Under consideration for publication in Theory and Practifeogic Programming 1

ALPprolog — A New Logic Programming Method
for Dynamic Domains

CONRAD DRESCHER

Computing Laboratory, University of Oxford, UK
(e-mail: Conr ad. Dr escher @onl ab. ox. ac. uk)

MICHAEL THIELSCHER

School of Computer Science and Engineering, The UnivesMew South Wales, Australia
(e-mail:m t @se. unsw. edu. au)

submitted 1 January 2003; revised 1 January 2003; acceptihliary 2003

Abstract

Logic programming is a powerful paradigm for programming autongsragents in dynamic do-
mains, as witnessed by languages such as Golog and Flux. In this wgrkesent ALPprolog, an
expressive, yet efficient, logic programming language for the onlamgrol of agents that have to
reason about incomplete information and sensing actions.

KEYWORDSreasoning about actions, agent logic programs

1 Introduction

Programming autonomous agents that behave intelligesithne of the key challenges
of Artificial Intelligence. Because of its declarative natuand high level of abstraction,
logic programming is a natural choice for this task. This iessed by e.g. the two major
exponents of agent programming languages that are basdaissical logic programming,

namely Golog (Levesque et al. 1997) and Flux (Thielscheb2p0

Both these languages combine a language for specifyingghiet'a behaviour with an
axiomatic theory that describes the agent’s environmerthé case of Golog the strategy
language is procedural in nature (though implemented ifoBypand the action theory
is the classical Situation Calculus (McCarthy and Haye®) 86Reiter’s version (Reiter
2001a). For Flux the strategy language is full classicaklpgogramming, and the action
theory is the more recent Fluent Calculus (Thielscher 1999)

In a recent work (Drescher et al. 2009) we have developed tAgegic Programs
(ALPs), a new declarative strategy language that is based approof calculus in the
style of classical SLD-resolution. Contrary to Golog andx{the ALP framework is para-
metric in the action theory: any background theory thatvedldo infer when an action is
applicable, and what the effects of the action are, can b &sgloiting this generality we
have recently (Thielscher 2010b) been able to give a seosdiati the BDI-style language
AgentSpeak (Bordini et al. 2007). Another distinctive teatof the theoretical framework

2 Conrad Drescher and Michael Thielscher

is the elegant handling of incomplete information for o#liplanning viadisjunctive sub-
stitutions By default, ALPs are combined with our new Unifying ActiolCulus (UAC)
(Thielscher 2011) that encompasses the major logical raci@dculi, including both the
Situation Calculus and the Fluent Calculus, as well as méanyning domain description
languages. The ALP formalism stays entirely within clasisiagic.

The implementation of any fragment of the ALPprolog framawoonsists of (1) an
implementation of the proof calculus, and (2) an action theeasoner. Existing mature
Prolog technology can be used out of the box for (1) unlegarditive substitutions enter
the picture. For (2) we can also exploit existing technologyg. Golog implements a
fragment of the Situation Calculus, and Flux handles a fexgnof the Fluent Calculus.
In (Drescher et al. 2009) the implementation of a Descriptiogic-based fragment of the
Fluent Calculus is described.

In this work we present ALPprolog, where the underlying@ttheory is an essentially
propositional version of the Fluent Calculus in the UAC tinatudes a simple, yet power-
ful model of sensing. ALPprolog is intended for the onlinatol of agents, where actions
are immediately executed. This starkly contrasts withréflieasoning, where agents may
make assumptions to see where these are leading. ALPpralsgieveloped specifically
for the efficient handling of large ground state repres@mat something that we consider
to be practically useful. To this end ALPprolog combinessgr-points of Golog and Flux:

e From Golog it takes the representation of the agent’s statevledge in full propo-
sitional logic via prime implicates; and

e From Flux it takes the principle of progression: The agesiizge knowledge is up-
dated upon the execution of an action. In standard Golog gleats initial state
knowledge is never updated.Instead, queries referring to later time-points are
rewritten until they can be evaluated against the initiatesknowledge, something
which becomes a hindrance to good performance as the sexjogxecuted actions
grows.

We emphasise that ALPprolog is an agent programming laregimeipe spirit of classi-
cal logic programming in Prolog: The straightforward opienaal semantics provides the
programmer with a powerful means to actively determine #gpience of actions that an
agent executes. ALPproldgcan be obtained al ppr ol og. sour cef or ge. net .

The remainder of this paper is organised as follows: In 8ac@i we recall the basics
of the ALP framework, and in Section 3 we introduce ALPproldé evaluate the perfor-
mance of ALPprolog in Section 4, and conclude in Section 5.

2 ALPs in a Nutshell

The purpose of agent logic programs is to provide high-leweekrol programs for agents
using a combination of declarative programming with reasgpabout actions. The syntax
of these programs is kept very simple: standard (definitgiclprograms (see e.g. (J.W.
Lloyd 1987)) are augmented with just two special predicatee — writtendo(o) —

1 But there is a version of Golog where the initial state isquidally updated (Sardina and Vassos 2005).
2 The name is a play on ALPs, propositional logic, and the impleat&m in plain Prolog.

ALPprolog — A New Logic Programming Method for Dynamic Damsai 3

to denote the execution of an action by the agent, and one ttewr?() — to verify
properties against (the agent’s model of) the state of itsr@mment. This model, and
how it is affected by actions, is defined in a separate actiearly. This allows for a clear
separation between the agent’s strategic behaviour (hiy¢ime agent logic program itself)
and the underlying theory about the agent’s actions and #fieicts. Prior to giving the
formal definition, let us illustrate the idea by an exampleradogic program.

Example 1

Consider an agent whose task is to find gold in a maze. For tkeafsimplicity, the states
of the environment shall be described by a sirflent(i.e., state property):At(u, z) to
denote thatu € {Agent Gold} is at location « . The agent can perform the actidBo(y)
of going to locationy , which is possible ify is adjacent to the current location of the
agent. The following ALP describes a simple search strat@g given list of locations
(choice points) that the agent may visit, and an orderedectitbn of backtracking points.
We follow the Prolog convention of writing variables witheatling uppercase letter.

expl or e(Choi cepoi nts, Backtrack) : - % finished, if
?(at (agent, X)), ?(at(gold, X)). % gold is found

expl or e(Choi cepoi nt s, Backtrack) : -
?(at (agent, X)),
sel ect (Y, Choi cepoi nt's, NewChoi cepoi nts), % choose a direction
do(go(V)), %go in this direction
expl or e(NewChoi cepoi nts, [X| Backtrack]). % store the choice

expl or e(Choi cepoi nts, [X| Backtrack]) : - % go back one step

do(go(X)),

expl or e(Choi cepoi nt's, Backt rack).

sel ect (X, [X] Xs], Xs).
select (X, [Y] Xs],[Y]Ys]) :- select(X Xs,Ys).

Suppose we are given a list of choice poi@tsthen the query - expl ore(C,[]) lets
the agent systematically search for gold from its currenalion: the first clause describes
the base case where the agent is successful; the secone dtasishe agent select a new
location from the list of choice points and go to this locat{the declarative semantics and
proof theory fordo() will require that the action is possible at the time of exému;
and the third clause sends the agent back using the lategtiaaking point.]

The example illustrates two distinct features of ALPs: (hgTRgent strategy is defined
by a logic program that may use arbitrary function and pr@@isymbols in addition to the
signature of the underlying action theory. (2) The updatiefagent’s belief according to
the effects of its actions is not part of the strategy. FolynALLPs are defined as follows.

Definition 1

Consider an action theory signatude that includes the pre-defined sorsTiON and
FLUENT, along with a logic program signaturi.

e Termsare from X U II.

e If p is an n-ary relation symbol fromlI andt 4,...,t ,, are terms, themp(t 1,....,t ,,)
is aprogram atom

4 Conrad Drescher and Michael Thielscher

e do(«) is aprogram atomif « is anACTION termin X.

e ?() is aprogram atomif ¢ is astate propertyn X, thatis, a formula (represented
as a term) based on tireUENTS in 3.

e Clauses, programs, and queries are then defined as usuadfiioitedlogic programs,
with the restriction that the two special atoms cannot ogttine head of a clause. =

2.1 Declarative Semantics. Program + Action Theory

The semantics of an ALP is given in two steps. First, the @ogneeds to be “tempo-
ralised,” making explicit the state change that is impliditthe use of the two special
predicatesdo(«) and ?(¢) . Second, the resulting program is combined with an action
theory as the basis for evaluating these two special predicihe semantics is then the
classical logical semantics of the expanded program tegettih the action theory.

Time is incorporated into a program through macro-expangiwo arguments of sort
TIME ? are added to every regular program atgifx), and thenp(z, s, s2) is under-
stood as restricting the truth of the atom to the temporaruatl between (and includ-
ing) s; and s,. The two special atoms receive special treatm@ty) is re-written to
Holds(y, s), with the intended meaning that is true ats; and do(«) is mapped onto
Possa, s1, s2), meaning that actiomv can be executed at; and that its execution ends
in sy. The formal definition is as follows.

Definition 2
Foraclaus#d: - By, ..., B, (n>0),let s1,...,s,+1 be variables of sortiIME.
e Fori=1,...,n,if B; is of the form

—p(tq,...,tn),expand toP(t1,. .., tm, Si, Sit1) -

— do(«) , expand toPossa, s;, si+1) -

— ?(), expand toHolds(p, s;) A $i41 = S; .
e The head atonH=p(t, ..., t,,) isexpandedtaP(ti,...,tm,S1,Snt1)-
e The resulting clauses are understood as universally digghitmplications.
Queries are expanded exactly like clause bodies, except tha

e a special constan$, — denoting the earliest time-point in the underlying actiosory
— takes the place of; ;

o the resulting conjunction is existentially quantified.]

Example 1 (cont.)

The example program of the preceding section is understsathe following axioms,
which for notational convenience we have simplified in tHaequations betweemME

3 Which specific concept of time is being used depends on how theise is defined in the underlying action
theory, which may be branching (as, e.g., in the Situatiom@as) or linear (as, e.g., in the Event Calculus).

ALPprolog — A New Logic Programming Method for Dynamic Damsai 5

variables have been applied and then omitted.

(V)Explorg(c, b, s1,s1) C Holds(At(Agent x), s) A Holds(At(Gold, z), s1)
(V)Explorg(c,b,s1,54) C Holds(At(Agent z), s1) A Selecty, ¢, ¢, 51, s2)A
Pos$Go(y), s2, s3) A Explorgc’, [z]b], s3, 54)
(V)Explorg(c, []b], s1,s3) C Pos$Go(z), s1, s2) A Explorgc, b, sq, s3)
(V)Selectz, [z|2], 2/, s1, s1) C true
(V)Selectz, [y|2'], [y|y], s1, s2) C Selectx, 2’,y', s1, s2)

The resulting theory constitutes a purely logical axiomsation of the agent’s strategy,
which provides the basis for logical entailment. For instapmacro-expanding the query
:- explore(C []) from the above example results in the temporalised logimal f
mula (3s) Explorg(C, [], So, s) . If this formula follows from the axioms above, then that
means that the strategy can be successfully executedngtatt .S, , for the given list of
choice pointsC' . Whether this is actually the case of course depends on ttii@uhl
action theory that is needed to evaluate the special atbtokls and Possin a macro-
expanded program.]

Macro-expansion provides the first part of the declaratemantics of an agent logic
program; the second part is given by an action theory in fofra logical axiomatisation
of actions and their effects. The overall declarative sdiosiof agent logic programs is
given by the axiomatisation consisting of the action thesorgt the expanded program.

Let us next introduce the fragment of the UAC correspondmthée Fluent Calculus.
The UAC that is used to axiomatise the action theory is baseahany-sorted first order
logic with equality and the four sortsSME, FLUENT, OBJECT, andACTION. By convention
variable symbolss, f, z, and a are used for terms of SOTtME, FLUENT, OBJECT, and
ACTION, respectively. Fluents are reified, and the standard pmelidolds : FLUENT x
TIME indicates whether a fluent is true at a particular time. Tleeligate Possa, s1, s2)
means that actiomx can be executed at; and that its execution ends i3 . The number
of function symbols into sortsSLUENT andACTION is finite.

Definition 3(Action Theory Formula Typgs
We stipulate that the following formula types are used bjoadheories:

e State formulas express what is true at particular timestate formula®[s] in s
is a first-order formula with free variables where

— for each occurrence dflolds(f, s) we haves € 5;
— predicatePoss does not occur.

A state formula igureif it does not mention predicates other thholds.

e A state property¢ is an expression built from the standard logical connestamed
terms F'(z) of sort FLUENT. With a slight abuse of notation, bilolds(¢, s) we
denote the state formula obtained from state propertigy replacing every occur-
rence of a fluentf by Holds(f,s) . In an expanded prograrfi we always treat
Holds(¢, s) as atomic. State properties are used by agent logic progre®g$hi)
atoms.

e Theinitial state axiomis a state formulap(Sy) in Sy, where Sy denotes the initial
situation.

6 Conrad Drescher and Michael Thielscher

e An action precondition axions of the form
(V)POSS€A(£Z'), S1, 82) = 7'(',4[81] N 89 = DO(A(,T), 81),

where 74 [s1] is a state formula irs; with free variables amongs, z . This axiom
illustrates how different actions lead to different sitoatterms Do(A(), s1) . Sit-
uations constitute the sortME in the Fluent Calculus and provide a branching time
structure.

o Effect axiomare of the form

POS?EA(f), S1, 82) D)
\ Gai) (@xfsa] A (VI | = fis v (HOldS £, 50) A\ [# k)

k
= Holds(f, 52)]).

Such an effect axiom hag different cases that can apply — these are identified
by the case selection formula®;[s1] which are state formulas is; with free
variables amongsi, Z, ¢; . The fi; (and gx; , respectively) are fluent terms with
variables amongr, 7, and describe the positive (or, respectively, negativeoesf
of the action, given that cask applies.

e Domain constraintare universally quantified state formulégs)d[s] in s.

e Auxiliary axiomsare domain-dependent, but time-independent, additioxialres
such as e.g. an axiomatisation of finite domain constraints.

An action theoryD is given by an initial state axior®,, , finite setsDpgss and Degrects
of precondition and effect axioms. Moreover domain constsaDg. and auxiliary axioms
Daux may be included. For illustration, the following is a baadgnd axiomatisation for
our example scenario as a basic Fluent Calculus theory inDAl

Example 1 (cont.)
Our example program can be supported by the following dortegory.

o |nitial state axiom
Holds(At(Agent 1), Sy) A Holds(At(Gold, 4), Sy)
e Precondition axiom

Pos$Go(y), s1,s2) = (Jx)(Holds(At(Agent z),s1) A(y=x+1Vy=xz—1))
N Sg = DO(GO(y), 81)

o Effect axiom
Pos$Go(y), s1,52) D
(3z)(Holds(At(Agent z), s1) A
[(Vf)HoldS(f, s2) = (Holds(f, s1) V f = At(Agenty)) A f # At(Agent z)]).

Given this (admittedly very simple, for the sake of illustm) specification of the back-
ground action theory, the axiomatisation of the agent'sitglyy from above entails, for
example,(3s) Explorg([2, 3, 4, 5], [], So, s) . This can be shown as follows. First, observe
that the background theory entails

Holds(At(Agent 4), S) A Holdg(At(Gold, 4), .S),

ALPprolog — A New Logic Programming Method for Dynamic Damsai 7

where S denotes the situation terrdo(Go(4), Do(Go(3), Do(Go(2), Sp))) . It follows
that Explorg([5], [3,2,1],S,S) according to the first clause of our example ALP. Con-
sider, now, the situatiort’” = Do(Go(3), Do(Go(2), Sy)) , then action theory and strategy
together imply

Holds(At(Agent 3), S") A Select4, [4,5],[5], 5", S") A PosgGo(4), S, S)

By using this in turn, along wittExploreg([5], [3, 2, 1], S, S) from above, according to the
second program clause we obtalitxplorg([4, 5], [2, 1],.57,.5) . Continuing this line of rea-
soning, it can be shown that

Explore([3, 4, 5], [1], Do(G0(2), So), S)
and hence, Explorg([2,3,4,5],[], S0, S)

This proves the claim thaf3s) Explore([2, 3,4, 5], [], So, s) . On the other hand e.g. the
query (3s) Explore([2,4],[], So, s) is not entailed under the given background theory:
Without location3 among the choice points, the strategy does not allow thetageeach
the only location that is known to house gold.]

2.2 Operational Semantics: Proof Calculi

We have developed two sound and complete proof calculi fdP#\that both assume the
existence of a suitable reasoner for the underlying actienry (Drescher et al. 2009).

The first proof calculus is plain SLD-resolution, only tHdblds- and Poss-atoms are
evaluated against the action theory. This calculus is samddcomplete if the underlying
action theory has the witness property: That is, when&er (3x)¢(x) then there is a
substitution® such thatD = (V)¢(z)0 . Note that in general action theories may violate
the witness property, as they may include disjunctive oelyuexistential information;
consider e.g. the casdolds(At(Gold, 4), So) v Holds(At(Gold, 5), So) , where the exact
location of the gold is unknown.

Hence the second proof calculus, intended for the genesa, gasorts to constraint
logic programming, and the notion of a disjunctive subtittu Still assuming that the
gold is located at one of two locations the quePyF (Jx)Holds(At(Gold,) can now
be answered positively via the disjunctive substitution— 4 vV « — 5. Disjunctive
substitution together with the respective principle ofs@idng by cases are a powerful
means for inferring conditional plans.

For the online control of agents, however, assuming a pdaticase is unsafe. But if we
use the plain SLD-resolution-based ALP proof calculus gnabaction theories that lack
the witness property we obtain a nice characterisation atfi@as behaviour in a world of
unknowns (albeit at the cost of sacrificing logical completss). For ALPprolog this is the
setting that we use.

In both proof calculi we adopt the "leftmost” computatiorlerdamiliar from Prolog.
This has many advantages: First, it simplifies the impleatén, as this can be based
on existing mature Prolog technology. Second, state ptiegectan always be evaluated
against a description of the "current” state. Last, but east, this ensures that actions are
executed in the order intended by the programmer — this iahmall importance for the
online control of agents.

8 Conrad Drescher and Michael Thielscher

3 ALPprolog

We next present ALPprolog — an implementation of the ALP fesrark atop of action
theories in a version of the Fluent Calculus that

e uses (a notational variant of) propositional logic for désng state properties;
e is restricted to actions with ground deterministic effeatsd
e includes sensing actions.

The intended application domain for ALPprolog is the onlguatrol of agents in dy-
namic domains with incomplete information.

3.1 ALPprolog Programs

An ALPprolog program is an ALP that respects the followingtrietions on the?(Phi)
atoms in the program:

e All occurrences of non-fluent expressionsgnare positive.
e So called sense fluentS(Z) that represent the interface to a sensor may only occur
in the form?(s(X)) . Sense fluents are formally introduced below.

Because ALPprolog programs are meant for online executieptogrammer must en-
sure that no backtracking over action executions occursg®rting cuts after all action
occurrences. Observe that this applies to sensing actmmdl is readily checked that —
after the insertion of cuts — the ALP from example 1 satisflesfahe above conditions.

3.2 Propositional Fluent Calculus

In this section we introduce the announced propositioreajrfrent of the Fluent Calculus.
The discussion of sensing is deferred until section 3.3.

For ease of modelling we admit finitely many ground terms foeffits and objects,
instead of working directly with propositional letters. Aation domainD is then made
propositional by including the respective domain closwiems. For actions, objects, and
fluents unique name axioms are included — hence we can avoaliggreasoning.

The basic building block of both the propositional FluentdDaus and ALPprolog are
the so-called prime implicates of a state formylés) :

Definition 4(Prime Implicat®
A clause) is aprime implicateof ¢ iff it is entailed by ¢, is not a tautology, and is not
entailed by another prime implicate.

The prime implicates of a formula are free from redundancylHaatologies and im-
plied clauses have been deleted. For any state formula avaedsnt prime state formula
can be obtained by first transforming the state formula insetaof clauses, and by then
closing this set under resolution, and the deletion of soesliclauses and tautologies.

Prime state formulas have the following nice property: kebe a prime state formula,
and letvy be some clause (not mentioning auxiliary predicates); titeis entailed by¢
if and only if it is subsumed by some prime implicate dn, a fact that has already been

ALPprolog — A New Logic Programming Method for Dynamic Damsai 9

exploited for Golog (Reiter 2001a; Reiter 2001b). This @ty will allow us to reduce
reasoning about state knowledge in ALPprolog to simplddisk-up operations.
Formally the propositional version of the Fluent Calcukigéfined as follows.

Definition 5(Propositional Fluent Calculus Domajn
We stipulate that the following properties hold in propigsitl Fluent Calculus domains:

e The initial stateDy,;; is specified by a ground prime state formula.

e The state formulasy(s1) in action preconditiondPossa, s1, s2) = ¢(s1) A s =
Do(a, s1) are prime state formulas.

e The effect axioms are of the form

POS?EA(]?), S1, 82) D
V(@xlsi] A (DI £ = fii v (HOdS(f, 51) A N\ £ # gv)

k
= Holds(f, s2)]),

where each®;[s;] is a prime state formula. This implies that existentiallyagti-
fied variables that may occur in case selection formulagdéfinition 3) have been
eliminated by introducing additional cases.

e Only so-calledmodulardomain constraints (Herzig and Varzinczak 2007) may be
included. Very roughly, domain constraints are modulanéftcan be compiled into
the agent’s initial state knowledge, and the effect axionsuee that updated states
also respect the domain constraints. In the Fluent Caldbiasholds if the follow-
ing two conditions are met (Thielscher 2011): Condition §Rys that for a state that
is consistent with the domain constraints and in which aact () is applica-
ble, the condition®;[S] for at least one case in the effect axiom forA holds.
Condition (2) requires that any possible update leads tate #tat satisfies the do-
main constraints. Formally, lef, 7" be constants of sortiME. Dy. the domain
constraints,Dpess the precondition axioms, anfPeqects the effect axioms. The fol-
lowing must hold for every actiomA(Z) : There existsi = 1,...,n such that

= Dac[S] A malS] A (35:)ilS], €y
and for every such ,
E Dyc[S] A malS] A Y38, T] D Dyc[T]. 2

Non-modular, fully general domain constraints greatly ptioate reasoning.

e Auxiliary time-independent axioms may be included if they daithfully be repre-
sented in the Prolog dialect underlying the implementafidnis deliberately sloppy
condition is intended to allow the programmer to use herdat® Prolog library.
However, we stipulate that auxiliary predicates occur quayitively outside ofD,yx
in the action domairD in order to ensure that they can safely be evaluated by Prolog
They also must not occur in the initial state formula at aleTupdate mechanism
underlying ALPprolog can handle only ground effects. Hefifcauxiliary atoms are
used in action preconditions, case selection formulasfeteéxioms, then it is the
burden of the programmer to ensure that these predicateyskvaluate to ground
terms on those variables that also occur in the action's&sffe

10 Conrad Drescher and Michael Thielscher

On the one hand clearly every propositional Fluent Calcdbrsain can be transformed
to this form. On the other hand it is well known that in gene@hpiling away the quan-
tifiers in a state formula can result in an exponential blgw-as can the conversion to
conjunctive normal form. We believe that the simplicity ebsoning with prime impli-
cates outweighs this drawback.

Propositional action domains can still be non-determimigtor example, for an appli-
cable action two different cases may be applicable at theedane. The resulting state
would then be determined only by the disjunction of the casfiscts. What is more, it
would be logically unsound to consider only the effects of ofithe cases. For the online
control of agents in ALPprolog we stipulate that for an aggdiile action at most a single
case applies, greatly simplifying the update of the agestéite knowledge.

Definition 6(Deterministic Propositional Fluent Calculus

A propositional Fluent Calculus domain is deterministithié following holds: Leta be
an applicable ground action. Then there is at most one cabe aiction that is applicable
in the given state.

For example, an action theory is deterministic if for eadirafaxiom all the cases are
mutually exclusive. Next assume we have an applicable mhétestic action with e.g. two
case selection formulag(s) and —¢(s), where neither case is implied by the current
state. Here, instead of updating the current state with thj@rdttion of the respective
effects, ALPprolog will employ incomplete reasoning.

3.3 Propositional Fluent Calculuswith Sensing

We make the following assumptions concerning sensing: Atare time, a sensor may
only return a single value from a fixed sgt of ground terms, theensing resultdHowever,
the meaning of such a sensing result may depend upon thestesituation of the agent.

Example 1 (cont.)

Assume that now one of the cells in the maze contains a démeat to our gold-hunting
agent. If the agent is next to a cell containing the threat pheceives a certain smell,
otherwise she doesn'’t: She can sense whether one of theboeighg cells is unsafe; but
the actual neighbouring cells are only determined by thenigeurrent location.]

Definition 7(Sensor Axiom
A sense fluentS(z) is a unary fluent that serves as interface to the sensor. Wenashe
SOrtSENSEFLUENTtO be a subsort of SORLUENT. A sensor axiom then is of the form

(Vs,z, HHoldS(S(x),s) = \/ &= RA ¢(x,7,5) Ab(x, 7, 5),
ReER
for a ground set of sensing resul. Here ¢(z, 7, s) is a prime state formula that selects
a meaning of the sensing resuit, whereas the pure prime state formuldz, 7/, s) de-
scribes the selected meaning. We stipulate that sensanaxighich are a form of domain
constraint) may only be included if they are modular.

Clearly ¢(z, ¥, s) should be chosen so as to be uniquely determined in each Ktate
auxiliary axioms are used in(z, ¥, s) then again the programmer must ensure that these
evaluate to ground terms in order that a ground state repism can be maintained.

ALPprolog — A New Logic Programming Method for Dynamic Damai 11

Example 1 (cont.)
The following is the sensor axiom for our gold-hunter:

(V)Holds(PerceiveSme{k), s) =
x = true A Holdg(At(Agent y), s) A Neighbour$y, 2) A \/ Holdg(ThreatA(z), s)

zE€Z

V
x = falseA Holds(At(Agent y), s) A Neighboursy, 2) A /\ﬁHoIds(ThreatA(z)7 s))

z€Z

Theoretically, the combination of sensing with the onlimairol of an agent is quite
challenging: It is logically sound to to consider the digjtion of all possible sensing re-
sults for offline reasoning. In the online setting, howeupgn the observation of a sensing
result we henceforth have to accept this result as beingttnaeis, at runtime waddthe
result to the action theory, something which is logicallgonnd. On the other hand, it also
does not make sense to stipulate that the sensing resulohenkreforehand.

3.4 Action Theory Representation

We continue by describing how the underlying action thesmepresented in ALPprolog.

As basic building block we need a representation for priragediormulas. For notational

convenience we will represent-)Holds(f, s) literals by the (possibly negated) fluent
terms only, and, by an abuse of terminology, we will call sa¢erm (—) f a fluent literal.

A convenient Prolog representation for such a state forisiddist, where each element is
either a literal (i.e. a unit clause) or a list of at least titerkls (a non-unit clause). In the
following we call such a list a PI-list.

Definition 8(Action Theory Representatipn
Action theories as defined in definition 6 are represented.iBgkolog as follows:

e The initial state is specified by a Prolog fachitial _state(Pl-List).,
wherePl - Li st mentions only ground fluent literals. Domain constrainteothan
sensor axioms have to be compiled ifto- Li st .

e a Prolog factact i on(A, Precond, Ef f Ax) ., for each actiona, has to be in-
cluded, where

— Aiis an action function symbol, possibly with object terms @giments;

— Precond is a PI-list, the action’s precondition;

— Ef f Ax is a list of cases for the action’s effects with each casegbaipair
Cond- Ef f , where the effect’s conditio@ond is a Pl-list, and the effects
Ef f are alist of fluent literals; and

— all variables inEf f Ax also occur inPr econd.

o If present, auxiliary axiomsD,,x are represented by a set of Prolog clauses. The
predicates defined in the auxiliary axioms must be declargticitly by a fact
aux(Aux) . , whereAux denotes the listing of the respective predicate symbols.

12 Conrad Drescher and Michael Thielscher

The sensor axioms are represented as Prolog $&sisor _axi om(s(X), Val s) .,
where

e s is a sense fluent with object argumeftand
e Val s isalistofVal - | ndex- Meani ng triples, where

— Val isapairX-result_i,whereresult_i is the observed sensing re-
sult;

— I ndex is a Pl-list consisting of unit clauses; and

— Meani ng is a Pl-list, mentioning only fluent literals and only vatliedfrom
Val andl ndex.

The sense fluents have to be declared explicitly by a $a&stsor s(Sensors) .,
whereSensor s is a listing of the respective function symbols. This is resegy in order
to distinguish sense fluents, ordinary fluents, and auyifiaedicates in Pl-lists.

3.5 Reasoning for ALPprolog

Reasoning in ALPprolog works as follows: For evaluating phegram atoms we readily
resort to Prolog. The reasoner for the action theory is baseide principle of progression.
Setting out from the initial state, upon each successfuleti@n of an action’s precondi-
tion against the current state description, we update themustate description by the
action’s effects.

Reasoning about the action comes in the following forms:

e Given a ground applicable actiom, from the current state descriptiaf(s;) and
the action’s positive and negative effects compute thergeim of the next state
¥ (s2) (the update problem).

e Given a descriptionp(s) of the current state, check whethgp(s)} UDaux E ¥(s) ,
where ¢(s) is some state formula s, but not a sense fluent (the entailment prob-
lem).

e For a sensing action, i.e. a queHolds(S(z), s) , integrate the sensing results ob-
served into the agent’s state knowledge (the sensing pmble

In the following we consider each of these reasoning problenturn.

3.5.1 The Update Problem

It turns out that solving the update problem is very simplet &t at e be a ground PI-
List, and letUpdat e be a list of ground fluents. The representation of the nete sahen
computed in two steps:

(1) First, all prime implicates it at e that contain either an effect frokjpdat e, or
its negation, are deleted, resultingShat el.
(2) The next statdlext St at e is given by the union o6t at el andUpdat e.

Starting from a ground initial state only ground states araguted.

The correctness of this procedure can be seen e.g. as followkiu et al. 2006;
Drescher et al. 2009) algorithms for computing updates ituarf Calculus based upon
Description Logics have been developed. The above updzdethim constitutes a special
case of these algorithms.

ALPprolog — A New Logic Programming Method for Dynamic Damai 13

3.5.2 The Entailment Problem

When evaluating a clausg against a ground prime state formutg) is first split into
the fluent party; , and the non-fluent part), . It then holds thaty is entailed by¢ if
there is a ground substitutiofh such that

e 10 is subsumed by some prime implicaten or
e some auxiliary atomP(Z)6 from v, can be derived from its defining Prolog
clauses.

Computing that the clausé; is subsumed by) can be done as follows:

e If ¢ is a singleton, then it must be a prime implicategf(modulo unification).
e Otherwise there must be a prime implicategnthat containsy; (modulo unifica-
tion).

Hence the entailment problem for ALPprolog can be solvedrbgber , nenber chk,
andsubset operations on sorted, duplicate-free lists.

The following example illustrates how reasoning in ALPpigkan be reduced to sim-
ple operation on lists. It also illustrates the limited foohreasoning about disjunctive
information available in ALPprolog:

Example 2 (Disjunctions and Substitutions in ALPprolog)

Assume that the current state is given[dyat (gol d, 4), at (gol d, 5)]]. Then
the query?([at (gol d, X)]) fails, because we don't consider disjunctive substitigion
However, on the same current state the que¢y [at (gol d, X), at (gol d, Y)]])
succeeds witi=4 and Y=5.]

3.5.3 The Sensing Problem

Sensing results have to be included into the agent’s statelkdge every time a sensing
action is performed, i.e. a liter@(s(X)) is evaluated. This works as follows:

o First we identify the appropriate sensor axisensor _axi on(s(X), Val s).

o Nextwe identify all thd X-resul t _i] - 1 ndex- Meani ng triplesinVal s such
thatr esul t _i matches the observed sensing result, and fifgthresul t _i .

e We then locate the uniguendex- Meani ng s.t. the current state entallsdex.

o Finally, we adjoinMeani ng to the current state and transform this union to a Pl-list.

3.6 Soundness of ALPprolog

At the end of section 3.3 we have already mentioned that gdsénsing results to the ac-
tion theory at runtime makes the subsequent reasoningdibgiensound wrt. the original
program plus action theory. If we add the set of sensing tesbiserved throughout a run
of an ALPprolog program, however, then we can obtain thefgtg soundness result:

Proposition 1 (Soundness of ALPprolog)

Let IT be a ALPprolog program on top of an action domdih. Let X be the union of
the sensor results observed during a successful derivafitimee ALPprolog queryi® with
computed answer substitutigh. ThenD UITU X FT'6.

14 Conrad Drescher and Michael Thielscher

Proof (Sketch)

It is well-known that SLD-resolution is sound for any ordipgrogram atom. A query
(3)Holds(¢, s), where ¢ is not a sense fluent, is only evaluated successfully if tiere
a substitutiond such thatD F (V)Holds(¢, s)6 . Assume we observe the sensing result
R; € R for a sense fluenf(z, s) . In general we have (cf. Definition 7):

D E (V)Holds(S(x,s)) A \/ = =R, butD ¥ (v)Holds(S(x,s)) Az = R;.
RER
For soundness, we have to add the observed sensing resuoladslitional assumption to
the theory:D U {Hold(S(R;, s))} F (V)Holds(S(x,s)) Ax = R;. [

4 Evaluation

We have evaluated the performance of ALPprolog via the §eec®Vumpus World (Rus-
sell and Norvig 2003) that is a well-known challenge probierthe reasoning about ac-
tion community. Essentially, the Wumpus World is an extehdersion of the gold-hunter
domain from example 1. The main features that make it a goatlectye problem are in-
complete information in the form of disjunctions and unkmquvopositions, and reasoning
about sensing results.

We have used both Flux and ALPprolog to solve Wumpus Worldizefup to32x 32. 4
We have done this using three different modellings:

(1) In (Thielscher 2005b) a Flux model is described that ugemtification over vari-
ables — this is beyond ALPprolog.

(2) We have evaluated both languages on a ground model.

(3) We have artificially increased the size of the ground mbgtenaking the connec-
tions between cells part of the state knowledge.

A first observation is that both languages roughly scale lggwell in all models. Using
(1) Flux is slightly faster than ALPprolog using (2). Let teeh point out that on ground
models Flux and ALPprolog maintain the same state repratent Flux also computes
the prime implicates. On the encoding (2) ALPprolog is rdygine order of magnitude
faster than Flux, whereas on (3) the difference is alreadyarders of magnitude. The key
to the good performance of ALPprolog then is that it handbegd state representations
well: By encoding states asortedlists (of lists) some of the search effort necessary in
Flux can be avoided. If, however, we use Flux’' capability ahtlling quantified variables
in the state knowledge for a more concise encoding, then AdlBg and Flux are again
on par, with Flux even having slightly the edge. In genera expect ALPprolog to excel
on problem domains that feature large state represengdtiam are not easily compressed
using quantification.

It has already been established that Flux gains continyan@r standard Golog the
more actions have to be performed (Thielscher 2005a). AspiilBg scales as well as
Flux the same holds for ALPprolog and Golog. The version ofo@avith periodically
progressed state knowledge is slightly slower than Fluxdifa and Vassos 2005).

4 The distribution of ALPprolog contains the Wumpus World exerfpr both ALPprolog and Flux.

ALPprolog — A New Logic Programming Method for Dynamic Damai 15

Let us also compare ALPprolog, Flux, and Golog from a knogerepresentation per-
spective: Both ALPprolog and Flux allow the programmer téirdenew auxiliary predi-
cates for the agent strategy that are not present in thenabgory, a practically very useful
feature that is missing from Golog. Also, the propositioreiables used in Golog instead
of the finitely many ground terms used in ALPprolog make itthfar the programmer to
fully exploit the power of Prolog’s unification mechanism this regard Flux, on the other
hand, excels in that the programmer can include fluents onga(possibly quantified)
variables in the agent’s state knowledge. Contrary to AbRygrand Golog, however, Flux
does not support arbitrary disjunctions.

5 Conclusion and Future Work

In this work we have presented ALPprolog, an efficient logisgpamming language for
the online control of autonomous agents in domains thatifedahcomplete information
and sensing. On the one hand, it can be argued that the $ttte-art languages Golog
and Flux already successfully address this applicationaiion®n the other hand, we have
shown that ALPprolog excels because of its efficient reampmiith large ground state
representations, something that we expect to be quite liegdtactice.

For future work, there are two interesting directions: Oa ¢ime hand it would be nice
to extend ALPprolog to offline planning. The disjunctive stitutions in the general ALP
proof calculus provide a powerful form of reasoning aboutditional plans, or planning
in the presence of sensing in the sense of (Levesque 1996).

On the other hand we plan to fruitfully apply ALPprolog in tthemain of General Game
Playing. General Game Playing (Genesereth et al. 2005) mnaeaxciting Al research
challenge aiming at the integration of manifold Al techréquA program (also called a
player) is given an axiomatisation of the rules of a game. plager then computes a
strategy/heuristic that it uses to play and hopefully wia ¢fame. The main challenge of
General Game Playing consists of constructing suitablei$tes.

However, at its base the player also needs a means to reprasdireason about, the
state of the game. Up to now the games played in General Gaaya&lhave been re-
stricted to complete information (Love et al. 2008) — butaclg games with incomplete
information constitute a bigger challenge (Thielscher@)1We intend to include tech-
nigues from ALPprolog into the successful Flux-based Haygr (Schiffel and Thielscher
2007).

Acknowledgementdie appreciate the helpful comments by the reviewers. Thik was
partially supported by DFG Grant TH 541/14. C. Drescher essto acknowledge support
by EPSRC Grant EP/G055114/1. M. Thielscher is the reciméan Australian Research
Council Future Fellowship (project number FT 0991348). Blalso affiliated with the
University of Western Sydney.

References

BORDINI, R., HUBNER, J.,AND WOOLDRIDGE, M. 2007. Programming Multi-Agent Systems in
AgentSpeak using Jasowiley.

16 Conrad Drescher and Michael Thielscher

DRESCHER C., Liu, H., BAADER, F., GUHLEMANN, S., FETERSOHN U., STEINKE, P.,AND
THIELSCHER, M. 2009. Putting abox updates into action.HAroceedings of the Seventh Interna-
tional Symposion on Frontiers of Combining Systems (FroCoS 2Téfto, Italy.

DRESCHER C., SCHIFFEL, S.,AND THIELSCHER, M. 2009. A declarative agent programming
language based on action theories. Pimceedings of the Seventh International Symposion on
Frontiers of Combining Systems (FroCoS 200@gnto, Italy.

GENESERETH M. R., LovEg, N., AND PELL, B. 2005. General game playing: Overview of the
AAAI competition. Al magazine 262, 62—72.

HERZIG, A. AND VARZINCZAK, |. 2007. Metatheory of actions: Beyond consistengytificial
Intelligence 17116-17, 951-984.

J.W. LLoYD. 1987.Foundations of Logic Programmingpringer.

LEVESQUE H., REITER, R., LESFERANCE, Y., LIN, F.,AND SCHERL, R. 1997. GOLOG: A logic
programming language for dynamic domaidsurnal of Logic Programming 31,3, 59-83.

LEVESQUE H. J. 1996. What is planning in the presence of sensingPrarneedings of the Thir-
teenth National Conference on Artificial Intelligence (AAAI 1998)rtland, Oregon, USA, 1139—
1146.

Liu, H., LuTz, C., MiLIciC, M., AND WOLTER, F. 2006. Updating description logic ABoxes.
In Proceedings of the Tenth International Conference on Principles oiadne Representation
and Reasoning (KR 06} ake District of the UK.

LovE, N., HINRICHS, T., HALEY, D., SCHKUFzA, E., AND GENESERETH M. 2008. General
game playing: Game description language specification. Tech. repfo&téJniversity.

MCCARTHY, J.AND HAYES, P. J. 1969. Some philosophical problems from the standpoint of artifi-
cial intelligence. InMachine Intelligence 4B. Meltzer and D. Michie, Eds. Edinburgh University
Press, 463-502.

REITER, R. 2001a. Knowledge in Action: Logical Foundations for Describing and Implementing
Dynamical SystemdMIT Press, Cambridge, MA.

REITER, R. 2001b. On knowledge-based programming with sensing in the situaionlus. ACM
Transactions on Computational Logic£2,433—-457.

RuUssELL, S. J.AND NORVIG, P. 2003 Artificial Intelligence: a modern approa¢nd international
edition ed. Prentice Hall, Upper Saddle River, N.J.

SARDINA, S.AND VASSOS S. 2005. The wumpus world in IndiGolog: A preliminary report. In
Proceedings of the Workshop on Nonmonotonic Reasoning, Actiontzarh€ at IJCA

SCHIFFEL, S. AND THIELSCHER, M. 2007. Fluxplayer: A successful general game player. In
Proceedings of the Twenty-second National Conference on Artifidielligence (AAAI 2007)
AAAI Press, Menlo Park, CA, 1191-1196.

THIELSCHER, M. 1999. From situation calculus to fluent calculus: State update axiomsastion
to the inferential frame problenArtificial Intelligence 1111-2, 277-299.

THIELSCHER, M. 2005a. FLUX: A logic programming method for reasoning agefitseory and
Practice of Logic Programming %5, 533-565.

THIELSCHER, M. 2005h. A FLUX agent for the Wumpus World. Rroceedings of the Workshop on
Nonmonotonic Reasoning, Action and Change at IJCAMorgenstern and M. Pagnucco, Eds.
Edinburgh, UK, 104-108.

THIELSCHER, M. 2010a. A general game description language for incomplete irsfitomgames.
In Proceedings of the Twenty-fourth National Conference on Atrtificial Intatlig (AAAI 2010)
AAAI Press, Atlanta, 994-999.

THIELSCHER, M. 2010b. Integrating action calculi and AgentSpeak: Closing the gaprdceed-
ings of the International Conference on Principles of Knowledge Reptason and Reasoning
(KR). Toronto, 79-89.

THIELSCHER, M. 2011. A unifying action calculugArtificial Intelligence Journal 175120-141.

