , .I) be an interpretation for
Sig(Tup) and J = (∆J , .J ) an interpretation for Sig(Tup) ∪ Sig(Tdom). Since Tup

and Tdom are instantiable, and T is consistent, we can assume that I |= Tup and
J |= T , and, because Tup is SHIQ, that ∆I ∩ ∆J = ∅. Furthermore, since
Tup is a SHIQ TBox, the shared signature S = Sig(Tup) ∩ Sig(Tdom) can not
contain shared nominals, and so the following construction of the interpretation
M = (∆M, .M) for the signature Sig(Tup) ∪ Sig(Tdom) is well-defined:

∆M := ∆I ∪∆J

AM :=

�
AJ ∪ AI A ∈ Sig(Tup)

AJ A ∈ Sig(Tdom) \ S

RM :=

�
RJ ∪RI R ∈ Sig(Tup)

RJ R ∈ Sig(Tdom) \ S

First note the following. Relative to the signature Sig(Tdom)\S, the model M is
a domain expansion of J with ∆I . Thus, by Theorem 3, we immediately have
the following:

(♠) For every concept C ∈ Con(Sig(Tdom)\S): if C is not local (i.e., CM �= CJ ),
then CM = CJ ∪∆I .

Next, relative to the signature Sig(Tup), the model M is the disjoint union of
the two models I and J for Sig(Tup). Therefore, since Tup is a SHIQ ontology,
I,J |= Tup, and models in SHIQ are ‘closed’ under the formation of disjoint
unions, we obtain the following:

(♣) For every (complex) concept C ∈ Con(Sig(Tup)): CM = CJ ∪ CI (inde-
pendently of whether C is local or not). Moreover, M |= Tup.

For a proof, compare [1]. We now show that M is also a model of Tdom, and
therefore of T :

(♦) M |= Tdom.



Proof of (♦): Since Tdom is a f-compliant, it consists only of axioms of one of
the following forms:

• C � D with C, D ∈ Con(Sig(Tdom)\S): by (♠), XM = XJ for X ∈ {C, D}
if X is local, and XM = XJ ∪∆I if X is non-local. Since Tdom is local, a
GCI α can only be of one of the following three forms: 1) C, D local; 2)

C local and D non-local; 3) Both C and D are non-local.

In all these cases, since J |= α, it is immediate to verify that M |= α as
well.

• A � B, where A, B are concept names s.t. A /∈ S and B ∈ S. By definition
of M, AM = AJ and BM = BI ∪ BJ . Since AJ ⊆ BJ , we have that
AM ⊆ BM.

• R � S, where R,S ∈ Rol(Sig(Tdom) \ S). By definition of M, RM = RJ

and SM = SJ , and since RJ ⊆ SJ , we also have RM ⊆ SM.

• P � Q, where P, Q are role names s.t. P /∈ S and Q ∈ S. By definition
of M, PM = PJ and QM = QI ∪QJ , and since PJ ⊆ QJ , we also have
PM ⊆ QM.

• Trans(R), where R /∈ RS: then RM = RJ , and so RM is transitive since
RJ is.

This finishes the proof for ♦.
Now, to prove Theorem 1(1), suppose there are concepts C0, D0 ∈ Con(Sig(Tup))

such that T |= C0 � D0, but Tup �|= C0 � D0. Let I0 be an interpreta-
tion for Sig(Tup) s.t. I0 �|= C0 � D0, J0 a model of T with ∆I0 ∩ ∆J0 = ∅,
and M0 constructed from I0, J0 as above. By (♦) and (♣), M0 |= T , and
thus M0 |= C0 � D0. Moreover, by (♣), we have CM0 = CJ0 ∪ CI0 and
DM0 = DJ0 ∪DI0 for all C, D ∈ Con(Sig(Tup)). Since ∆I0 ∩∆J0 = ∅ by con-
struction, CI00 �⊆ DI0

0 implies CM0
0 �⊆ DM0

0 . Thus, we encounter a contradiction.

It remains to prove (2) and (3). For (2), suppose that A ∈ Sig(Tup) and
B ∈ Sig(Tdom) \ S. Pick a model I1 that instantiates Tup, a model J1 of T with
∆I1 ∩∆J1 = ∅, and construct a model M1 for T as above. Since I1 instantiates
Tup, AI1 �= ∅; then, AM1 = AJ1 ∪ AI1 and BM1 = BJ1 . Since ∆I1 ∩∆J1 = ∅,
we have AM1 � BM1 , i.e., T �|= A � B. (3) is shown analogously. �

C.2 Proof of Theorem 2

Let Tcore be a local SHOIQ TBox, Tside a local SHIQ TBox, and assume the
merged Tbox T = Tside∪Tcore is instantiable (and therefore also Tcore and Tside).
Suppose the pair � = �Tside, Tcore� is b-compliant. We have to show that:



1. T = Tside ∪ Tcore is a conservative extension of Tside.

2. There are no concept names A ∈ Sig(Tside) and B ∈ Sig(Tcore) \ S such
that T |= A � B or T |= B � A.

3. There are no role names R ∈ Sig(Tside) and S ∈ Sig(Tcore) such that
T |= R � S or T |= S � R.

4. There are no role names R ∈ Rout and S ∈ Rcore \ Rout such that T |=
R � S or T |= S � R.

Analogously to the proof of Theorem 1, we can construct an interpretation
M = (∆M, .M) for the signature Sig(Tcore)∪ Sig(Tside) from interpretations I =
(∆I , .I) and J = (∆J , .J ) for, respectively, Sig(Tside) and Sig(Tcore)∪ Sig(Tside),
where I |= Tside, J |= T , and such that ∆I ∩ ∆J = ∅. Also, recall that, by
b-compliance, Sig(Tcore) and Sig(Tside) do not share role names, i.e., S = CS and
RS = ∅. Define the interpretation M as follows:

∆M := ∆I ∪∆J

AM :=

�
AJ ∪ AI A ∈ Sig(Tside)

AJ A ∈ Sig(Tcore) \ S

RM :=

�
RJ ∪RI R ∈ Sig(Tside)

RJ R ∈ Sig(Tcore)

Since Tside is a SHIQ Tbox and SHIQ models are closed under the forma-
tion of disjoint unions, we have, analogously to Theorem 1:

(♣) For every concept C ∈ Con(Sig(Tside)): CM = CJ ∪ CI (independently of
whether C is local or not). Moreover, M |= Tside.

Call a concept D ∈ Sub(Tcore) b-admissible if it can be constructed in
Sig(Tcore) according to the rules specified by b-compliance. We claim the follow-
ing:

(♠) Let C ∈ Con(Sig(Tcore)) be b-admissible. If C is local then CM = CJ , and
if C is not local then CM = CJ ∪∆I .

Proof of (♠): The proof is by induction on the structure of C as induced by
b-compliance. Note first that, by definition of M, we have, for concept names A
occuring in Tcore: AM = AJ if A /∈ S, and AM = AJ ∪AI if A ∈ S. Furthermore,
for roles R ∈ Rol(Sig(Tcore)) we have RM = RJ since ∆I ∩∆J = ∅.



A concept name A is b-admissible if A /∈ S. They are local and AM = AJ

holds by definition.
For the induction step, note that the case of Booleans, negation and con-

juntion, can be proved just as in Theorem 1. Thus we give only the case of
existential quantification:

Let C be of the form ∃R.D and b-admissible. Then C is local. By the
b-compliance conditions we have to distinguish two cases:

• R /∈ Rout, and D ∈ Con(Sig(Tcore)) is b-admissible.

– if D is local then, by induction, DM = DJ , and so CM = CJ ;

– if D is non-localthen, by induction, DM = DJ ∪∆I . Since RM = RJ

and ∆I ∩ ∆J = ∅, there is no y ∈ ∆I s.t. �x, y� ∈ RM and so
CM = CJ .

• R ∈ Rout, and D ∈ Con(Sig(Tcore)) is b-admissible. In this case, D is
a shared concept name A ∈ S, and hence DM = DJ ∪ DI . But since
RM ⊆ ∆J ×∆J , we obtain CM = CJ .

� (♠)
We now show that M is also a model of Tcore, and therefore of T .

(♦) M |= Tcore.

Proof of (♦): If C � D ∈ Tcore then C and D are b-admissible, and by (♠),
CM = CJ , if C is local, and CM = CJ ∪ ∇, if C is non-local; analogously for
D. Since T is local, we can only have local GCIs in Tcore, and so the proof is as
in Theorem 1. Finally, M obviously verifies the role inclusion and transitivity
axioms in Tcore since there are no shared roles.

� (♦)

Now, to prove (1), we can proceed analogously to Theorem 1 using (♦) and
(♣).

In order to prove (2)–(4), we will first show the following claim:

(♥) There exists a model N = (∆N , .N ) of T such that:

∆N := ∆N
1 ∪∆N

2 ; ∆N
1 ∩∆N

2 = ∅; ∆N
i
�= ∅

AN ⊆
�

∆N
1 A ∈ Sig(Tcore) \ S

∆N
2 A ∈ Sig(Tside)

RN ⊆






∆N
1 ×∆N

2 R ∈ Rout

∆N
1 ×∆N

1 R ∈ Rcore \Rout

∆N
2 ×∆N

2 R ∈ Sig(Tside)



Proof of (♥): Since T is consistent, there exists an interpretation J =
(∆J , .J ) for Sig(T ) s.t. J |= T . We show that we can construct from J
an interpretation N of the desired form such that N |= T . First, take an iso-
morphic disjoint copy J � = (∆J �

, .J
�
) of J , i.e., such that λ : ∆J −→ ∆J �

is a
bijective map, ∆J ∩∆J �

= ∅, and

x ∈ AJ ⇐⇒ λ(x) ∈ AJ
�

�x, y� ∈ RJ ⇐⇒ �λ(x), λ(y)� ∈ RJ
�

for all concept names A and role names R in Sig(T ). Now, define the interpre-
tation N as follows:

∆N := ∆J ∪∆J �
;

AN :=

�
AJ ⊆ ∆J A ∈ Sig(Tcore) \ S

λ(AJ ) ⊆ ∆J �
A ∈ Sig(Tside)

RN :=






{�x, λ(y)� | �x, y� ∈ RJ } R ∈ Rout

RJ R ∈ Rcore \Rout

{�λ(x), λ(y)� | �x, y� ∈ RJ } R ∈ Sig(Tside)

By construction, N is of the desired form. It remains to be shown that
N |= T . First, since J � |= Tside, and the fact that Tside is local and that N is a
domain expansion of J � with ∆J relative to the signature Sig(Tside), it follows
that N |= Tside.

We next show that N |= Tcore. We claim the following:

(�) Let C ∈ Con(Sig(Tcore)) be b-admissible. If C is local then CN = CJ , and
if C is non-localthen CN = ∆J � ∪ CJ .

Proof of (�): We proceed by induction on the structure of b-admissible
concepts C ∈ Con(Sig(Tcore)), using the definition of N and the notion of b-
compliance.

Note first that, by definition of N , we have, for b-admissible concept names
A, A /∈ S, and hence AN = AJ ; also note that A is local and thus the claim
holds. For roles R ∈ Rol(Sig(Tcore)) occuring in b-admissible concepts, we have
RN = RJ if R ∈ Rol(Rcore\Rout) (including inverse roles) and RN = {�x, λ(y)� |
�x, y� ∈ RJ } if R ∈ Rout. Note that, if R ∈ Rout, the inverse of R does not
occur in T due to b-compliance.

For the induction step, note that the case of Booleans, negation and con-
juntion, can be proved just as in Theorem 1. Thus we give only the case of
existential quantification: let C be of the form ∃R.D and b-admissible. Then C
is local. By the b-compliance conditions we have to distinguish two cases:



• R /∈ Rout, and D ∈ Con(Sig(Tcore)) is b-admissible.

– if D is local then, by induction, DN = DJ , and so CN = CJ ;

– if D is non-localthen, by induction, DN = DJ ∪∆J �
. Since RN = RJ

and ∆J ∩ ∆J �
= ∅, there is no y ∈ ∆J �

s.t. �x, y� ∈ RN and so
CN = CJ .

• R ∈ Rout, and D ∈ Con(Sig(Tcore)) is b-admissible. In this case, D is a
shared concept name, and hence DN = λ(DJ ) with λ(DJ ) ⊆ ∆J �

. But
since RN = {�x, λ(y)� | �x, y� ∈ RJ } and λ is an isomorphism, it follows
that CN = CJ .

� (�)

Since Tcore is local and contains only GCIs C � D such that C, D are b-
admissible, the proof of N |= Tcore using (�) is almost identical to the proof of
(♦) using (♠) above.

Notice also that N obviously satisfies the role inclusion axioms in Tcore.
Concerning the transitivity axioms Trans(R), N straigtforwardly satisfies them
in case R /∈ Rout, and, if R ∈ Rout, we have that RN = {�x, λ(y)� | �x, y� ∈ RJ }
and ∆J ∩ ∆J �

= ∅. Thus, if �x, λ(y)� ∈ RN , there is no z ∈ ∆N such that
�λ(y), z� ∈ RN by definition of RN , and consequently N |= Trans(R).

� (♥)

Properties (2)–(4) of Theorem 2 are now a straightforward consequence of
(♥). �


