Fixed-parameter algorithms for satisfiability testing

Igor Razgon

Content

(1) Background
(2) Conjunctive Normal Forms with small backdoor sets
(3) Computing small Renamable Horn backdoor sets
(3) Practical applicability of computing small backdoor sets
(5) Knowledge compilation
(c) Summary

The SAT problem

- Literal: A boolean variable x or its negation \bar{x}.

The SAT problem

- Literal: A boolean variable x or its negation \bar{x}.
- Clause: A disjunction of literals, e.g. $\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$

The SAT problem

- Literal: A boolean variable x or its negation \bar{x}.
- Clause: A disjunction of literals, e.g. $\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$
- Conjuctive Normal Form (CNF): A conjunction of clauses, e.g. $\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)\left(\bar{x}_{1} \vee x_{4}\right)$

The SAT problem

- Literal: A boolean variable x or its negation \bar{x}.
- Clause: A disjunction of literals, e.g. $\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$
- Conjuctive Normal Form (CNF): A conjunction of clauses, e.g. $\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)\left(\bar{x}_{1} \vee x_{4}\right)$
- A satisfiable CNF: It is possible to assign variables with true/false so that the whole CNF becomes true

The SAT problem

- Literal: A boolean variable x or its negation \bar{x}.
- Clause: A disjunction of literals, e.g. $\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$
- Conjuctive Normal Form (CNF): A conjunction of clauses, e.g. $\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)\left(\bar{x}_{1} \vee x_{4}\right)$
- A satisfiable CNF: It is possible to assign variables with true/false so that the whole CNF becomes true
- SAT problem: Given a CNF F is it satisfiable?

The SAT problem

- Literal: A boolean variable x or its negation \bar{x}.
- Clause: A disjunction of literals, e.g. $\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$
- Conjuctive Normal Form (CNF): A conjunction of clauses, e.g. $\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)\left(\bar{x}_{1} \vee x_{4}\right)$
- A satisfiable CNF: It is possible to assign variables with true/false so that the whole CNF becomes true
- SAT problem: Given a CNF F is it satisfiable?
- The SAT problem is NP complete even over CNF's whose clauses are of length at most 3.

Additional terminology

- A CNF F is trivially satisfiable if it has no clauses

Additional terminology

- A CNF F is trivially satisfiable if it has no clauses
- A CNF F is trivially unsatisfiable if it contains an empty clause

Additional terminology

- A CNF F is trivially satisfiable if it has no clauses
- A CNF F is trivially unsatisfiable if it contains an empty clause
- Residual formula $F \mid x \leftarrow$ true

Additional terminology

- A CNF F is trivially satisfiable if it has no clauses
- A CNF F is trivially unsatisfiable if it contains an empty clause
- Residual formula $F \mid x \leftarrow$ true
- Obtained from a CNF F by assigning x to true

Additional terminology

- A CNF F is trivially satisfiable if it has no clauses
- A CNF F is trivially unsatisfiable if it contains an empty clause
- Residual formula $F \mid x \leftarrow$ true
- Obtained from a CNF F by assigning x to true
- Remove all the clauses containing x; remove \bar{x} from all the clauses

Additional terminology

- A CNF F is trivially satisfiable if it has no clauses
- A CNF F is trivially unsatisfiable if it contains an empty clause
- Residual formula $F \mid x \leftarrow$ true
- Obtained from a CNF F by assigning x to true
- Remove all the clauses containing x; remove \bar{x} from all the clauses
- If $F=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \vee\left(\bar{x}_{1} \vee x_{4}\right)$ then $F \mid x_{1} \leftarrow$ true $=\left(x_{4}\right)$

Additional terminology

- A CNF F is trivially satisfiable if it has no clauses
- A CNF F is trivially unsatisfiable if it contains an empty clause
- Residual formula $F \mid x \leftarrow$ true
- Obtained from a CNF F by assigning x to true
- Remove all the clauses containing x; remove \bar{x} from all the clauses
- If $F=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \vee\left(\bar{x}_{1} \vee x_{4}\right)$ then $F \mid x_{1} \leftarrow$ true $=\left(x_{4}\right)$
- Residual formula $F \mid x \leftarrow$ false

Additional terminology

- A CNF F is trivially satisfiable if it has no clauses
- A CNF F is trivially unsatisfiable if it contains an empty clause
- Residual formula $F \mid x \leftarrow$ true
- Obtained from a CNF F by assigning x to true
- Remove all the clauses containing x; remove \bar{x} from all the clauses
- If $F=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \vee\left(\bar{x}_{1} \vee x_{4}\right)$ then $F \mid x_{1} \leftarrow$ true $=\left(x_{4}\right)$
- Residual formula $F \mid x \leftarrow$ false
- Obtained from a CNF F by assigning x to false

Additional terminology

- A CNF F is trivially satisfiable if it has no clauses
- A CNF F is trivially unsatisfiable if it contains an empty clause
- Residual formula $F \mid x \leftarrow$ true
- Obtained from a CNF F by assigning x to true
- Remove all the clauses containing x; remove \bar{x} from all the clauses
- If $F=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \vee\left(\bar{x}_{1} \vee x_{4}\right)$ then $F \mid x_{1} \leftarrow$ true $=\left(x_{4}\right)$
- Residual formula $F \mid x \leftarrow$ false
- Obtained from a CNF F by assigning x to false
- Remove all the clauses containing \bar{x}; remove x from all the clauses

Additional terminology

- A CNF F is trivially satisfiable if it has no clauses
- A CNF F is trivially unsatisfiable if it contains an empty clause
- Residual formula $F \mid x \leftarrow$ true
- Obtained from a CNF F by assigning x to true
- Remove all the clauses containing x; remove \bar{x} from all the clauses
- If $F=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \vee\left(\bar{x}_{1} \vee x_{4}\right)$ then $F \mid x_{1} \leftarrow$ true $=\left(x_{4}\right)$
- Residual formula $F \mid x \leftarrow$ false
- Obtained from a CNF F by assigning x to false
- Remove all the clauses containing \bar{x}; remove x from all the clauses
- If $F=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \vee\left(\bar{x}_{1} \vee x_{4}\right)$ then $F \mid x_{1} \leftarrow t r u e=\left(\overline{x_{2}} \vee x_{4}\right)$

Additional terminology

- A CNF F is trivially satisfiable if it has no clauses
- A CNF F is trivially unsatisfiable if it contains an empty clause
- Residual formula $F \mid x \leftarrow$ true
- Obtained from a CNF F by assigning x to true
- Remove all the clauses containing x; remove \bar{x} from all the clauses
- If $F=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \vee\left(\bar{x}_{1} \vee x_{4}\right)$ then $F \mid x_{1} \leftarrow$ true $=\left(x_{4}\right)$
- Residual formula $F \mid x \leftarrow$ false
- Obtained from a CNF F by assigning x to false
- Remove all the clauses containing \bar{x}; remove x from all the clauses
- If $F=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \vee\left(\bar{x}_{1} \vee x_{4}\right)$ then $F \mid x_{1} \leftarrow t r u e=\left(\overline{x_{2}} \vee x_{4}\right)$
- Observation: F is satisfiable if and only if either $F \mid x \leftarrow$ true or $F \mid x \leftarrow$ false is satisfiable.

Backtracking algorithm

- The algorithm (the input is a CNF F):

Backtracking algorithm

- The algorithm (the input is a CNF F):
- If F is trivially satisfiable, return 'YES'

Backtracking algorithm

- The algorithm (the input is a CNF F):
- If F is trivially satisfiable, return 'YES'
- If F is trivially non-satisfiable, return 'NO'

Backtracking algorithm

- The algorithm (the input is a CNF F):
- If F is trivially satisfiable, return 'YES'
- If F is trivially non-satisfiable, return 'NO'
- Choose a variable x

Backtracking algorithm

- The algorithm (the input is a CNF F):
- If F is trivially satisfiable, return 'YES'
- If F is trivially non-satisfiable, return 'NO'
- Choose a variable x
- Recursively apply to $F \mid x \leftarrow$ true and $F \mid x \leftarrow$ false

Backtracking algorithm

- The algorithm (the input is a CNF F):
- If F is trivially satisfiable, return 'YES'
- If F is trivially non-satisfiable, return 'NO'
- Choose a variable x
- Recursively apply to $F \mid x \leftarrow$ true and $F \mid x \leftarrow$ false
- If at least one of recursive applications returns 'YES' then return 'YES'; otherwise, return 'NO'.

Complexity of SAT solving

- The runtime of backtracking is $O^{*}\left(2^{n}\right)$

Complexity of SAT solving

- The runtime of backtracking is $O^{*}\left(2^{n}\right)$ (the star means that the polynomial factor is suppressed).

Complexity of SAT solving

- The runtime of backtracking is $O^{*}\left(2^{n}\right)$ (the star means that the polynomial factor is suppressed).
- This is the best existing time complexity if we do not make any apriori assumptions regarding the input.

Complexity of SAT solving

- The runtime of backtracking is $O^{*}\left(2^{n}\right)$ (the star means that the polynomial factor is suppressed).
- This is the best existing time complexity if we do not make any apriori assumptions regarding the input.
- Great open problem: can we solve the unrestricted SAT in time $O^{*}\left(c^{n}\right)$ for some $c<2$. Many people believe it is impossible.
- Conclusion: efficient SAT solving requires making assumptions regarding the input.

Small parameter assumption

- Besides the input size, the user normally knows a lot of additional measures (parameters) of the considered problem such as:

Small parameter assumption

- Besides the input size, the user normally knows a lot of additional measures (parameters) of the considered problem such as:
- Maximum allowed size of the output.

Small parameter assumption

- Besides the input size, the user normally knows a lot of additional measures (parameters) of the considered problem such as:
- Maximum allowed size of the output.
- Structural parameters e.g. treewidth of the underlying graph.

Small parameter assumption

- Besides the input size, the user normally knows a lot of additional measures (parameters) of the considered problem such as:
- Maximum allowed size of the output.
- Structural parameters e.g. treewidth of the underlying graph.
- Assume that some parameter k is very small compared to the input size.

Small parameter assumption

- Besides the input size, the user normally knows a lot of additional measures (parameters) of the considered problem such as:
- Maximum allowed size of the output.
- Structural parameters e.g. treewidth of the underlying graph.
- Assume that some parameter k is very small compared to the input size.
- Under this small parameter assumption, we can do much better than the prute-force.

Clique or Independent Set Problem

- Given a graph, return $\max \left(t_{1}, t_{2}\right)$ where:

Clique or Independent Set Problem

- Given a graph, return $\max \left(t_{1}, t_{2}\right)$ where:
- t_{1} is the size of the maximum independent set
- t_{2} is the size of the maximum clique
- This problem is NP-hard:

Clique or Independent Set Problem

- Given a graph, return $\max \left(t_{1}, t_{2}\right)$ where:
- t_{1} is the size of the maximum independent set
- t_{2} is the size of the maximum clique
- This problem is NP-hard:
- Consider a planar graph.
- The maximum size of a clique is at most 4.
- The problem is effectively equivalent to an NP-hard problem of computing the maximum independent set of a planar graph.

Parameterized Clique or Independent Set Problem

- Problem specification:

Parameterized Clique or Independent Set Problem

- Problem specification:
- Input: graph G
- Parameter: k
- Question does G have an independent set or clique of size at least k ?

Parameterized Clique or Independent Set Problem

- Problem specification:
- Input: graph G
- Parameter: k
- Question does G have an independent set or clique of size at least k ?
- Ramsey theorem: there is number $R(k)$ (roughly equal $2^{k / 2}$) such that any graph with at least $R(k)$ vertices has either an independent set of size at least k or a clique of size at least k.

Parameterized Clique or Independent Set Problem

- Problem specification:
- Input: graph G
- Parameter: k
- Question does G have an independent set or clique of size at least k ?
- Ramsey theorem: there is number $R(k)$ (roughly equal $2^{k / 2}$) such that any graph with at least $R(k)$ vertices has either an independent set of size at least k or a clique of size at least k.
- Algorithm: If the number of vertices of G is $R(k)$ or larger, return 'YES', otherwise perform brute-force search.

Parameterized Clique or Independent Set Problem

- Problem specification:
- Input: graph G
- Parameter: k
- Question does G have an independent set or clique of size at least k ?
- Ramsey theorem: there is number $R(k)$ (roughly equal $2^{k / 2}$) such that any graph with at least $R(k)$ vertices has either an independent set of size at least k or a clique of size at least k.
- Algorithm: If the number of vertices of G is $R(k)$ or larger, return 'YES', otherwise perform brute-force search.
- The complexity of this algorithm is $O\left(2^{R(k)}\right)$, it does not depend on n at all!

Fixed-parameter computation

- Given a computational problem with input size n and parameter k.

Fixed-parameter computation

- Given a computational problem with input size n and parameter k.
- A fixed-parameter algorithm solves this problem in time $O\left(f(k) * n^{c}\right.$) where c is a constant (usually $c \leq 3$).

Fixed-parameter computation

- Given a computational problem with input size n and parameter k.
- A fixed-parameter algorithm solves this problem in time $O\left(f(k) * n^{c}\right.$) where c is a constant (usually $c \leq 3$).
- Prolbems that can be solved this way are fixed-parameter tractable (FPT).

Fixed-parameter computation

- Given a computational problem with input size n and parameter k.
- A fixed-parameter algorithm solves this problem in time $O\left(f(k) * n^{c}\right.$) where c is a constant (usually $c \leq 3$).
- Prolbems that can be solved this way are fixed-parameter tractable (FPT).
- The area that studies fixed-parameter tractability phenomena is called parameterized complexity.

Fixed-parameter computation

- Given a computational problem with input size n and parameter k.
- A fixed-parameter algorithm solves this problem in time $O\left(f(k) * n^{c}\right.$) where c is a constant (usually $c \leq 3$).
- Prolbems that can be solved this way are fixed-parameter tractable (FPT).
- The area that studies fixed-parameter tractability phenomena is called parameterized complexity.
- We will see how the methodology is applied in the area of SAT solving.
- The considered parameters will measure 'closeness' of the given instance to a polynomially solvable class.

Backdoor set w.r.t. to tjhe given subclass of SAT

- There are quite a few polynomially solvable classes of SAT (e.g. 2SAT, Horn, Renamable Horn, etc.).

Backdoor set w.r.t. to tjhe given subclass of SAT

- There are quite a few polynomially solvable classes of SAT (e.g. 2SAT, Horn, Renamable Horn, etc.).
- A backdoor set of a CNF F w.r.t. to the given polynomially solvable class A : a subset S of the variables of F such that any assignment of S produces a residual formula that belongs to A

Backdoor set w.r.t. to tjhe given subclass of SAT

- There are quite a few polynomially solvable classes of SAT (e.g. 2SAT, Horn, Renamable Horn, etc.).
- A backdoor set of a CNF F w.r.t. to the given polynomially solvable class A : a subset S of the variables of F such that any assignment of S produces a residual formula that belongs to A
- Correspondng parameterized problem: given a CNF F is there a backdoor set of size at most k w.r.t. to the given class A ?

Backdoor set w.r.t. to tjhe given subclass of SAT

- There are quite a few polynomially solvable classes of SAT (e.g. 2SAT, Horn, Renamable Horn, etc.).
- A backdoor set of a CNF F w.r.t. to the given polynomially solvable class A : a subset S of the variables of F such that any assignment of S produces a residual formula that belongs to A
- Correspondng parameterized problem: given a CNF F is there a backdoor set of size at most k w.r.t. to the given class A ?
- Motivation to consider such problems:

Backdoor set w.r.t. to tjhe given subclass of SAT

- There are quite a few polynomially solvable classes of SAT (e.g. 2SAT, Horn, Renamable Horn, etc.).
- A backdoor set of a CNF F w.r.t. to the given polynomially solvable class A : a subset S of the variables of F such that any assignment of S produces a residual formula that belongs to A
- Correspondng parameterized problem: given a CNF F is there a backdoor set of size at most k w.r.t. to the given class A ?
- Motivation to consider such problems:
- Assume that some real-world class of instances has a small backdoor w.r.t. to some class.

Backdoor set w.r.t. to tjhe given subclass of SAT

- There are quite a few polynomially solvable classes of SAT (e.g. 2SAT, Horn, Renamable Horn, etc.).
- A backdoor set of a CNF F w.r.t. to the given polynomially solvable class A : a subset S of the variables of F such that any assignment of S produces a residual formula that belongs to A
- Correspondng parameterized problem: given a CNF F is there a backdoor set of size at most k w.r.t. to the given class A ?
- Motivation to consider such problems:
- Assume that some real-world class of instances has a small backdoor w.r.t. to some class.
- We apply the fixed-parameter algorithm at the preprocessing to find such backdoor set.

Backdoor set w.r.t. to tjhe given subclass of SAT

- There are quite a few polynomially solvable classes of SAT (e.g. 2SAT, Horn, Renamable Horn, etc.).
- A backdoor set of a CNF F w.r.t. to the given polynomially solvable class A : a subset S of the variables of F such that any assignment of S produces a residual formula that belongs to A
- Correspondng parameterized problem: given a CNF F is there a backdoor set of size at most k w.r.t. to the given class A ?
- Motivation to consider such problems:
- Assume that some real-world class of instances has a small backdoor w.r.t. to some class.
- We apply the fixed-parameter algorithm at the preprocessing to find such backdoor set.
- Then solve the instance, branching only on the variables of this set.

State of the art

- Fixed-parameter tractability of computing backdoors is now well understood for most polytime solvable classes.
- See the recent review "Backdoors for Satisfaction" of Gaspers and Szeider (available on arxiv).
- I will concentrate on one result related to my own research.

Renamable Horn formulas

- Horn formulas: each clause contains at most one positive literal. Example: $\left(X_{1} \vee \overline{X_{2}} \vee \overline{X_{3}}\right)\left(X_{2} \vee \overline{X_{1}} \vee \overline{X_{4}}\right)\left(X_{3} \vee \overline{X_{2}} \vee \overline{X_{4}}\right)$

Renamable Horn formulas

- Horn formulas: each clause contains at most one positive literal. Example: $\left(X_{1} \vee \overline{X_{2}} \vee \overline{X_{3}}\right)\left(X_{2} \vee \overline{X_{1}} \vee \overline{X_{4}}\right)\left(X_{3} \vee \overline{X_{2}} \vee \overline{X_{4}}\right)$
- Renamable Horn (RHorn) formulas: can be transformed into Horn fomulas by renmaing of a subset of variables (replacing positive occurrences by negative ones and vice versa).
Example: $\left(X_{1} \vee X_{2} \vee \overline{X_{3}}\right)\left(\overline{X_{2}} \vee \overline{X_{1}} \vee \overline{X_{4}}\right)\left(X_{3} \vee X_{2} \vee \overline{X_{4}}\right)$ is not Horn but RHorn that can be transformed to Horn by renaming of X_{2}.

Renamable Horn formulas

- Horn formulas: each clause contains at most one positive literal. Example: $\left(X_{1} \vee \overline{X_{2}} \vee \overline{X_{3}}\right)\left(X_{2} \vee \overline{X_{1}} \vee \overline{X_{4}}\right)\left(X_{3} \vee \overline{X_{2}} \vee \overline{X_{4}}\right)$
- Renamable Horn (RHorn) formulas: can be transformed into Horn fomulas by renmaing of a subset of variables (replacing positive occurrences by negative ones and vice versa). Example: $\left(X_{1} \vee X_{2} \vee \overline{X_{3}}\right)\left(\overline{X_{2}} \vee \overline{X_{1}} \vee \overline{X_{4}}\right)\left(X_{3} \vee X_{2} \vee \overline{X_{4}}\right)$ is not Horn but RHorn that can be transformed to Horn by renaming of X_{2}.
- The SAT problem for RHorn CNF can be solved in a linear time.
- Many real-wolrd instances are close to being RHorn.
- So, it is good to be able to efficiently compute small RHorn backdoor sets

RHorn deletion backdoor sets

- Computing RHorn backdoor is W[2]-hard, i.e. very unlikely to be FPT (Proposition 6. in the above survey of Gaspers and Szeider)

RHorn deletion backdoor sets

- Computing RHorn backdoor is W[2]-hard, i.e. very unlikely to be FPT (Proposition 6. in the above survey of Gaspers and Szeider)
- RHorn deletion backdoor: a subset of variables whose removal makes the formula belong to clas RHorn.
- The deletion backdoor is generally larger than the ordinary backdoor yet quite small for practical instances.

RHorn deletion backdoor sets

- Computing RHorn backdoor is W[2]-hard, i.e. very unlikely to be FPT (Proposition 6. in the above survey of Gaspers and Szeider)
- RHorn deletion backdoor: a subset of variables whose removal makes the formula belong to clas RHorn.
- The deletion backdoor is generally larger than the ordinary backdoor yet quite small for practical instances.
- Example: $\left(X_{1} \vee X_{2} \vee X_{3} \vee X_{4}\right)\left(\overline{X_{1}} \vee \overline{X_{2}} \vee \overline{X_{3}} \vee \overline{X_{4}}\right)$
- $\left\{X_{1}\right\}$ is a RHorn backdoor of the above formula but not deletion backdoor. A RHorn deletion backdoor set is $\left\{X_{1}, X_{2}\right\}$.

RHorn deletion backdoor sets

- RHorn CNFs can be easily recognized by solving a 2SAT problem.
- Each variable X is associated with varable $R X$ whose truth value determines whether X is to be renamed.
- The forbidden combinations of renamings for all pairs of variables occurring in the same clause can be expressed as a 2SAT instance.
- The formula is RHorn if and only if this 2SAT is satisfiable.

RHorn deletion backdoor sets

- RHorn CNFs can be easily recognized by solving a 2SAT problem.
- Each variable X is associated with varable $R X$ whose truth value determines whether X is to be renamed.
- The forbidden combinations of renamings for all pairs of variables occurring in the same clause can be expressed as a 2SAT instance.
- The formula is RHorn if and only if this 2SAT is satisfiable.
- The given CNF has an RHorn deletion backdoor of size k if and only if the above 2SAT instance can be made satisfiable by removal of at most k variables. (Gottlob and Szeider, Computer Journal, 2008).
- Thus the fixed-parameter tractability of RHorn deletion backdoor has been reduced to fixed-parameter tractability of Min-2CNF-deletion problem.

Min-2CNF deletion problem

- Given a 2CNF, is it possible to remove at most k clauses to make it satisfiable (FPT equivalent to the query of removal of k variables).
- Was a challenging open problem for more than 10 years.
- Shown FPT in "Almost 2 SAT is Fixed-Parameter Tractable, by Razgon and O'Sullivan, Journal of Comp. and Sys. Sciences Vol 75, pp. 435-450, 2009.
- Our algorithm takes $O\left(15^{k} m^{3}\right)$ where m is the number of clauses and thus not sutiable for practical applications.

Line of improvements of the result for Min-2CNF deletion

- Runtime improvements:
- $O^{*}\left(9^{k}\right)$ algorithm (Raman et al, ESA'11)
- $O^{*}\left(4^{k}\right)$ algorithm (Cygan et al, IPEC'11)
- $O^{*}\left(2.67^{k}\right)$ algorithm (Narayanaswamy et al, manuscript).

Line of improvements of the result for Min-2CNF deletion

- Runtime improvements:
- $O^{*}\left(9^{k}\right)$ algorithm (Raman et al, ESA'11)
- $O^{*}\left(4^{k}\right)$ algorithm (Cygan et al, IPEC'11)
- $O^{*}\left(2.67^{k}\right)$ algorithm (Narayanaswamy et al, manuscript).
- The most surprising development:
- Min-2CNF deletion is kernelizable.
- There is a (randomized) poly-time algorithm transforming the given instance into one whose size polynomially depends on k (Kratsch and Wahlstrom, "Represenative sets and Irrelevant vertices...", available in arxiv)
- The dependence of k can be come an additive constant instead multiplicative one!
- The recent development make the parameterized approach potentially applicable for computing of small backdoors.

Yes or No?

Randomized restarts
Oblivious computation of backdoor sets
Explicit preprocessing computation

Yes or No?

- We have seen on example of RHorn backdoors that computing small backdoors at the preprocessing stage is potentially practically applicable for SAT solving.

Yes or No?

Yes or No?

- We have seen on example of RHorn backdoors that computing small backdoors at the preprocessing stage is potentially practically applicable for SAT solving.
- Question: has it been applied in practice?

Yes or No?

- We have seen on example of RHorn backdoors that computing small backdoors at the preprocessing stage is potentially practically applicable for SAT solving.
- Question: has it been applied in practice?
- The answer requires answering two subquestion:
- Have small backdoors been utilized for SAT solving? YES!

Yes or No?

- We have seen on example of RHorn backdoors that computing small backdoors at the preprocessing stage is potentially practically applicable for SAT solving.
- Question: has it been applied in practice?
- The answer requires answering two subquestion:
- Have small backdoors been utilized for SAT solving? YES!
- Have the FPT algorithms been used at the preprocessing stage? Not yet!

Randomized restarts

- Randomized restarts is a ridiculously simple modification of backtracking

Randomized restarts

- Randomized restarts is a ridiculously simple modification of backtracking
- The variable to branch on is chosen at random.

Randomized restarts

- Randomized restarts is a ridiculously simple modification of backtracking
- The variable to branch on is chosen at random.
- If the algorithm runs longer than some appriori specified time limit, it is terminated

Randomized restarts

- Randomized restarts is a ridiculously simple modification of backtracking
- The variable to branch on is chosen at random.
- If the algorithm runs longer than some appriori specified time limit, it is terminated
- After the termination the algorithm starts from scratch

Randomized restarts

- Randomized restarts is a ridiculously simple modification of backtracking
- The variable to branch on is chosen at random.
- If the algorithm runs longer than some appriori specified time limit, it is terminated
- After the termination the algorithm starts from scratch
- If the algorithm does not return an answer after some appriori specified number of attempts, it returns 'DO NOT KNOW'

Randomized restarts

- Randomized restarts is a ridiculously simple modification of backtracking
- The variable to branch on is chosen at random.
- If the algorithm runs longer than some appriori specified time limit, it is terminated
- After the termination the algorithm starts from scratch
- If the algorithm does not return an answer after some appriori specified number of attempts, it returns 'DO NOT KNOW'
- Solves huge benchmark instances far out of reach of the traditional backtracking algorithms.

Randomized restarts

- Randomized restarts is a ridiculously simple modification of backtracking
- The variable to branch on is chosen at random.
- If the algorithm runs longer than some appriori specified time limit, it is terminated
- After the termination the algorithm starts from scratch
- If the algorithm does not return an answer after some appriori specified number of attempts, it returns 'DO NOT KNOW'
- Solves huge benchmark instances far out of reach of the traditional backtracking algorithms.
- For more details, see "Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems" by Gomes, Selman, Crato, and Kautz, Journ. of Aut. Reasoning, Vol 24, pp. 67-100 (2000).

Randomized restarts

- Randomized restarts is a ridiculously simple modification of backtracking
- The variable to branch on is chosen at random.
- If the algorithm runs longer than some appriori specified time limit, it is terminated
- After the termination the algorithm starts from scratch
- If the algorithm does not return an answer after some appriori specified number of attempts, it returns 'DO NOT KNOW'
- Solves huge benchmark instances far out of reach of the traditional backtracking algorithms.
- For more details, see "Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems" by Gomes, Selman, Crato, and Kautz, Journ. of Aut. Reasoning, Vol 24, pp. 67-100 (2000).
- What is the reason of so good a performance?

Oblivious computation of backdoor sets

- One possible explanationis offered in "Backdoors to typical case complexity" by Williams, Gomes, and Selman, IJCAI03:

Oblivious computation of backdoor sets

- One possible explanationis offered in "Backdoors to typical case complexity" by Williams, Gomes, and Selman, IJCAI03:
- A class A of CNF is considered easy for the given backtracking algorithm if any $F \in A$ can be efficiently (e.g. in $O(n)$ or in $O\left(n^{2}\right)$) solved by this algorithm.

Oblivious computation of backdoor sets

- One possible explanationis offered in "Backdoors to typical case complexity" by Williams, Gomes, and Selman, IJCAI03:
- A class A of CNF is considered easy for the given backtracking algorithm if any $F \in A$ can be efficiently (e.g. in $O(n)$ or in $O\left(n^{2}\right)$) solved by this algorithm.
- Given a formula F, a set S of its variables is a backdoor w.r.t. A if as a result of any assignment of S, the resulting residual formula belongs to A.

Oblivious computation of backdoor sets

- One possible explanationis offered in "Backdoors to typical case complexity" by Williams, Gomes, and Selman, IJCAI03:
- A class A of CNF is considered easy for the given backtracking algorithm if any $F \in A$ can be efficiently (e.g. in $O(n)$ or in $O\left(n^{2}\right)$) solved by this algorithm.
- Given a formula F, a set S of its variables is a backdoor w.r.t. A if as a result of any assignment of S, the resulting residual formula belongs to A.
- It is empirically shown that many real-world instances have small such backdoor sets.

Oblivious computation of backdoor sets

- One possible explanationis offered in "Backdoors to typical case complexity" by Williams, Gomes, and Selman, IJCAI03:
- A class A of CNF is considered easy for the given backtracking algorithm if any $F \in A$ can be efficiently (e.g. in $O(n)$ or in $O\left(n^{2}\right)$) solved by this algorithm.
- Given a formula F, a set S of its variables is a backdoor w.r.t. A if as a result of any assignment of S, the resulting residual formula belongs to A.
- It is empirically shown that many real-world instances have small such backdoor sets.
- Moreover, it is argued that the restart algorithm managed to capture such sets and branch over them!

Oblivious computation of backdoor sets

- One possible explanationis offered in "Backdoors to typical case complexity" by Williams, Gomes, and Selman, IJCAI03:
- A class A of CNF is considered easy for the given backtracking algorithm if any $F \in A$ can be efficiently (e.g. in $O(n)$ or in $O\left(n^{2}\right)$) solved by this algorithm.
- Given a formula F, a set S of its variables is a backdoor w.r.t. A if as a result of any assignment of S, the resulting residual formula belongs to A.
- It is empirically shown that many real-world instances have small such backdoor sets.
- Moreover, it is argued that the restart algorithm managed to capture such sets and branch over them!
- The restart algorithm is obliviously fixed-parameter

Oblivious computation of backdoor sets

- One possible explanationis offered in "Backdoors to typical case complexity" by Williams, Gomes, and Selman, IJCAI03:
- A class A of CNF is considered easy for the given backtracking algorithm if any $F \in A$ can be efficiently (e.g. in $O(n)$ or in $O\left(n^{2}\right)$) solved by this algorithm.
- Given a formula F, a set S of its variables is a backdoor w.r.t. A if as a result of any assignment of S, the resulting residual formula belongs to A.
- It is empirically shown that many real-world instances have small such backdoor sets.
- Moreover, it is argued that the restart algorithm managed to capture such sets and branch over them!
- The restart algorithm is obliviously fixed-parameter
- Instead of branching on all n variables, it branches on a hadful k of them.

Explicit preprocessing computation

- Paris et al. "Computing Horn Strong Backdoor Sets Thanks to Local Search", ICTAI 2006
- Heuristically compute RHorn backdoors (not deletion one!) at the preprocessing stage.
- Claim improvement of performance of ZChaff, a well known SAT solver.

Explicit preprocessing computation

- Paris et al. "Computing Horn Strong Backdoor Sets Thanks to Local Search", ICTAI 2006
- Heuristically compute RHorn backdoors (not deletion one!) at the preprocessing stage.
- Claim improvement of performance of ZChaff, a well known SAT solver.
- Interesting: the backdoor set they compute is W[2]-hard: there is no hope to replace their heuristic by a fixed-parameter algorithm.

Explicit preprocessing computation

- Paris et al. "Computing Horn Strong Backdoor Sets Thanks to Local Search", ICTAI 2006
- Heuristically compute RHorn backdoors (not deletion one!) at the preprocessing stage.
- Claim improvement of performance of ZChaff, a well known SAT solver.
- Interesting: the backdoor set they compute is W[2]-hard: there is no hope to replace their heuristic by a fixed-parameter algorithm.
- The perspective of applying FPT algorithms in this context is still unclear!

What is knowledge compilation?

- In some industrial application (e.g. hardware verification, car industry), CNF formulas are regarded as knowledge bases known in advance :

What is knowledge compilation?

- In some industrial application (e.g. hardware verification, car industry), CNF formulas are regarded as knowledge bases known in advance :
- Queries are asked regarding the structure of satifying assignments

What is knowledge compilation?

- In some industrial application (e.g. hardware verification, car industry), CNF formulas are regarded as knowledge bases known in advance :
- Queries are asked regarding the structure of satifying assignments
- Typical query: is there a satisfying assignment assigning variables of set S_{1} with true and variables of set S_{2} with false?

What is knowledge compilation?

- In some industrial application (e.g. hardware verification, car industry), CNF formulas are regarded as knowledge bases known in advance :
- Queries are asked regarding the structure of satifying assignments
- Typical query: is there a satisfying assignment assigning variables of set S_{1} with true and variables of set S_{2} with false?
- Queries have to be answered real-time

What is knowledge compilation?

- In some industrial application (e.g. hardware verification, car industry), CNF formulas are regarded as knowledge bases known in advance :
- Queries are asked regarding the structure of satifying assignments
- Typical query: is there a satisfying assignment assigning variables of set S_{1} with true and variables of set S_{2} with false?
- Queries have to be answered real-time
- Queries are not known in advance.

What is knowledge compilation?

- In some industrial application (e.g. hardware verification, car industry), CNF formulas are regarded as knowledge bases known in advance :
- Queries are asked regarding the structure of satifying assignments
- Typical query: is there a satisfying assignment assigning variables of set S_{1} with true and variables of set S_{2} with false?
- Queries have to be answered real-time
- Queries are not known in advance.
- A CNF formula is transformed offline (in exponential time) into a representation meeting the above requirements.

What is knowledge compilation?

- In some industrial application (e.g. hardware verification, car industry), CNF formulas are regarded as knowledge bases known in advance :
- Queries are asked regarding the structure of satifying assignments
- Typical query: is there a satisfying assignment assigning variables of set S_{1} with true and variables of set S_{2} with false?
- Queries have to be answered real-time
- Queries are not known in advance.
- A CNF formula is transformed offline (in exponential time) into a representation meeting the above requirements.
- The representation should be space-efficient.

What is knowledge compilation?

- In some industrial application (e.g. hardware verification, car industry), CNF formulas are regarded as knowledge bases known in advance :
- Queries are asked regarding the structure of satifying assignments
- Typical query: is there a satisfying assignment assigning variables of set S_{1} with true and variables of set S_{2} with false?
- Queries have to be answered real-time
- Queries are not known in advance.
- A CNF formula is transformed offline (in exponential time) into a representation meeting the above requirements.
- The representation should be space-efficient.
- It is not easy to do since there may be exponentially many solutions.

What is knowledge compilation?

- In some industrial application (e.g. hardware verification, car industry), CNF formulas are regarded as knowledge bases known in advance :
- Queries are asked regarding the structure of satifying assignments
- Typical query: is there a satisfying assignment assigning variables of set S_{1} with true and variables of set S_{2} with false?
- Queries have to be answered real-time
- Queries are not known in advance.
- A CNF formula is transformed offline (in exponential time) into a representation meeting the above requirements.
- The representation should be space-efficient.
- It is not easy to do since there may be exponentially many solutions.
- The study of various representation formalisms constitutes the field of knowledge compilation.

A simple formalism: DNF

- Elementary conjuction: conjunction of literals (e.g. $x_{1} \overline{x_{2}} x_{3}$)

A simple formalism: DNF

- Elementary conjuction: conjunction of literals (e.g. $x_{1} \overline{x_{2}} x_{3}$)
- Disjunctive normal form (DNF): disjunction of elementary conjunctions (e.g. $x_{1} \overline{x_{2}} x_{3} \vee \overline{x_{1}} x_{4} x_{5}$).

A simple formalism: DNF

- Elementary conjuction: conjunction of literals (e.g. $x_{1} \overline{x_{2}} x_{3}$)
- Disjunctive normal form (DNF): disjunction of elementary conjunctions (e.g. $x_{1} \overline{x_{2}} x_{3} \vee \overline{x_{1}} x_{4} x_{5}$).
- Given sets S_{1} and S_{2} of variables, it can be tested in polytime whether the given DNF has a satisfying assignment with $S_{1} \leftarrow$ true and $S_{2} \leftarrow$ false

A simple formalism: DNF

- Elementary conjuction: conjunction of literals (e.g. $x_{1} \overline{x_{2}} x_{3}$)
- Disjunctive normal form (DNF): disjunction of elementary conjunctions (e.g. $x_{1} \overline{x_{2}} x_{3} \vee \overline{x_{1}} x_{4} x_{5}$).
- Given sets S_{1} and S_{2} of variables, it can be tested in polytime whether the given DNF has a satisfying assignment with $S_{1} \leftarrow$ true and $S_{2} \leftarrow$ false
- Drawback: for many classes of simple CNFs, the corresponding DNFs are of exponential size.

What is knowledge compilation? A simple formalism: DNF From DNF to DNNF The complexity of DNNF
Further development of the idea Possible further research

From DNF to DNNF

- A DNF is easy to represent in the following graphical way:

From DNF to DNNF

- A DNF is easy to represent in the following graphical way:

- Generalize this graph representation by allowing an arbitrary number of alternating AND-OR levels.

From DNF to DNNF

- A DNF is easy to represent in the following graphical way:

- Generalize this graph representation by allowing an arbitrary number of alternating AND-OR levels.
- Require that two subgraphs having a common AND parent do not share variables.

From DNF to DNNF

- A DNF is easy to represent in the following graphical way:

- Generalize this graph representation by allowing an arbitrary number of alternating AND-OR levels.
- Require that two subgraphs having a common AND parent do not share variables.
- We obtain a representation called Disjunctive negation normal form (DNNF)

What is knowledge compilation? A simple formalism: DNF
From DNF to DNNF The complexity of DNNF Further development of the idea Possible further research

From DNF to DNNF

- A DNF is easy to represent in the following graphical way:

- Generalize this graph representation by allowing an arbitrary number of alternating AND-OR levels.
- Require that two subgraphs having a common AND parent do not share variables.
- We obtain a representation called Disjunctive negation normal form (DNNF)
- It is much more general than DNF, yet allows to answer a typical query in polytime.

The complexity of DNNF

- Of course DNNF can take exponential space.

The complexity of DNNF

- Of course DNNF can take exponential space.
- However the exponent is not in the number of variables, but in the treewidth of the target CNF.

The complexity of DNNF

- Of course DNNF can take exponential space.
- However the exponent is not in the number of variables, but in the treewidth of the target CNF.
- The representation is generated by a fixed-parameter algorithm in terms of the treewidth.

The complexity of DNNF

- Of course DNNF can take exponential space.
- However the exponent is not in the number of variables, but in the treewidth of the target CNF.
- The representation is generated by a fixed-parameter algorithm in terms of the treewidth.
- Successfully applied to the industrial instances of the hardware diagnosis problem

The complexity of DNNF

- Of course DNNF can take exponential space.
- However the exponent is not in the number of variables, but in the treewidth of the target CNF.
- The representation is generated by a fixed-parameter algorithm in terms of the treewidth.
- Successfully applied to the industrial instances of the hardware diagnosis problem
- More details at: A. Darwiche "Decomposable negation normal forms", JACM, vol 48, pp. 608-647, 2001.

Further development of the idea

- The DNNF is a fixed-parameter method in terms of space complexity.
- However, a fixed-parameter algorithm for knowledge compilation has been used implicitly.
- Since then, to the best of my knowledge, no attempt has been made to further explore the potential of fixed-parameter computation in knowledge compilation.

Further development of the idea

- The DNNF is a fixed-parameter method in terms of space complexity.
- However, a fixed-parameter algorithm for knowledge compilation has been used implicitly.
- Since then, to the best of my knowledge, no attempt has been made to further explore the potential of fixed-parameter computation in knowledge compilation.
- Cadoli and then Hubie Chen developed a theory of parameterized compilability (classes, relationships between them etc.)
- However, this direction has not been taken any further (e.g. no concrete methods of formalisation based on new parameters).

Possible further research

- Exploration of cliquewidth:
- Design of representation formalism parameterised by the cliquewidth
- Is small cliquewidth a necessary condition for succint representation by the existing formalisms.
- Exploiting sizes of various backdoor sets as possible parameters for succinct knowledge compilation.

Summary

- There are two modes of SAT solving.

Summary

- There are two modes of SAT solving.
- A SAT instance is the input:
- Theory of fixed-parameter computation is more or less understood.
- Little effect to the practical SAT solving: theory and practice go in parallel.
- Research in Algorithms Engineering is required to close the gap, see http://www.user.tu-berlin.de/hueffner/ for an example of successful research of this kind.

Summary

- There are two modes of SAT solving.
- A SAT instance is the input:
- Theory of fixed-parameter computation is more or less understood.
- Little effect to the practical SAT solving: theory and practice go in parallel.
- Research in Algorithms Engineering is required to close the gap, see http://www.user.tu-berlin.de/hueffner/ for an example of successful research of this kind.
- The SAT instance is known, a query is the input.
- Practical efficiency is well established for one particular application and one particular parameter.
- A lot of interesting theoretical work on generalizing, extending, and better understanding of this phenomenon.

