
ContentCVS: A CVS-based Collaborative ONTology

ENgineering Tool

E. Jiménez-Ruiz1�, B. Cuenca Grau2��, I. Horrocks2, and R. Berlanga1

1 Universitat Jaume I, Spain
2 Oxford University Computing Laboratory, UK,

Abstract. We present ContentCVS, a system that implements a novel approach
to facilitate the collaborative development of ontologies. Our approach adapts
Concurrent Versioning, a successful paradigm in collaborative software develop-
ment, to allow several developers to make changes concurrently to an ontology.
Conflict detection and resolution are based on novel techniques that take into ac-
count the structure and semantics of the ontology versions to be reconciled by
using precisely-defined notions of structural and semantic differences between
ontologies and by extending existing ontology debugging and repair techniques.

1 Motivation

OWL Ontologies are already being used in many application domains. In particular,
OWL is extensively used in life sciences; prominent examples of OWL ontologies
are the National Cancer Institute (NCI) Thesaurus, SNOMED CT, the Gene Ontology
(GO), the Foundational Model of Anatomy (FMA), and GALEN.

Most realistic ontologies, including the ones just mentioned, are being developed
collaboratively. Maintaining such large ontologies in a collaborative way is a highly
complex process: developers need to regularly merge and reconcile their modifications
to ensure that the ontology captures a consistent unified view of the domain. Changes
performed by different users may, however, conflict in complex ways and lead to errors.
These errors may manifest themselves both as structural (i.e., syntactic) mismatches
between developers’ ontological descriptions, and as unintended logical consequences.

Tools supporting collaboration should therefore provide means for: (i) keeping track
of ontology versions and changes and reverting, if necessary, to a previously agreed
upon version, (ii) comparing potentially conflicting versions and identifying conflicting
parts, (iii) identifying errors in the reconciled ontology constructed from conflicting
versions, and (iv) suggesting possible ways to repair the identified errors with a minimal
impact on the ontology.

In this paper we present ContentCVS3, a system that is available for download as
a Protégé 4 plugin [1]. In sections 2-5 we briefly describe the functionality provided by
ContentCVS to satisfy each of the above-mentioned requirements. Finally, in Section
6 we summarize the results of a pilot user study that we have conducted to evaluate the
usability of the system. For additional information, we refer the reader to [1].
� The author is supported by the PhD Fellowship of the Generalitat Valenciana.

�� The author is supported by a Royal Society University Research Fellowship.
3 A Collaborative ONTology ENgineering Tool.



2 Keeping Track of Versions and Changes

ContentCVS closely follows the Concurrent Versioning paradigm. The change history
and the most recent versionOR of the ontology, which represents the developers’ shared
understanding of the domain, are kept in a server’s shared repository. Each developer
with access to the repository can connect to the server to check out a copy of OR,
allowing developers to work on their own local copy OL, which they can modify at
will. Developers can commit their changes to the server at any time. This allows several
developers to make changes concurrently to the shared ontology. To keep the system
in a consistent state, the server only accepts changes to the latest version of the shared
ontology. Developers should hence use the CVS client to regularly update their local
copy with changes made by others.

Manual intervention is only needed when a conflict arises between a committed ver-
sion in the server and a yet-uncommitted local version. Conflicts are reported whenever
the two compared versions of an ontology are not “equivalent” according to a given
notion of equivalence, which we describe next.

3 Detecting Conflicts

A typical CVS system treats the files in a software project as ordinary text files and
hence checking equivalence amounts to determining whether the two compared files are
syntactically equal (i.e., they contain exactly the same characters in exactly the same
order). This notion of equivalence is, however, too strict in the case of ontologies, since
OWL files have very specific structure and semantics. For example, if two OWL files are
identical except for the fact that the axioms appear in different order, the corresponding
ontologies should be clearly treated as equivalent: an ontology contains a set of axioms
and hence the order in which they appear is irrelevant.

An alternative in the case of ontologies is to use the notion of logical equivalence.
This notion is, however, too permissive: even if two ontologies are logically equivalent
(the strongest assumption from a semantic point of view), conflicts may still exist. This
might result from incompatible annotations (statements that act as comments and do
not carry logical meaning), mismatches in modelling styles, and so on.

ContentCVS uses the notion of structural equivalence between OWL 2 ontologies
[2] to compare ontology versions and identify conflicts. Intuitively, this notion is based
solely on comparing the OWL modeling structures. For example, changes in the order in
which structures such as axioms and conjunction of concepts appear in the ontology file
are irrelevant. Structural equivalence is thus more permissive than syntactical equality,
but stricter than logical equivalence. Figure 1 shows the structural comparison between
two ontologies in ContentCVS. The left-hand-side shows axioms in OL that do not
have an structurally equivalent axiom in OR; the right-hand-side shows the axioms in
OR without an structurally equivalent axiom inOL. All the axioms in Figure 1 are thus
regarded as conflicts. To facilitate the comparison, the conflicting axioms are sorted and
aligned according to the entities they define. ContentCVS also provides functionality
for examining and comparing the change histories of the local and repository ontologies
since the latest CVS update operation.



Fig. 1. GUI for Displaying Structural Differences in ContentCVS

4 Building a Reconciled Ontology and Identifying Errors

Once the user has selected the desired axioms from the structural difference (marked
with a � in Figure 1) a temporary version of the reconciled ontology OL

tmp is built
from the non-conflicting part of OL plus the axioms selected from the structural differ-
ence. At this point, the user may declare the conflict resolved and commit OL

tmp to the
repository, in which case conflict resolution remains a purely syntactic process. Oth-
erwise, ContentCVS allows the ontology developer to use a reasoner to examine the
semantic consequences of their choices and ensure that OL

tmp meets their requirements
(typically, that it includes as much intended information as possible without leading to
inconsistencies or other undesired entailments).

To facilitate error detection, ContentCVS compares the entailments that hold in
OL

tmp with those that hold in OL and OR by using the notion of logical difference [3].
Roughly, the logical difference betweenO andO� is the set of all axioms entailed byO,
but not by O�. This difference can in theory be infinite, and ContentCVS allows users
to (finitely) approximate it by indicating which types of entailments should be included.
For example, users can ask ContentCVS to compute differences in the entailed con-
cept and role hierarchies, differences in the entailed disjointness axioms, differences in
entailed axioms of the form A � ∃R.B (with A and B atomic), and so on.

Figure 2(a) shows the GUI in ContentCVS for displaying new entailments, that is,
those that hold in OL

tmp but not in OL. The GUI allows users to indicate which of those
entailments are unintended and should be “deleted”. ContentCVS provides a similar
GUI for displaying lost entailments (those that hold in OL but not in OL

tmp) and for
selecting which of those should be “recovered”.

5 Repairing Errors in the Reconciled Ontology

Changing the set of entailments in an ontology can only be achieved by modifying the
ontology itself (see for example [4]). Hence, if the user selects any new entailments to
“delete” or any lost entailments to “recover”, then OL

tmp clearly needs to be modified.



(a) Entailment Selection in ContentCVS (b) Plan Selection in ContentCVS

Fig. 2. Error Detection and Plan Visualization in ContentCVS

ContentCVS provides functionality for automatically suggesting the required modifi-
cations. Each possible solution (called a repair plan) is presented to the user as a set
of axioms to be removed from OL

tmp and a set of axioms to be added to OL
tmp. Con-

tentCVS implements a number of heuristics for ranking the possible repair plans and
provides a GUI (see Figure 2(b)) that indicates whether the axioms in the plan come
from OL or OR (marked with “L”, “R” respectively), and whether an axiom is shared
by all plans (marked with a “P”).

6 Conclusions from User Study

We conducted a pilot user study to evaluate the usability of ContentCVS and to show
the adequacy of our approach in practice (see [1] for details). Our results show that
most users considered very useful the implemented CVS functionality as well as the
computation of structural differences between ontology versions. Users were also sat-
isfied with the detection of errors using logical differences: when using ContentCVS
all the participants could identify both new unintended entailments and lost intended
entailments. Most users were also satisfied with the functionality for computing repair
plans as well as with the reconciled ontology finally obtained.

The main points of criticism were, on the one hand, the excessive amount of infor-
mation displayed when using “large” approximations of the logical difference and, on
the other hand, slow response of the tool when performing reasoning-intensive tasks.
We consider addressing these deficiencies as a part of our future work.

References

[1] Jimenez-Ruiz, E., Cuenca Grau, B., Horrocks, I., R.Berlanga: Conflict detection and reso-
lution in collaborative ontology development. Technical report (2009) , Tool and user study
available at: http://krono.act.uji.es/people/Ernesto/contentcvs.

[2] Motik, B., Patel-Schneider, P., B.Parsia: OWL 2 structural specification and functional-style
syntax. W3C Recommendation (2009) . Available at http://www.w3.org/TR/owl2-syntax/.

[3] Konev, B., Walther, D., Wolter, F.: The logical difference problem for description logic
terminologies. In: Proc. of IJCAR. (2008) 259–274

[4] Kalyanpur, A., Parsia, B., Sirin, E., Cuenca Grau, B.: Repairing unsatisfiable concepts in
OWL ontologies. In: Proc. of ESWC. (2006) 170–184


