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We examine the use of the mathematics of category theory in the description of quantum states
by tensor networks. This approach enables the development of a categorical framework allowing a
solution to the quantum decomposition problem. Specifically, given an n-body quantum state |},
we present a general method to factor [¢) into a tensor network. Moreover, this decomposition of
|1) uses building blocks defined mathematically in terms of purely diagrammatic laws. We use the
solution to expose a previously unknown and large class of quantum states which we prove can be
sampled efficiently and exactly. This general framework of categorical tensor network states, where
a combination of generic and algebraically defined tensors appear, enhances the theory of tensor
network states.
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I. INTRODUCTION

Tensor network states have recently emerged from Quantum Information Science as a general method to
simulate quantum systems using classical computers, and has now become a thriving and well established
field. By utilizing quantum information concepts such as entanglement and condensed matter concepts like
renormalization, several novel algorithms, built on tensor network states (TNS), have been developed which
have overcome many pre-existing limitations. These and other related methods have been used to perform
highly accurate calculations on a broad class of strongly-correlated systems and have attracted significant
interest from several research communities concerned with computer simulations of physical systems.

In this work we develop a new tool set and corresponding framework which is significantly different from
the range of methods currently used to address problems in many-body physics. In this categorical network
model of quantum states, each of the internal components that form the building blocks of the network
are completely defined in terms of their mathematical properties, and these properties are given in terms
of equations which have a purely graphical interpretation. In this way category theory [l] enhances ad
hoc graphical methods currently used in tensor network descriptions of many-body physics and enables
rigorous proofs to be done graphically. Moreover our results indicate that it may be be advantageous to use
“categorical components” within tensor networks, whose algebraic properties can permit a broader means
of rewiring networks, and potentially reveal new types of contractible tensor networks. Our results include
defining a new graphical calculus on tensors, and exposing their key properties in a “tensor tool box”. We
use these tensors to present a solution to the problem of factoring any given quantum state into a tensor
network. This solution then enabled us to expose a wide class of tensor network states that can be sampled
in the computational basis efficiently and exactly.

To explain the main motivation behind developing this new machinery, let us recall the success of es-
tablished numerical simulation methods, such as the density matrix renormalization group (DMRG) [2-4]
which is based on an elegant class of tensor networks called Matrix Product States (MPS) [5]. For more
than 15 years DMRG has been a key method for studying the stationary properties of strongly-correlated
1D quantum systems in regimes far beyond those which can be described with perturbative or mean-field
techniques. By exploiting directly the tensor network structure of MPS lead to explicit algorithms, such as
the Time-Evolving Block Decimation (TEBD) method [6-11], for computing the real-time dynamics of 1D
quantum systems. Accurate calculations of out-of-equilibrium properties has proven extremely useful for
describing various condensed matter systems |12-14], as well as transport phenomena in ultra-cold atoms in
optical lattices [15-17]. Additionally the TEBD method has recently been successfully adapted to the sim-
ulation of stochastic classical systems [18], as well as for simulating operators in the Heisenberg picture [4].
Despite these successes, limitations remain in the size, dimensionality, and classes of Hamiltonians that can
be simulated with MPS based methods. To overcome these restrictions, several new algorithms have been
proposed which are based on different types of tensor network states. Specifically: Projected Entangled Pair
States (PEPS) [19-21] which directly generalize the MPS structure to higher dimensions, and the Multi-
scale Entanglement Renormalization Ansatz (MERA) [22-25]) which instead utilizes an intuitive hierarchical
structure.

Category theory is often used as a unifying language for mathematics [1, 26, 27] and in more recent times
has been used to formulate physical theories [2&-30]. The mathematical setting of quantum theory has
only recently been elegantly cast into the language of categories [31]. There is growing research effort in
this area, which has now become known as categorical quantum mechanics [32]. One of the strong points
of categorical modeling is that it comes equipped with many types of intuitive graphical calculill Using
this graphical language allows for many otherwise obscure aspects of mathematical models to be vividly
exposed at the level of categories, and the associated differences pinpointed in terms of clear, definable
structures. A major reason for connecting category theory to tensor networks is that, increasingly, both
existing and newly developed tensor network algorithms are most easily expressed in terms of informal
graphical depictions. This graphical approach can now be complemented and enhanced by exploiting the
long existing rigorous language of category theory [1, 29, [30]. This immediately enables the application
of many established techniques allowing for both a “zoomed out” description exposing known high-level
structures, but also enables “zoomed in” descriptions, exposing hosts of “hidden” algebraic structures that

I We mention the coherence results [1, 33, [34] and as a matter of convenience, make use of t-compactness [32, 35, [36]. The
graphical calculus of categories formally extends to a rigorous tool. See for instance, Selinger’s survey of graphical languages
for monoidal categories outlining the categories describing quantum theory [34].



are not currently being considered.

We will illustrate this categorical approach by focusing on tensor networks constructed from familiar
components, namely Boolean logic gates (and multi-valued logic gates in the case of qudits), applied to this
unfamiliar context. To accomplish this goal, we build on ideas across several fields. This includes extending
the work by Lafont [37] which was aimed at providing an algebraic theory for classical circuitdd. The use of
symmetric monoidal categories tightens this approach and removes some redundancy in Lafont’s graphical
lemmas. The application of these results to tensor networks introduces several novel features. The first
feature is that once conventional logic circuits are formulated as tensor networks they can be distorted into
atemporal configurations since the indices (or legs) of tensors can be bent around arbitrarily. This permits a
very compact tensor network representation of a large interesting class of Boolean states such as GHZ-states,
W-states and symmetric states [40], using exclusively Boolean gate tensors. A second feature is that once
expressed as tensors the corresponding classical logic circuits act on complex valued inputs and outputs,
as opposed to just binary values. By permitting arbitrary single-qubit states (general rank-1 tensors) at
the output of tensor networks, which are otherwise composed of only switching functions, we arrive at a
broader class of generalized Boolean states. We prove in Theorem that this class of states provides an
explicit construction method for factoring any given quantum state into a tensor network. As expected,
the cost of this exhaustiveness is that the resulting network is, in general, neither efficient in description or
contraction. However, by limiting both the gate count and number of the switching functions comprising the
tensor networks to be polynomial in the system size, we obtain an entirely new class of states, which we call
Generalized Polynomial Boolean States (GPBS see Definition 28], that can be sampled in the computational
basis efficiently and exactly (Theorem [29)).

a. Manuscript Structure. Next in Section [l we quickly review the key concepts introduced in this paper
before going into detail in the remaining sections. We continue in Section [Tl by defining the network building
blocks: this includes rank-3 tensors such as the quantum AND-state in Equation (@). We then consider how
these components interact in Section [Vl This is done in terms of algebraic structures, such as Bialgebras
(Section [V B) and Hopf-algebras (Section [VBT]) which have a purely diagrammatic interpretation. With
these definitions in place, in Section [Vl we apply this framework to enhance tensor network theory. As an
illustrative example, we zoom in and expose internal structure in matrix product states such as W- and GHZ-
states. We consider a particular categorical tensor network for many-body W-states in Section [Vl A proof
of our decomposition theorem for quantum states is given in Section [VIl In conclusion, we mention some
future directions for work in Section [VIII We have included Appendix [A] on algebras defined on quantum
states and Appendix [Bl on the Boolean XOR-algebra.

b. Background Reading. The results appearing in this work were found by tailoring several powerful
techniques from modern mathematics: category theory, algebra and co-algebra and applicable results from
classical network theory and graphical calculus. Tensor network states are covered in the reviews [19, [23,
41, 142]. For general background on category theory see |1] and for work on categorical quantum theory see
[43, 144]. For background on Boolean algebra, discrete set functions and circuit theory see [45] and see [46]
for background on pseudo Boolean functions and for multi-valued logic see [41]. For background on quantum
circuits and quantum computing concepts see [48, [49] and for background on the theory of entanglement
see [50]. For the current capabilities of the existing graphical language of tensor network states see e.g.
[51, 52] and for work on using ideas related to tensor networks for state preparation of physical systems
see [52-54].

II. RESULTS OVERVIEW

In the present Section, we informally review our main results. The idea of translating any given quantum
state or operator into a representation in terms of a connected network of algebraically defined components
is reviewed next in Section [TAl with the corresponding algebraic definitions of these network components
reviewed in Section [TBl Boolean quantum logic tensors are then introduced in Section [LCl We summarize
our main results in Section

2 Lafont’s work is related to the more recent work on proof theory by Guiraud [3€], and is a different direction from other work
on applying category theory to classical networks appearing in [39].
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FIG. 1. (a) A generic quantum state |¢) for n degrees of freedom represented as a tensor with n open legs. (b) A
comb-like MPS tensor network for a 1D chain system [55,56]. (b) A grid-like PEPS tensor network for a 2D lattice
system [41, 57]. (d) A TTN for a 1D chain system where only the bottom layer of tensors possess open physical
legs |59, 160]. (e) A TTN for a 2D lattice system. (f) A hierarchically structured MERA network for a 1D chain
system possessing unitaries (rank-4 tensors) and isometries (rank-3 tensors) |23, [58]. This tensor network can also
be generalized to a 2D lattice (not shown).

A. Tensor network representations of quantum states

A qudit is a d-level generalization of a qubit. In physics a quantum state of m-qudits has an exact
representation as a rank-n tensor with each of the open legs corresponding to a physical degree of freedom,
such as a spin with (d—1)/2 energy levels. Such a representation, shown in Figure[Il(a) is manifestly inefficient
since it will have a number of complex components which grows exponentially with n. The purpose of tensor
network states is to decompose this type of structureless rank-n tensor into a network of tensors whose
rank is bounded. There are now a number of ways to describe strongly-correlated quantum lattice systems
as tensor-networks. As mentioned in the introduction, these include MPS [14, 55, 56], PEPS [41, [57] and
MERA |23, 58]. For MPS and PEPS, shown in Figures[Ib) and (c), the resulting network of tensors follows
the geometry of the underlying physical system, e.g., a 1D chain and 2D grid, respectively. Alternatively
a Tensor Tree Network (TTN) [59, 60] can be employed which has a hierarchical structure where only the
bottom layer has open physical legs, as shown in Figure [[{d) for a 1D system and Figure [ie) for a 2D
onell For MERA the network is similar to a TTN, as seen in Figure [f) for 1D, but is instead comprised
of alternating layers of rank-4 unitary and rank-3 isometric tensors. The central problem faced by all types
of tensor networks is that the resulting tensor network for the quantity (|(O|)), where O is some product
operator, needs to be efficiently contractible if any physical results, e.g., expectation values, correlations or
probabilities, are to be computed. For MPS and TTN efficient exact contractibility follows from the 1D
chain or tree-like geometry, while for MERA it follows from its peculiar causal cone structure resulting from
the constraints imposed on the tensors [23]. For PEPS, however, exact contraction is not efficient in general,
but can be rendered efficient if approximations are made [41, |57].

In our approach we define a categorical tensor network state (CTNS) generally as any TNS which contains
some algebraically constrained tensors along with possible generic ones. Indeed, when recast, certain widely
used classes of TNS can be readily exposed as examples of CTNS. Specifically, variants of PEPS have been
proposed called string-bond states [61]. Although these string-bond states, like PEPS in general, are not
efficiently contractible, they are efficient to sample. By this we mean that for these special cases of PEPS
any given amplitude of the resulting state (for a fixed computational basis state) can be extracted exactly
and efficiently, in contrast to generic PEPS. This permits variational quantum Monte-Carlo calculations to
be performed on string-bond states where the energy of the state is stochastically minimized [61]. This
remarkable property follows directly from the use of a tensor, called the COPY-dot, which will form one of
several tensors in the fixed toolbox considered in great detail later. As its name suggests, the COPY-dot
duplicates inputs states in the computational basis, and thus with these inputs breaks up into disconnected
components, as depicted in Figure 2l(a). By using the COPY-dot as the “glue” for connecting up a TNS, the
ability to sample the state efficiently is guaranteed so long as the individual parts connected are themselves

3 Each tensor in these networks is otherwise unconstrained, although enforcing some constraints, such as orthogonality, has
numerical advantages.
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FIG. 2. (a) One of the simplest tensors, called the diagonal in category theory, the COPY-gate or the COPY-dot in
circuits, copies computational basis states |z) where x = 0,1 for qubits and x = 0,1, ...,d — 1 for qudits. The tensor
subsequently breaks up into disconnected states. (b) A generic PEPS in which we expose a single generic rank-5
tensor. This tensor network can neither be contracted nor sampled exactly and efficiently. However, if the tensor
has internal structure exploiting the COPY-dot then efficient sampling becomes possible. (c) The tensor breaks up
into a vertical and a horizontal rank-3 tensor joined by the COPY-dot. Upon sampling computational basis states
the resulting contraction reduces to many isolated MPS, each of which are exactly contractible, for each row and
column of the lattice. This type of state is known as a string-bond state and can be readily generalized [61]. (d)
An even simpler case is to break the tensor up into four rank-2 tensors joined by a COPY-dot forming a co-called
correlator-product state [63]. (e) Finally, outside the PEPS class, there are entangled plaquette states |[62] which join
up overlapping tensors (in this case rank-4 ones describing a 2 x 2 plaquette) for each plaquette. Efficient sampling
is again possible due to the COPY-dot.

contractible. The generality and applicability of this trick can be seen by examining the structure of string-
bond states, as well as other types of similar states like entangled-plaquette-states |62] and correlator-product
states |63], shown in Figure2l(c)-(e). A long-term aim of this work is that by presenting an enhanced graphical
language to TNS based on a wider toolbox of tensors, entirely new classes of CTNS with similarly desirable
contractibility properties can be devised. Indeed we have a useful result in this direction (Theorem [29)
by introducing a new class of states, substantially different from those already known, which can also be
sampled exactly and efficiently.

On an interesting historical note, to the best of our knowledge, a graphical interpretation of tensors was first
pointed out in [64]. In recent times an informal graphical language for describing the manipulations and steps
of tensor network based algorithms has independently emerged and is now widely used. An immediate aim
of our work is to formalize such graphical manipulations and to further extend the scope of existing methods
of diagrammatic reasoning. Such extensions include a detailed consideration of a fixed set of algebraically
defined tensors which may appear as components in tensor networks. These algebraic properties are defined
most succinctly via so-called string diagrams. As an exemplary illustration, we will consider in great detail
CTNS which are composed entirely from a tensors toolbox built from classical Boolean logic gates. By
invoking known theorems asserting the universality of multi-valued logic [47] (also called d-state switching),
our methods can be readily applied to tensors of any finite dimension. Our approach provides not only
an example of the use of well known gates in a highly unfamiliar context but also illustrates the potential
power of having “categorical components” within a tensor network. The next two sections give a highlight of
the useful properties this toolbox of tensors has and reviews our main result showing a new quantum state
decomposition using a subset of them. The full details of this work then follow from Section [Tl onwards.

B. Network components fully defined by diagrammatic laws

We will now review the clearly defined set of tensors that form our universal building blocks. One of the
strong points of categorical modeling is that it comes equipped with a powerful graphical language that can
be proven to be fully equivalent to the corresponding algebraic notation. Because of this, one might make the



statement “category theory formally justifies it’s own absence”. We would then correct this misconception.
Category theory provides a catalyst to develop diagrammatic methods, which is manifest in such things as
a graphical version of channel-state duality and the definition of algebraic properties of tensor components
(etc.). In addition, the theory of categories elevates diagrammatic reasoning to a rigorous tool, which
culminates in the ability to do proofs graphically. We will add new components to the graphical calculus
found from working in the the dagger-category (that is f-category [36]) of categorical quantum mechanics
(for details see [32,134]). To get an idea of how on tensor calculus will work, consider Figure Bl which forms a
presentation of the linear fragment of the Boolean calculus [37]): that is, the calculus of Boolean algebra we
represent on quantum states, restricted to the building blocks that can be used to generate linear Boolean
functions.

To recover the full Boolean-calculus, we must consider a non-linear Boolean gate: we use the AND-gate.
Figure B together with Figure [l form a full presentation of the calculus [37]. The origin and consequences of
these relations will be considered in full detail in Section [Tl It is important to note that the presentations
in Figure Bl together with Figure dl are not just a set of relations and identities on circuit components, but
instead represent a complete set of defining equations [65]. The results we report and the introduction of
this new picture calculus into physics has already attracted significant interest and provided a new research
direction in categorical quantum mechanics [32, |66].

L 1. Bar et
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FIG. 3. Read top to bottom. A presentation of the linear fragment of the Boolean calculus. The plus (&) dots are
XOR and the black (e) dots represent COPY. The details of (a)-(g) will be given in Sections [[ITland [Vl For instance,
(d) represents the bialgebra law and (g) the Hopf-law (in the case of qubits x @ x = 0, in higher dimensions the units
(4| becomes (0] + (1| + -+ + (d — 1|).

FIG. 4. Diagrams read top to bottom. A presentation of the Boolean-calculus with Figure Bl The details of (a)-(g)
will be given in Sections [Tl and [Vl For instance, (h) represents distributivity of AND(A) over XOR (&), and (d)
shows that x A x = x.

Proceeding axiomatically we need to add a bit more to the presentation of the Boolean calculus to represent
operators and quantum states. This is because e.g. all the diagrams in Figure Bl and M are read from the top
of the page to the bottom. Our network model of quantum states requires that we are able to turn maps
upside down, e.g. transposition. This additional flexibility comes from an added ability to bend wires. We
can hence define transposition graphically (see Figure [I8 (d)).

The way forward is to add what category theory refers to as compact structures |32, 135, 166, [67] (see
Section [V Cl for details). These compact structures are given diagrammatically as
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FIG. 5. Example of the Boolean quantum AND-state or tensor. In (a) the network is run backwards (post-selected)
to (1] resulting in the product state [11). In (b) the gate is post-selected to (0| resulting in the entangled state

|00) 4 |01) + [10).
m U

and as will be explored in Section [V (] these two structures allow us to formally bend wires and to define the
transpose of a linear map/state, and provide a formal way to reshape a matrix. We understand (a) above as
a cup, given as the generalized Bell-state Ef:_ol |i7) and (b) above as the so-called cap, Bell-costate Zf:_ol (23]
or effect

Compact structures provide a formal way to bend wires — indeed, we can now connect a diagram repre-
sented with an operator with spectral decomposition . 3;|i)(i| bend all the open wires (or legs) towards the
same direction and it then can be thought of as representing a state (Y, 8;|i)[i) where overbar is complex
conjugation), bend them the other way and it then can be thought of as representing a measurement outcome
(3=, Bi(i|(i]), that is an effectl One can also connect inputs to outputs, contracting indices and creating
larger and larger networks. With these ingredients in place let us now consider the form of Boolean quantum
states.

oumn

C. Boolean and multi-valued tensor network states

To illustrate the idea of defining Boolean and multi-valued logic gates as tensors, consider Figure [5] which
depicts a simple but key network building block: the co-algebraic use of the so-called “quantum logic AND-
tensor” which we define in Section This is a representation of the familiar Boolean operation in the
bit pattern of a tri-qubit quantum state as

def
[anp) = Y |z1) @ [a) ® a1 Awa) = [000) + 010) + [100) + [111)
z1,22€{0,1}

and hence the truth table of a function is encoded in the bit pattern of the superposition state. This utilizes a
linear representation of Boolean gates on quantum states as opposed to the typical direct sum representation
common in Boolean algebra.

In this work we are particularly concerned with network constructions as a means to study many-body
quantum states by tensor networks. First, we can compose AND-states (by connecting wires and hence
contracting tensor indices) — together with NOT-gates, this enables one to create the class of Boolean states
in Equation (2). That is, one will realize a network that outputs logical-one (represented here as |1)) any time
the input qubits represent a desired term in a quantum state (e.g. create a function that outputs logical-one
on designated inputs |00), |01) and |10) and zero otherwise as shown in Figure B]). We then insert a |1) at

4 Normalization factors omitted: without loss of generality, we will often omit global scale factors (tensor networks with no
open legs). This is done for ease of presentation. We note that for Hilbert space H there is a natural isomorphism

COH=H=H®C

5 The isomorphism Y, B8; (3| (i| 2 3=, Bs|i)(i| = 3, Bs|4)|i) for a real valued basis becomes >°, B8; (8| (5] 22 3=, Bi) (i| 2 3=, Bslé)|4)
which amounts to flipping a bra to a ket and vise versa.



the network output (physically this is a form of post-selection). This procedure recovers the desired Boolean
state as illustrated in Figure [6la) with the resulting state appearing in Equation ().

Z () f(x1, T2y oo, Tn) )| T1, T2y oeey T (1)

T1,22,...,2,€{0,1}

The network representing the circuit is read backwards from output to input. Alternatively the full class of
Boolean states is defined as:

Definition 1 (Boolean many-body qudit states). We define the class of Boolean states as those states which
can be expressed up to a global scalar factor in the form (2))

> |21, Ty ooy )| f (21, T2, oony ) (2)

11;12;~~~;1n€{071;~~~;d_1}

where f : Z}} — Zq is a d-switching function and the sum is taken to be over all variables x; taking 0 and 1
for qubits and 0,1,...d — 1 in the case of of d-level qudits (see Figure[d (a)).

(a) (b)

FIG. 6. A general multi-valued qudit state based on a d-switching function f can either be formed as (a) by inputting
a logical-one at the output of the circuit as described by Equation () or (b) by bending the output of the circuit
around to form an input as in Equation (). For multi-valued qudit states, the boolean function f : Z5 — Zs becomes
a multi-valued qudit function f : Zj; — Zg. The network (a) is then post-selected to aol0) + a1|l) + -+ g—1]|d — 1)
where Vi, a; = 0/1.

Examples of Boolean states include the familiar GHZ-state |00 - - - 0)+|11 - - - 1) which on qudits in dimension
d becomes

d—1

IGHZa) =) _ [d)ld)lé) = [0)]0)|0) + [1)1)[1) + - +|d = 1)|d — 1)|d — 1) 3)

=0
as well as the W-state |00---1) +[01---0) 4 --- 4 [10- - -0) which again on qudits becomedd

d—1 3

Wa) = > (X;)10)[0)]0) = [0)]0)[1) +[0)[1)[0) + [1)[0)[0) + [0)]0)[2) +10)[2)[0) + [2)[0)[0) + -~ (4)

=1 j=1

-+ 10)[0)[d — 1) + [0)|d — 1)[0) + |d — 1)[0)|0)

What is clear from this definition is that Boolean states are always composed of equal superpositions of sets
of computational basis states. Our main result is that, despite this apparent limitation, tensor networks
composed only of Boolean components can nonetheless describe any quantum state. To do this we require a
minor extension to include superposition input/output states, e.g. rank-1 tensors of the form |0) 4+ 51|1) +

-+ B4—1]d — 1). This gives a universal class of generalized Boolean tensor networks which subsumes
the important subclass of Boolean states. This class is then shown to form a nascent example of the
exhaustiveness of CTNS and to give rise to a wide class of quantum states that we show are exactly and
efficiently sampled.

6 In Equation @) the operator X|m) = |m + 1(mod d)) is one way to define negation in higher dimensions. The subscript
labels the ket (labeled 1,2 or 3 from left to right) the operator acts on ¢ times.



D. Putting it all together: connecting the dots

The key point to this result is that the introduction of Boolean logic gate tensors into the tensor network
context allows the seminal logic gate universality results from classical network theory to be applied in this
new setting. By extending this powerful result we can construct a novel solution to the related quantum
problem — that is, the decomposition or factorization of any quantum state into a CTNS. Thus our main
result is captured by the following statement (see Theorem 23]).

Result (Translating quantum states into categorical tensor networks) Given quantum state [¢)), Theo-
rem [23] asserts a constructive method to factor |¢) into a CTNS constructed from rank-3, rank-2 tensors
taken solely from the fixed set in the presentation from Figure 3 and @ together with arbitrary rank-1 tensors.

This example then demonstrates the exhaustiveness of the most extreme case of the CTNS approach, where
almost all tensors are chosen from a small fixed set of tensors with precisely defined algebraic properties.
Importantly, in Theorem 29 the form of this general construction is limited in such a way as to provide a
new class of states which can be exactly and efficiently sampled.

III. CONSTITUENT NETWORK COMPONENTS: A TENSOR TOOL BOX

Any vector space V has a dual V*: this is the space of linear functions f from V to the ground field C, that
is f : V — C. This defines the dual uniquely. We must however fix a basis to identify the vector space V with
its dual. Given a basis, any basis vector |i) in V gives rise to a basis vector (j| in V* defined by (j|i) = &/
(Kronecker’s delta). This defines an isomorphism V — V* sending |i) to (i| and allowing us to identify V
with V*. In what follows, we will fix a particular arbitrarily chosen basis (called the computational basis
in quantum information science). We will now concentrate on Boolean building blocks that are used in our
construction.

A. COPY-tensors: the “diagonal”

The copy operation arises in digital circuits |45, 68] and more generally, in the context of category theory
and Algebra, where it is called a diagonal in cartesian categories (see [69] for details on using COPY to define
a basis). The operation is readily defined in any finite dimension as

di:fd_1 .
A i)l (5)
1=0

As |0) and |1) are eigenstates of 0%, we might give A the alternative name of Z-copy (this was done in [11, |67,
69]). In the case of qubits COPY is succinctly presented by considering the map A that copies o*-eigenstates:

N:CP—-C*C?: 107 = 100)

1) = [11)
This map can be written in operator form as A :|00)(0| + |11)(1| and under cup/cap induced duality (on
the right bra) this state becomes a GHZ-state as |[tgnz) = |000) + [111) 22 |00)(0| + |11)(1]. The standard

properties of COPY are given diagrammatically in Figure[fland a list of its relevant mathematical properties
are found in Table [Il

Remark 2 (The COPY-gate from CNOT). The CNOT-gate is defined as |0)(0]; ® 12+ [1)(1], ® 05. We will
set the input that the target acts on to |0) then calculate CNOT(1; ® |0),) = [0)(0]; ® [0)5 + [1)(1|; @ |1),.
We have hence defined the desired COPY map copying states from the Hilbert space with label 1 (subscript)
to the joint Hilbert space labeled 1 and 2.
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FIG. 7. Salient diagrammatic properties of the COPY-dot. (a) Full-symmetry. (b) Copy points, e.g. |x) +— |zz) for
x = 0,1 for qubits and x = 0,1, ...,d — 1 for d dimensional qudits. (c¢) The unit — in this case the unit corresponds to
deletion, or a map to the terminal object which is given as (+] &of (0] 4 (1] for qubits and (+| €of O]+ (1|4 -+ (d — 1|
for d dimensional qudits (the bi-direction of time is explained later by considering co-diagonals in Section [ITE]). (d)
Co-interaction with the unit creates a Bell state Z‘ii;ol |#4). This and the corresponding dual under the dagger form
the compact structures of the f-category of quantum theory.

B. XOR-tensors: the “addition”

The XOR-gate implements exclusive disjunction or addition (mod 2 for qubits) and is denoted by the
symbol & [70, [71]. We note that for multi-valued logic a modulo subtraction gate can also be defined as
in [72]. By what could be called “dot-duality” the XOR-gate is simply a Hadamard transform of the COPY-
gate, appropriately applied to all of the dots legsﬂ. This can be captured diagrammatically in the slightly

different form:
-

To define the gate on the computational basis, we consider f(z1,22) = x1 ® z2 then f = 0 corresponds to
(x1,22) € {(0,0),(1,1)} and f = 1 corresponds to (z1,z2) € {(1,0),(0,1)}, where the truth table for XOR
follows

xy | xo | f(w1,20) = 21 D w9
00 0
0] 1 1
110 1
111 0

Under cap/cap induced duality, the state defined by XOR is given as

o) 3" Jan)]a)]f (21, 22)) = 000) + [110) + [011) +[101) (6)
z1,22€{0,1}

which is in the GHZ-class by LOCC equivalence viz. |1g) = H® H @ H(]000) + |111)). The operation of
XOR is summarized in Table [1l Since the XOR-gate is related to the COPY-gate by a change of basis, its
diagrammatic laws have the same structure as those illustrated in Figure [l The gate acting backwards
(co-XOR) is defined on a basis as follows:

0) — 100 11 —
®:C* > C*xC?: 0) = |00} +[11) or equivalently +) =+ +)
1) = [10) +101) =)= 1=-)
7 We denote the discrete Fourier transform gate by Hy := ﬁ Za,bE{O,l VVVVV d-1} ei2mab/d|q) (bly;, where d = dimH is the

dimension of the Hilbert space the gate acts in. We can see that H” = H, and that in a qubit system H coincides with the
one-qubit Hadamard gate |72].
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C. Generating the affine class of networks

Thus far we have presented the XOR- and COPY- gates. This system allows us to create the linear class of
Boolean functions. As explained in the present subsection, this class can be extended to to the affine class
by introducing either a gate that acts like an inverter, or by appending a constant |1) into our system. This
constant will allow us to use the XOR-gate to create an inverter.

A complemented Boolean variable is a Boolean variable that appears in negated form, that is —x or written
equivalently as T. Negation of a Boolean variable = can be expressed as the XOR of the variable with constant
1 as T = 1@ x. Whereas uncomplimneted Boolean variables are Boolean variables that do not appear in
negated form (e.g. negation is not allowed). Linear Boolean functions contain terms with uncomplemented
Boolean variables that appear individually (e.g. variable products are not allowed such as 125 and higher
orders etc., see Section [B]). Linear Boolean functions take the general form

fz1, 20,y ) = 121 D 222 D ... B Cry (7)

where the vector (c1, ca, ..., ¢,) uniquely determines the function. The affine Boolean functions take the same
general form as linear functions. However, functions in the affine class allows variables to appear in both
complemented and uncomplemented form. Affine Boolean functions take the general form

f(x1,il?2,---a17n)200@01$1 D coxo @ ... D cpay (8)

where ¢y = 1 gives functions outside the linear class. From the identities, 141 = 0 and 0 ® = = x we require
the introduction of only one constant (cp), see Appendix [Bl

Together, XOR and COPY are not universal for classical circuits. When used together, XOR- and COPY-
gates compose to create networks representing the class of linear circuits. The affine circuits are generated
by considering the constant |1). The state |1) is indeed copied by the black dot. However, our axiomatization
(Figure B)) proceeds through considering the XOR- and COPY-gates together with |+), the unit for COPY
and |0) the unit for XOR. It is by appending the constant |1) into the formal system (Figure [3) that the
affine class of circuits can be realized.

Remark 3 (Affine functions correspond to a basis). Fach affine function is labeled by a corresponding bit
pattern. This can be thought of as labeling the computational basis, as states of the form |{0,1}") are in
correspondence with polynomials in algebraic normal form (see Appendiz[B).

D. Quantum AND-state tensors: Boolean universality

The proceeding sections have introduced enough machinery to generate the linear and affine classes of
classical circuits. These classes are not universal. To recover a universal system we must add a non-linear
Boolean gate. We do this by representing the AND gate as a tensor. The unit for this gate is (1] and so can
be used to elevate the linear fragment to the affine class.

The AND gate (that is, A) implements logical conjunction [45, [68]. Using again “dot-duality”, the AND-
gate relates to the OR-gate via De Morgan’s law. This can be captured diagrammatically as

SO = @S

To define the gate on the computational basis, we consider f(z1,22) = 21 A xo which we write in short hand
as x1x2. Here f = 0 corresponds to (z1,22) € {(O 0),(0,1),(1,0)} and f = 1 corresponds to (z1,z2) = (1, 1).
Under cap/cap induced duality, the state defined by AND is given as

W) ST Ja)lea)l f (@, 22)) = [000) + 010) + [010) + [111) (9)
z1,22€{0,1}

The key diagrammatic properties of AND are presented in Figure[§ and the gate is summarized in Table [[ITL
The gate acting backwards (co-AND) is defined on a basis as follows:

| . {10) = [00) + [01) + [10) [+) |+ +)
A:C* 5 CPeC? ..{|1>H|11> or {|—>»—>|00>+|01>+|10>_|11>
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(a)

oun

time

0

(b) . (© (d) /N
= | =¢ .Qg, : :%%

FIG. 8. Salient diagrammatic properties of the AND-tensor. (a) Input-symmetry. (b) Existence of a zero or fixed-
point. (c) The unit |1). (d) Co-interaction with the unit creates a product-state. Note that the gate forms a valid
quantum operation when run backwards as in (d).

Example 4 (AND-states from Toffoli-gates). The AND-state is readily constructed from the Toffoli gate
as illustrated in Figure This allows some interesting states to be created experimentally, for instance,
post-selection of the output to |0) would yield the state |00) 4 ]01) +]10). (See the course notes [11] for more
on how these techniques can be used as an experimental prescription to generate quantum states.)

<}
< )\ _ ./ea units
<4 D

Quantum
circuit model

|thn) = |000) + |010) + |100) + |111)

FIG. 9. Illustrates the use units to prepare the AND-state. Using this state together with single qubit NOT-gates,
one can construct any Boolean qubit state as well as any of the states appearing in Table [Vl We note that the box
around the Toffoli gate (left) is meant to illustrate a difference between our notation and that of quantum circuits.

A\
]

FIG. 10. Hadamard built from the AND-state together with |—) of 12(|0> — |1)). The study of quantum gate

families |73, [74] has resulted in the simplistic universal generators appearing in |[75-77]. We note that quantum
universality is already possible by considering simple Hadamard states (e.g. [¢n) = |00) + |01) + |10) — |11)), COPY-
and AND-states, which follows from the proof that Hadamard and Toffoli are universal for quantum circuits [75].

1. Summary of the XOR-algebra on tensors

We will now present the three previously referenced Tables (I} [l and [II]) which summarize the quantum
logic tensors we introduced in the previous subsections ([ITAl [ITB] and [ITD]). The tables contain entries
listing properties that describe how the introduced network components interact. These interactions are
defined diagrammatically and explained in Section [Vl
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Gate Type|Co-copy point(s) Unit Co-unit Interaction

COPY 10),]1) |+) Bell state: [00) + |11)
Symmetry Associative Commutative| Frobenius Algebra
Full Yes Yes Yes (Spider Law)

TABLE 1. Summary of the COPY-gate from Section [T Al

Gate Type|Co-copy point(s) Unit Co-unit Interaction
XOR [-+).]—) |0) Bell state: [00) + [11)

Symmetry Associative Commutative| Frobenius Algebra
Full Yes Yes Yes (Spider Law)

TABLE II. Summary of the XOR-gate from Section [ITBl

E. co-COPY: the co-diagonal

What is evident from our subsequent discussions on logic gates is that in the context of tensors the
bending of wires implies that gates can be used both forwards in backwards in time (co-algebraically). We
can therefore form tensor networks from Boolean gates in a very different way from classical circuits. Indeed,
it is now possible to flip a COPY operation upside down, that is, instead of having a single leg split into
two legs, have two legs merge into one. Appending a physical interpretation to these operations in terms of
a quantum process is possible, by considering, e.g. post-selection. In terms of categorical tensor networks,
co-COPY is simply thought of as being a dual (transpose) to the familiar COPY operation. This is common
in algebra: to consider the dual notation to algebra, that is co-algebra. In general, while a product is a
joining or pairing (e.g. taking two vectors and producing a third) a co-product is a co-pairing taking a single
vector in the space A and producing a vector in the space A ® A.

Remark 5 (co-algebras [78]). co-algebras are structures that are dual (in the sense of reversing arrows) to
unital associative algebras such as COPY and AND the azioms of which we formulated in terms of picture
calculi (Sections IITAl and [IILD). Every co-algebra, by (vector space) duality, gives rise to an algebra, and
in finite dimensions, this duality goes in both directions.

Co-COPY can be thought of as applying a delta function in the transition from input to output. That is,
given a copy point x = 0,1, ...,d — 1 for qudits on dim d. Depicting COPY as the map A

A (|z)) = [z) © |z) (10)
we define co-COPY by the map 57 such that

v ([8):13)) = 851) (11)

that is, the diagram is mapped to zero (or empty) if the inputs |i), |j) do not agree. This is succinctly
expressed in terms of a delta-function dependent on inputs [i), |j) where 4,5 = 0,1,...,d — 1 for qudits of
dim d.

Example 6 (Simple co-pairing). Measurement effects on tripartite quantum systems can be thought of as
co-products. This is given as a map from one system (measuring the first) into two systems (the effect this
has on the other two). GHZ-states are prototypical examples of co-pairings. In this case, the measurement
outcome of |0) (|1)) on a single subsystem sends the other qubits to |00) (]11)) and by linearity this sends
|[+) to [00) + |11).

F. The remaining Boolean tensors: NAND-states etc.

We have represented a complete logical system on quantum states — this enables us to represent any
Boolean function quantum mechanically and hence any Boolean state. We chose as our generators, constant
[1), COPY, XOR, AND. Other generators could have also been chosen such as NAND-states. Our choice
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Gate Type|Co-copy point(s) Unit Co-unit Interaction
AND 1) [1) Product state: |11)

Symmetry Associative Commutative| Bialgebra Law
Inputs Yes Yes Yes (with GHZ)

TABLE III. Summary of the AND-gate from Section [[IT DI

however, was made as a matter of convenience, as the definitions work well, and elegantly fit together (e.g.
representing the XOR-algebra on quantum states). If we had considered other generators, we could have
ended up considering the following cases: weak-units (Definition [7]) and fixed point pairs (Definition [@). We
note that the NAND-states were used in [79] for fault-tolerant quantum computation — see also [80].

Definition 7 (Weak units). An algebra (or product see Appendix [A]) on a tripartite state |¢) has a unit
(equivalently, one has that the state is unital) if there exists an effect (¢| which the product acts on to
produce an invertible map B, where B = 1 (see Example B]). If no such (¢| exists to make B = 1, and B
has an inverse, we call (¢| a weak unit, and say the state [¢)) is weak unital and if B # 1 and B? = 1 we call
the algebra on |¢) unital-involutive. This scenario is given diagrammatically as:

e >

Example 8 (NAND and NOR). NAND and NOR have weak units, respectively given by |1) and |0). These
weak units are unital-involutive.

[nanp) = |001) + ]011) + |101) + |110) (12)

|¥nor) = |001) + |010) 4 |100) + |110) (13)
For |¢nanp) to have a unit, there must exist a |¢) such that
(#10)]01) + (4]0)[11) + ($[1)|01) + (9[1)[10) = [00) + [11) (14)
and hence no choice of |¢) makes this possible, thereby confirming the claim.

Definition 9 (Fixed Point Pair). An algebra (see Appendix [A]) on a tripartite state |¢)) has a fized point if
there exists an effect (¢| (the fixed point) which the product acts on to produce a constant output, regardless
of the other input. For instance, in Figure [2(c) on the left hand side the effect (1| induces a map (read
bottom to top) that sends |+) — |1). Up to a scalar, this map expands linearly sending both basis effects
(0], (1] to to the constant state |1). If the resulting output is the same as the fixed point, we say (¢| has
a zero (|1) is the zero for the OR-gate in Figure [[2(c)). A fixed point pair consists of two algebras with
fixed points, such that the fixed point of one algebra is the unit of the other, and vise versa (see Figure [I2]).
Diagrammatically this is given in Figure [l

Dt e

FIG. 11. Diagrammatic equations satisfied by a fixed point pair (see Definition [).

G. Summarizing: network composition of quantum logic tensors

We have considered sets of universal classical structures in the categorical tensor network model. In
classical computer science, a universal set of gates is able to express any n-bit Boolean function

fiB® =B (21, 2n) = f(z1, ., 20) (15)
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(a) _ _ (b)

_
% “k
\/ 0

FIG. 12. AND and OR tensors form a fixed point pair. The unit for AND (|1) see a) is the zero for OR (c) and vise
versa: the unit of OR (]|0) see a) is the zero for AND (b).

where we note that Z; = B allowing us to use the alternative notation for f as f : Z]} — Zgq with d = 2
for the binary case. Universal sets include {COPY, NAND}, {COPY, AND, NOT}, {COPY, AND, XOR,|1)},
{OR, XNOR,|1)} and others. One can also consider the states |¢)) formed by the bit patterns of these
functions f(x1,x2) as

W)= > le)|w)lf (21, 72)) (16)

z1,22€{0,1}

This allows a wide class of states to be constructed effectively. In the following Table ([V]) we illustrate the
quantum states representing the classical function of two-inputs.

non-linear linear (Frobenius Algebras)

[anp) = J000) + [010Y + 100) + [111)
[Yor) = [001) + [011) + [101) + [111) | |thxor) = |000) + |011) + |101) + |110)
[thnanp) = |001) + [011) + [101) + |110) | [¢xnor) = |001) + [010) + [100) + |111)
[nor) = |001) 4 |010) 4 |100) + |110)

TABLE IV. The bit pattern of these quantum states represents a Boolean function (given by the subscript) such that
the right most bit is the Boolean functions output, and the two left bits are the functions inputs, and the non-linear
Boolean functions are on the left side of the table and the linear functions on the right. Consider the state |1anp),
and Boolean variables x1 and 2, then the superposition |)anp) encodes the function |z1,x2, 21 A z2) in each term
in the superposition, and |¢anp) = 211’126{0’1} |x1, 2,21 A x2). As outlined in the text, cup/cap induced-duality
allows us (for instance) to express this state as the operator |0)(00| + |0) (01| + |0)(01] + |1)(11] :: |z1, z2) — |1 A z2)
which projects qubit states to the AND of their bit value.

IV. INTERACTION OF THE NETWORK COMPONENTS

Having outlined the essential Boolean components used in our tensor toolbox we now explore how these
tensors interact when connected in a tensor network. The interactions can be defined diagrammatically and
given simple rewrite rules for CTNS based on these component tensors.

1. Merging COPY-dots by node equivalence

COPY-dots are readily generalized to an arbitrary number of input and output legs. As one would rightly
suspect, a COPY-dot with n inputs and m outputs corresponds to an n + m-partite GHZ-state. Neighboring
dots of the same type can be merged into a single dot: this is called node equivalence in digital circuits.
COPY-dots represent Frobenius algebras [78, |81] see also [82, 183].

Theorem 10 (Node equivalence or spider law [67]). Given a connected graph with m inputs and n outputs
comprised solely of Frobenius dots of equal dimension, this map can be equivalently expressed as a single
m-to-n dot, as shown in Figure[13
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Example 11 (Two-site reduced density operator of n-party GHZ-states). GHZ-states on n-parties have a
well known matrix product expression given as

n

0) 0 -~ 0
0 1) - o0

|GHZ,,) = Tr Lo = 10)[0)[0) + [))[1) + -+ |d — 1)|d — 1)|d — 1) (17)
0 - 0 |d—1)

Such MPS networks are known to be efficiently contactable. We note that the networks in Figure [[3] do not
appear a priori to be contractible due to the number of open legs. What makes them contractible (in their
present from) is that the tensors obey spider law allowing them to be deformed into a contractible MPS
network: see Figure[I4l The reduced density matrix of an n-party GHZ-state then becomes (a) in Figure
and the expectation value of an observable is shown in (b) where we included the normalisation constant.

;f f=hog
® ® = g
x . a
) g e g
: x
e g spide ® :
e e spider : T
§ ® o ®
= BN X z
® 3 ®
= = ES

FIG. 13. Node equivalence or spider law. Connected black-dots (e) as well as connected plus-dots (@) can be merged
and also split apart at will. The intuition for digital or qudit circuits follows by connecting a state |¢) to one of the
legs and iterating over a complete basis |0), |1),...,|d — 1).

FIG. 14. The GHZ-state tensor is simply a rank-n COPY-dot. Node equivalence implies that this tensor can be
deformed into any network geometry including a MPS comb-like structure (right).

(2) (b)

=1 1
x = 300)(00] + 5[11){11] = Tr(pgnz - O1 ® O2)

FIG. 15. Reduced density operator. Left (a) reduced density operator pguz found from applying the spider law to a
n-qubit GHZ-state. Right (b) the expectation value of observable O1 ® Oz found from connecting the observable and
connecting the open legs (i.e. taking the trace).

A. Associativity, distributivity and commutativity

The products we have considered are all associative and commutative. As algebras, AND, XOR and COPY
are associative, unital commutative algebras. This was already expressed diagrammatically in Figures Bl(a)
and Figure @lc). The diagrammatic laws relevant for this subsection represent the following Equations

(.CCl A IQ) ANx3 =21 N\ (.CCQ A xg) (18)



(21 ® x2) Dz =21 D (T2 D x3) (19)
Distributivity of AND over XOR then becomes (see (h) in Figure [))
(:El @IEQ)/\ZZ?g = (Il /\ZEQ)@(IEl /\1172) (20)

We have commutativity for any product symmetric in its inputs: this is the case for AND and XOR.

B. Bialgebras on tensors

There is a powerful type of algebra that arises in our setting: a bialgebra defined graphically on tensors
in Figure [I6 (see Kassel, Chapter IIT [84], [67, [7&]).

Such an algebra is simultaneously a unital associative algebra and co-algebra (for the associativity condition
see (b) in Figure [I@]). Specifically, we consider the following two ingredients:

(i): a product (black dot) with a unit (black triangle) see the right hand side of Figure [[6|(a)
(ii): a co-product (white dot) with a co-unit (white triangle) see the left hand side of Figure [[6(a)

To form a bialgebra, these two ingredients above must be characterized by the following four compatibility
conditions:

(i): The unit of the black dot is a copy-point of the white dot as in (e) from Figure
(ii): The (co)unit of the white dot is a copy-point of the black dot as in (d) from Figure
(iii): The bialgebra-law is satisfied given in (c¢) from Figure

(iv): The inner product of the unit (black triangle) and the co-unit (white triangle) is non-zero (not shown
in Figure [T0).

Yol TR Qe

FIG. 16. Bialgebra axioms |78] (scalars are omitted). (a) unit laws (these are of course left and right units); (b)
associativity; (c) bialgebra; (d,e) co-COPY points.

Example 12 (GHZ, AND form a bialgebra). We are in a position to study the interaction of GHZ-AND.
This interaction satisfies the equations in Figure G (a) the bialgebra law; (b) the co-copy point of AND is
[1); and (c) the co-interaction with the unit for GHZ creates a compact structure. In addition, (a) and (b)
show the copy points for the black GHZ-dot; in (¢) we have the unit and fixed point laws.

Even if a given product and co-product do not satisfy all of the compatibility conditions (given in (a),
(b), (c), (d), (e) in Figure [[6), and hence do not form bialgebras, they can still satisfy the bialgebra law
which is given in Figure [I6(c). Examples of states that satisfy the bialgebra law in Figure[I€{c), but are not
bialgebras are given in Definition I3l Notice that bialgebra provides a highly constraining characterization
of the tensors involved and is tantamount to defining a commutation relation between them.

Definition 13 (Bialgebra Law [78]). A pair of quantum states (black, white dots) satisfy the bialgebra law
if (¢) in Figure [I@ holds. The Boolean states, AND, OR, XOR, XNOR, NAND, NOR all satisfy the bialgebra
law with COPY.
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1. Hopf algebras on tensors

A particularly important class of bialgebras are known as Hopf-algebras [78]. This is characterized by the
way in which algebras and co-algebras can interact. This is captured by the Hopf-law, where the linear map
A is known as the antipode.

Definition 14 (Hopf-Law [78]). A pair of quantum states satisfy the Hopf-Law if an A can be found such
that the following equations hold:

4.7}{0@6 Law Hopf Law 4.7

Example 15 (XOR and COPY are Hopf-algebras on Boolean States [37]). It is well known (see e.g. [37])
that the Boolean state XOR, satisfies the Hopf-algebra law with trivial antlpode (A =1) with COPY. Recall
Figure B(g).

C. Bending wires: compact structures

As mentioned in the preliminary section ([I)), we make use of what’s called a compact structure in category
theory which amounts to introducing cups and caps, to provide a formal way to bend wires and define
transposition. This was addressed in categorical quantum theory by considering Bell-states and their dual
(this was key to axiomatizing the teleportation protocol [31, 143]). See Figures [I7 and [I8

A compact structure on an object H consists of another object H* together with a pair of morphisms (note
that we use the equation H* = H in Hilbert space making objects self dual which simplifies what follows).

g :1—HQH e - HOH —1

where the standard representation in Hilbert space with dimension d and basis {|i)} is given by

d—1 d—1
77H22|i>®|i> EH:Z<i|®<i|
=0 1=0

and in string diagrams (read from the top to the bottom of the page) as

: m (b) U

These cups and caps give rise to cup/cap-induced duality: this amounts to being able to create a linear map
that “flips” a bra to a ket (and vise versa) and at the same time taking an (anti-linear) complex conjugate.
In other words, the cap Z;:O (i1] sends quantum state |¢) = «|0) + 8|1) to (0] + B(1| which is equal to the
complex conjugate of |1)" = (| = @(0]+B(1|. Diagrammatically, the dagger is given by mirroring operators
across the page, whereas transposition is given by bending wire(s). Clearly, ()| = (0] + B(1|.

In the case of relating the Bell-states and effects to the identity operator, under cup/cap-induced duality,
we flip the second ket on 77y and the first bra on e3. This relates these maps and the identity 14 of the
Hilbert space: that is, we can fix a basis and construct invertible maps sending ny; = 1y = ey. More
generally, the maps 1y and ey satisfy the equations given in Figure 7 and their duals under the dagger.

A second way to introduce cups and caps is to consider a Frobenius form [67,|78] on either of the structures
in the linear fragment from Figure [ (COPY and XOR). This is simply a functional that turns a product/co-
product into a cup/cap. This allows one to recover the above compact structures (that is, the cups and caps

given above) as

sum
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Again, we will use these cups and caps as a formal way to bend wires in tensor networks: this can be thought

of simply as a reshape of a matrix.
X

FIG. 17. Cup identities. (a) Symmetry. (b) Conjugate state. (c) Teleportation [32] or the snake equation. (d) Sliding

an operator around a cup transposes it.
C

FIG. 18. Diagrammatic adjoints [31,143]. Cups and caps allow us to take the transpose of a linear map. Note that care
must be taken, as flipping a ket |1)) to a bra (¢| is conjugate transpose, and bending a wire is simply transposition,
so the conjugate must be taken: e.g. acting on |1)) with a cap given as )", (i| results in (2)|.

(a)

(b)

U [

(a)

.
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-

il
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V. EXAMPLES OF CATEGORICAL TENSOR NETWORK STATES

While, in principle, tensor networks such as MPS, PEPS and MERA are expressive enough to represent
any quantum state, given tensors whose size grows exponentially with the system size n, doing so will
not typically expose additional internal structure. Our categorical approach enables one to translate a
quantum state directly into a new type of network: a so-called CTNS. We have focused on Boolean network
components and have already presented in detail their algebraic properties and defining characteristics.
Here we will illustrate their expressive power by considering a few elementary examples before presenting
our main theorem (23]), precisely showing how to determine a categorical tensor network to represent any
given quantum state.

A. Constructing Boolean states

Since the fixed building blocks of our tensor networks are the logic tensors AND, OR, XOR and COPY,
along with ancilla bits, we can immediately apply the universality of these elements for classical circuit
construction to guarantee that any Boolean state has a categorical tensor network decomposition. However
our construction goes beyond this because as we have seen, categorical tensor networks can be deformed and
rewired in ways which are not ordinarily permitted in the standard acyclic-temporal definition of classical
circuits. The W-state will be shown to provide a non-trivial example of this.

Example 16 (Functions on W- and GHZ-states). We consider the function fw which outputs logical-one
given input bit string 001, 010 and 100 and logical-zero otherwise. Likewise the function fgnz is defined
to output logical-one on input bit strings 000 and 111 and logical-zero otherwise. See Examples [[9 and
which consider representation of these functions as polynomials. We will continue to work with a linear
representation of functions on quantum states; here bit string 000 — |000) (etc.).
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Example 17 (MPS form for W-state). Like the GHZ state, the W-state has a simple MPS representation

0 0\"
W) = (0] ( B 0 ) 1) = [10...0) + [01...0) + ... 4+ 00...1). (21)
While this description (21]) is certainly succinct it does not expose much internal structure of the constituent
tensors comprising a given network. Indeed, all MPS-states have essentially the same topological or network
structure in the current incarnation. In contrast, our categorical construction described below breaks this
network up further.

Remark 18 (Exact-value functions). The function fw takes value logical-one on input vectors with k ones
for a fized integer k. Such functions are known in the literature as Exact-value symmetric Boolean functions.
When cast into our framework, exact-value functions give rise to tensor networks which represent what are
known as Dicke states [40].

Example 19 (Function realization of fiy and feuz: the Boolean case). One can express (using T to mean
Boolean variable negation)

fw(z1, 2, 23) = T1Tax3 & T1T2T3 P T122T3 (22)

by noting that each term in the disjunctive normal form of fw are disjoint, and hence OR maps to XOR as
V — @. The algebraic normal form (see Appendix [B]) becomes

fw(z, x2,23) = 1 B T2 B T3 P T 12273 (23)

fonz(x1, @2, 23) =1 D a1 © 22 O w3 B 21202 D 123 D T2T3 (24)

Example 20 (Function realization of fiy and fguz: the set function case). Set functions are mappings
from the family of subsets of a finite ground set (e.g. Booleans) to the real or complex numbers. In the
circuit theory literature, functions from the Booleans to the reals are known as pseudo-Boolean functions
and more commonly as multi-linear polynomials or forms (see [85] where these functions are used to embed
a co-algebraic theory of logic gates in the ground state energy configuration of spin models). There exists an
algebraic normal form and hence a unique multi-linear polynomial representation for each pseudo-Boolean
function (see Appendix [Bl). This is found by mapping the negated Boolean variable as T + (1 — z). For the
GHZ- and W-functions defined in Example [[6] we arrive at the unique polynomials (23] and (26).

fonz(z1, 22, 23) =1 — 21 — x2 + 172 — T3 + T 123 + T2x3 (25)

fw(Il, I2,$3) =T + X9 + Tr3 — 2$1I2 — 2171173 — 2172173 + 3$1{E2$3 (26)
These polynomials ([28) and (26]) are readily translated into categorical tensor networks.

Example 21 (Network realisation of W- and GHZ-states). A network realization of W- and GHZ-states in
our framework then follows by post-selecting the relevant network to |1) on the output bit — leaving the
input qubits to represent a W- or GHZ-state respectively. An example of this is shown in Figure

Two different categorical constructions for the building blocks of the W-state are shown in Figure 201 and
Figure 211 Notice that in Figure 21] the resulting tensor network forms an atemporal classical circuit and
is much more efficient than the naive construction in Figure Moreover by appropriately daisy-chaining
the networks in Figure [2I] we construct a categorical tensor network for an n-party W-state as shown in
Figure The resulting form of this tensor network is entirely equivalent (up to regauging) to the MPS
description given earlier, but now reveals new internal structure of the state.

B. Describing states with complex coefficients

Boolean states, such as the GHZ- and W-states, are typified by being superpositions of computational
basis states with equal real coefficients. This limitation is readily lifted if we permit a minor extension to
arbitrary superposition input/output states (rank-1 tensors) within our Boolean tensor networks. This is
illustrated by a simple example:
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(a) = fw(z1, z2, z3) (b)

owmn

time

FIG. 19. Left (a) the circuit realization (internal to the triangle) of the function fw of e.g. (23) which outputs
logical-one given input |ziz2z3) = [001), |010) and |100) and logical-zero otherwise. Right (b) reversing time and
setting the output to |1) (e.g. post-selection) gives a network representing the W-state. The naive realization of fw
is given in Figure 2I] with an optimized co-algebraic construction shown in Figure 211

FIG. 20. Naive CTNS realization of the familiar W-state [001) +|010) +|100). A standard (temporal) acyclic classical
circuit decomposition in terms of the XOR-algebra realizes the function fw of three bits. This function is given a
representation on tensors. As illustrated, the networks input is post selected to |1) to realize the desired W-state.

Example 22 (Network realization of |)) = |01) + |10) + ay|11)). We will now design a network to realize
the state [01) + |10) 4+ |11). The first step is to write down a function fg such that

fs(0,1) = fs(1,0) = fs(1,1) =1 (27)
and fs(00) = 0 (in the present case, fg is the logical OR-gate). We post select the network output on |1),
which yields the state |01) + |10) + |11), see Figure 23[a). The next step is to realize a diagonal operator,

that acts as identity on all inputs, except |11) which gets sent to ay|11). To do this, we design a function fy
such that

fa(0,1) = fq(1,0) = £4(0,0) =0 (28)
and fy(1,1) = 1 (in the present case, fq is the logical AND-gate). This diagonal, takes the form in Figure

B23(b). The final state |1) = |01) + |10) + a|11) is realized by connecting both networks, leading to Figure
23l(c).

VI. PROOF OF THE MAIN THEOREMS

We are now in a position to state the main theorem of this work. Specifically, we have a constructive
method to realize any quantum state in terms of a categorical tensor network] We state and prove the
theorem for the case of qubit. The higher dimensional case of qudits follows from known results that any
d-state switching function can be expressed as a polynomial and realized as a connected network [47, 186, 187].
The theorem can be stated as

8 A corollary of our exhaustive factorization of quantum states into tensor networks is a new type of quantum network
universality proof. To avoid confusion, we point out that past universality proofs in the gate model already imply that the
linear fragment (Figure B) together with local gates is quantum universal. However, the known universality results clearly
do not provide a method to factor a state into a tensor network! Indeed, the decomposition or factorization of a state into a
tensor network is an entirely different problem which we address here.
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= [110) +[101) +[011)

FIG. 21. W-class states in the categorical tensor network state formalism. (a) is the standard W-state. (b) is found
from applying De Morgan’s law (see Section [[ITDJ) to (a) and rearranging after inserting inverters on the output legs.
Notice the atemporal nature of the circuits, as one gate is used forwards, and the other backwards.

FIG. 22. W-state (n-party) in the categorical tensor network state formalism. The comb-like feature of efficient net-
work contraction remains, with the internal structure of the network components exposed in terms of well understood
algebraic structures.

Theorem 23 (Tensor network representation of quantum states). For any state 1)) of n-qubits with the
form

k
) =" ajle;), (29)
j=1

where o are complex coefficients and for each j the state |¢;) is an equal superposition of a set of computa-
tional basis states, it can be represented as a network containing tensors from the quantum Boolean calculus
(Figures[3 and[]), together with input/ouput states of the form |a;) := |0) + a;|1).

Notice that an arbitrary state can be brought into the form required of |¢) by composing it as k = 2" terms
with each state |¢;) being a single distinct computational basis state. The proof is simplified by invoking
some supporting lemmas.

Lemma 24. There exists a map g represented by a tensor network taking diagonal maps in @), C? — (2 C?
onto quantum states in ®n c2.

Proof. Let D be a diagonal map in @), C* — &, C2. We write D = 2 xe{0,1}» @x[x) (x| and proceed as
follows (where the term D o @), (|0) + |1)) immediately yields the desirable tensor network depiction)

gD} =Do@0)+[1)=Do > [y)= Y  axlx)ixly)=

n ye{0,1}n x,y€{0,1}
= > Gy = > axx)
x€{0,1}n x€{0,1}

O

Lemma 25. There exists a map h represented by a tensor network taking quantum states in Q),, C? onto
diagonal maps in @, C* - ,, C2.
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lak) = |0) + e [1)

(a) (b) (©
@—@: = [01) +[10) +[11) \ d 4‘ = [01) + [10) + ay[11)

FIG. 23. As explained in Example 22 a categorical tensor network representing state [10) = |01) + |10) + a|11).

Proof. Let |¢) be a quantum state in ), C2. Let D be a diagonal map in ), C* — ), C2. We write D =
> xe{0,1}n x|x) (x| and proceed as follows (where the term &), (3_;_ /1 [1)(i[) 0D e (0,1} @x[|x) immediately
yields the desirable tensor network depiction)

W)}y = QY li)il) o D axp)= Y lyydyle Y axlx) =

n i=0/1 x€{0,1}" ye{0,1}m xe{0,1}n
= Z |YY>ax5xy = Z Ozz|XX>
x,y€{0,1} xe{0,1}n

and then we now write h in terms of A’

M)y =@ o {Dy= 3 (yylo Y axlxx)=

n  i=0/1 ye{0,1}n x€{0,1}"
= Z x| %) (y|yx = Z ax[x) (x|
y, x€{0,1}" xe{0,1}m

O

Corollary 26. It follows that g{h{|¥))}} = 1y o |¢) = |[¢) and h{g{D}} = 1p oD = D and hence we
have inverses for g and h establishing an isomorphism between diagonal operators in ), C* = @,, C* and
quantum states in @), C2.

With the supporting lemmas in place, we will now proceed to prove Theorem 23]

Proof. Returning to our particular expression for an arbitrary quantum state (note that in Equation (30 we
now append an extra term, by letting the sum run from j = 0 instead of j = 1, the use of this will become
clear below)

k
) = ajle;), (30)
j=0

where «; are complex coefficients and for each j the state |¢;) is an equal superposition of a set of compu-
tational basis states, we will explain how k 4 1 asynchronous circuits [45] are used to factor the state, and
express the state as a CTNS (here and in what follows k is the highest term in the sum from Equation (29))).

We proceed by returning to our original expression (29) from Theorem 23 (starting from j = 1) with the
coefficients removed

k
W) =>"¢;) (31)
j=1

Each individual term in Equation (BI)) is then expressed in the computational basis and used to form a set
denoted £T. All corresponding bit patterns of the same dimension not appearing in this expression form a
second set £~ (where clearly LT N L~ =@ and LT U L~ = {0,1}", where n is the number of qubits in the
desired state). We proceed to construct a function fy that outputs logical-one on all input bit strings in £+
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and outputs local zero on all input bit strings in £~. The function acts on n + 1 bits, the inputs are given
on the right of the tensor symbol and the output on the left of the tensor symbol in ([B2])

W)= Y K ®fx) (32)

x€{0,1}"

where f(x) : B® — B :: x — f(x) was given the representation on quantum states in Section [Vl Post
selecting the networks output (the rightmost bit in Equation [B2))) |1) realizes the desired superposition of
terms, with all coefficients of the terms and hence relative phases equal.

W= Y ) (33)

xe{0,1}"

For our specific construction, depicted in Figure 24] we proceed by inverting the output of the function
(e.g. fo = fo®1). We then post select the output of the function to the state |ag) = |0) + ap|l) = |0) for
the choice ap = 0. This handles the j = 0 term in the sum Equation (30).

To adjust the amplitudes of the desired state from Equation (B0), we will construct tensors that represent
diagonal operators. For the jth term in [¢) with coefficient «;, we again construct a function f;. We
represent |¢;) in the computational basis, and each term in this expression is used to form a set denoted £7.
All corresponding bit patterns of the same dimension not appearing in this expression form a second set £~ .
We proceed to construct f; to output logical-one on all input bit strings in £7 and outputs logical-zero on
all input bit strings in £~. The network is then post selected to |0) + a;|1) which results in states of the
form

[Wp) = D OGx) +a; Y (LF)x) (34)

xe€{0,1}" xe€{0,1}"

and we transform f; into a diagonal operator having entries € {1, a;;} by applying the map h from Lemma
resulting in the diagonal map

Di= Y (Ofex&+a; D (L)) (35)

xe{0,1}n xe{0,1}n

We will apply k£ such commuting maps D; to the initial state, accounting for k£ asynchronous circuits. The
operators are composed by means of n co-COPY-dots from Section [[ITE (see Figure 23] and Example 22]).
There will be a single output with open legs which gives the state. Each of the n COPY-dots will then require
k + 2 legs. The resulting construction then gives tensor networks with the form shown in Figure O

FIG. 24. The CTNS for a state |1) resulting from our exhaustive construction procedure.

Remark 27 (Qudit states). In Theorem [23 we considered the arbitrary states of n-qubits. By using multi-
valued logic (also called d-state switching, or many-valued logic), it is possible to define a universal gate
set similar to what was done for the case of qubits and so equivalently construct a CTNS for n-body qudit
systems [47, |80, |87].
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Definition 28 (Generalized Polynomial Boolean States (GPBS)). The size of a tensor network is the number
of tensors it contains and its depth is the maximal length of a path from any tensor to any other. Consider
families of uniform circuits, built from the XOR-algebra, that is the bounded fan-in gates AND, XOR, COPY,
of arity two and the constant |1). We will index these circuit families by bounding the circuit depth, which
also has the impact of bounding the maximum fan-in and the circuit size. We will then consider categorical
tensor networks to represent states |1)) of n interacting d-level systems constructed from bounded circuit
families to realize each f; with the form given in Figure We will proceed by indexing these families of
categorical tensor networks in terms of k, the maximum depth of any given circuit realizing any function
f; in the network. We will then bound the number of such functions f; to be at most some polynomial in
k. We then determine how k(n) changes. This works by considering circuit families and categorical tensor
networks of a given form, used to represent quantum states on increasingly many subsystems n. If k(n) is
bounded by a polynomial in n the categorical tensor network has an efficient description. We index such
families as C(k), and refer to them as Generalized Polynomial Boolean States (GPBS).

Theorem 29. GPBS from Definition [28 are sampled exactly in the computational basis in time and space
complezity bounded by poly(k).

Proof. To prove Theorem we begin first by considering a qudit state vector |zg, 1, ..., 2,) for specific
20, %1,y € {0,1,...,d — 1}. We wish to know the coefficient (xg,z1,...,2,|C), where C is a CTNS
representing a GPBS. The COPY-gates in the construction from Figure 24] map

|0, T1, eey Ty) > ® |0, T1y ey Tn) (36)
poly(k)

each of these poly(k) vectors will be acted on by a network realizing f; post selected to the state ;). Hence,
to sample the network C amounts evaluating the sum

(20, X1,y T, |C) = Z (fi(zo,z1,...,xn)|ej) =c€ C (37)

j€poly(k)

The proof then follows by simply evaluating each of the poly(k) poly(k)-depth functions f;(zo,z1, ..., Tn)
and then summing the inner products (f;(zo, 21, ..., Tn)| ;). O

We note that the construction in Theorem 23] automatically groups basis states with the same coefficients
o, of the k terms. Further reductions are also possible if say a given set of coefficients are given by products
of other coefficients. While this construction does prove the existence of a CTNS (along with how to build it)
our construction will not render efficient representations for general cases, as one might expect. Indeed, there
is no guarantee that any of the k+1 switching functions are efficient in their complexity, nor that the resulting
complete network is contractible. The latter property is in fact confounded by the presence of fan-in (up to
k+2 legs) of the n co-COPY-dots (the presence also implies that the network cannot represent a deterministic
physical preparation procedure [72]). However, as we saw earlier with string-bond states in Figure 2 the
COPY dot breaks up when computational basis states are inputted. For our general decomposition in in
Figure 241 this case causes the k + 1 Boolean switching functions to similarly decouple. Intuitively, if we
further restrict ourselves to k + 1 being polynomial in n, and additionally that each switching function has a
depth which is also polynomial in n, then the subsequent evaluation of the amplitude of the state is efficient
for any computational basis state (see Definition 2§ and Theorem[29)). This is a weak requirement in practice
and interestingly, does not depend on the internal geometry of the networks representing the functions, but
only on their depth and size. Thus we have found a new general class of states which can be sampled exactly
and efficiently. Finally the construction was based on using acyclic-temporal Boolean circuits. However,
we have already seen that in the tensor context wires can be bent around: it is not necessary for a tensor
network to correspond to a valid classical circuit. As the W-state example (see Figures 2T and [22)) illustrated
the tensor networks can be much simpler once this new freedom is exploited.

VII. OUTLOOK AND CONCLUDING REMARKS

We have introduced categorical methods to tensor network states. Our main focus has been on tensor
networks built exclusively from Boolean components and we have outlined their algebraic properties in great
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detail. The logical conclusion of this approach has led us to a novel exhaustive categorical tensor network
decomposition of quantum states. From this we obtained an entirely new class of quantum states, which
can be sampled in the computational basis efficiently and exactly. The expressiveness and power of this
new method was further illustrated by considering several simple test cases: we unveiled hidden internal
structure of some MPS states, e.g. GHZ- and W-states. We have opened up many future potential research
directions. In particular, beyond the form of our construction there is an open question as to whether the
algebraic properties of some subset of the tensors in CTNS can enable efficiently contractible networks beyond
those already known which are based on topology (like MPS) and additional unitary/isometric constraints
(MERA). In this way future studies of CTNS may lead to new classes of states and algorithms which will
help challenge and shape our understanding of many-body physics. It was recently pointed out [88] that
tensor network states made of symmetric tensors are in fact spin networks as used in loop quantum gravity:
see also [89,190]. It will be interesting to explore this connection in greater detail.

ACKNOWLEDGMENTS

We thank John Baez, Tomi Johnson, Martin Plenio, Vlatko Vedral, Mike Shulman, Ville Bergholm,
Samson Abramsky, Bob Coecke, Chris Heunen and Guifré Vidal. JDB received support from the EPSRC
and completed large parts of this work visiting the Centre for Quantum Technologies, at the National
University of Singapore (these visits were hosted by Vlatko Vedral). SRC and DJ thank the National
Research Foundation and the Ministry of Education of Singapore for support. DJ acknowledges support
from the ESF program EuroQUAM (EPSRC grant EP/E041612/1), the EPSRC (UK) through the QIP
IRC (GR/S82176/01), and the European Commission under the Marie Curie programme through QIPEST.
Earlier versions of this work circulated for just over one year prior to being uploaded to the arXiv, the most
widespread appearing under the title Algebra and co-algebra on Categorical Tensor Network States.

Appendix A: Algebra on quantum states

We are concerned with a network theory of quantum states. This on the one hand can be used as a tool
to solve problems about states and operators in quantum theory, but does have a physical interpretation on
the other. This is not foundational per se but instead largely based on what one might call an operational
interpretation of quantum states and processes. We call an algebra a pairing on a vector space, taking two
vectors and producing a third (you might instead call it a monoid if there is a unit, and then a group if
the set of considered vectors is closed under the product). Let’s now examine how every tripartite quantum
state forms an algebra [11].

Consider a tripartite quantum state (subsystems labeled 1,2 and 3), and then ask the question: “how
would the state of the third system change after measurement of systems one and two?” Enter Algebras: as
stated, an algebra on a vector space, or on a Hilbert space is formed by a product taking two elements from
the vector space to produce a third element in the vector space. Algebra on states can then be studied by
considering duality of the state, that is considering the adjunction between the maps of type

15>HOHOH and HOH—H (A1)

This duality is made evident by using the {-compact structure of the category (e.g. the cups and caps). It
is given vivid physical meaning by considering the effect measuring (that is two events) two components of
a state has on the third component.

Remark 30 (Overbar notation on Spaces). Given a Hilbert space H, we can consider the Hilbert space H
which can_be simply thought of as the Hilbert space H will all basis vectors complex conjugates (overbar).
That is, H is a vector space whose elements are in one-to-one correspondence with the elements of H.:

H={v|veH}, (A2)
with the following rules for addition and scalar multiplication:

T+w=v+w and aU= av. (A3)
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Remark 31 (Definition of Algebra). We consider an algebra as a vector space A endowed with a product,
taking a pair of elements (e.g. from A ® A) and producing an element in A. So the product is a map
A® A — A, which may not be associative or have a unit (that is, a multiplicative identity — see Example
[8 for an example of an algebra on a quantum state without a unit).

Observation 32 (Every tripartite Quantum State Forms an Algebra). Let [¢) € HQ H Q@ H be a quantum
state and let M;, M; be complete sets of measurement operators. Then (|), M;, M;) forms an algebra.

qﬂ A ¥-product
ar W% _ q B U _ Q‘

\J 5,

time
_»

The quantum state [¥) = 37, ¥*|ijk) is drawn as a triangle, with the identity operator on each
subsystem acting as time goes to the right on the page (represented as a wire). Projective measurements
with respect to M; and M; are made. We define these complete measurement operators as

N

My =il (3] (A4)
=1
N

M = Zjl¢j><¢j| (A5)

such that we recover the identity operator on the N-level subsystem viz
N N
Do lo) (sl =D 1wl = 1n (A6)
j=1 i=1

The measurements result in eigenvalues 7, j leaving the state of the unmeasured system in

) = Do ([0 (8Iy)l2) (A7)
Yz
where (Q| def |Q)T that is, the transpose is factored into: (i) taking the dagger (diagrammatically this
mirrors states across the page) and (ii) taking the complex conjugate. Hence,
=t T A
@ =)' =@ = (A8)
and if we pick a real valued basis for |z), |y),|z) =]0),|1) we recover
jw) =D " () (yldy) =) (A9)
Yz

As stated, this physical interpretation is not our main interest. Even in its absence, we’re able to write
down and represent a quantum state purely in terms of a connected network, where each component is fully
defined in terms of algebraic laws.

Appendix B: XOR-algebra

Here we review the concept of an algebraic normal form (ANF) for Boolean polynomials, commonly known
as PPRMs. See the reference book [68] and the historical references [70, [71] for further details.
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Definition 33. The XOR-algebra forms a commutative ring with presentation M = {B, A, ®} where the
following product is called XOR

—®—:BxB—B:(a,b) > a+b—abmod 2 (B1)
and conjunction is given as

—AN—:BxB—B:(a,b) = a-b, (B2)

where a - b is regular multiplication over the reals. One defines left negation =(—) in terms of @ as =(—) =
1&#(—):B—»B:a—1—a. (B3)

In the XOR-algebra, 1-5 hold. (i) a ®0 = a, (ii) a® 1 = —a, (ili) a® a = 0, (iv) a ® —a = 1 and (v)
aVb=a®b® (aAb). Hence, 0 is the unit of XOR and 1 is the unit of AND. The 5th rule reduces to
aVb=a®db whenever a A b = 0, which is the case for disjoint (mod 2) sums. The truth table for AND
follows

X | i) |f($1,$2) =T AN xTo
010 0
011 0
110 0
1 1 1

Definition 34. Any Boolean equation may be uniquely expanded to the fixed polarity Reed-Muller form
as:
flz1, 22, yx) = co D 127" B c2x5? @ -+ D cpri™ B
Crnp127' X" @ - D Cop12] X5, ., T, (B4)
where selection variable o; € {0,1}, literal 7" represents a variable or its negation and any c term labeled

co through ¢; is a binary constant 0 or 1. In Equation (B4) only fixed polarity variables appear such that
each is in either un-complemented or complemented form.

Let us now consider derivation of the form from Definition [34. Because of the structure of the algebra,
without loss of generality, one avoids keeping track of indices in the N node case, by considering the case
where N = 2™ = 8.

Example 35. The vector ¢ = (¢, ¢1, ¢2, ¢3, ¢4, C5, Co, C7, )T Tepresents all possible outputs of any function
f(x1, 22, x3) over the algebra formed from linear extension of Zg X Zg X Zo. We wish to construct a normal
form in terms of the vector ¢, where each ¢; € {0,1}, and therefore ¢ is a selection vector that simply
represents the output of the function f: B x B x B — B :: (21, z2,23) — f(21,22,23). One may expand f
as:

f(i[:l,xg, ,Tg) = (CQ -y - X - ﬁxg) V (Cl Bl B ) '1'3) V (Cg BV AR I ﬁxg)
\/(03 c X X .Ig) V (C4 R % ¥ o B _‘Ig) V (05 + XX .Ig)
V(ce - 1 - 2 - ~x3) V (C7 - 21 - T2 - X3) (B5)
Since each disjunctive term is disjoint the logical OR operation may be replaced with the logical XOR

operation. By making the substitution —a = a @ 1 for all variables and rearranging terms one arrives at the
following normal formf

flxr,xa,23) = co® (coPca) 21 B (coDca) x2®(coDer) 23D (cogPea®ey Beg) 1+ X

@(CO@C1@04@C5)~IE1'Ig@(COEBClEBCQ@Cg)-IEQ~I3
@(60@01@02@03@04@05@06@07)'$1'$2'$3 (BG)

9 For instance, —z1-—a2-—zs = (1631)-(1632)-(16z3) = (1B Br2dr2-73) (1833) = 1631 ProBrsBr1 3BT T3DT1 T2 T3
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The set of linearly independent vectors, {z1, 2, 3,21 - T2, 1 - T3, X2 - T3, L1 - T2 - 3} combined with a set
of scalars from Equation [B6l spans the eight dimensional space of the Hypercube representing the Algebra.
A similar form holds for arbitrary N.

f($17$€275€3)=(al)'26169(@2)-:10269(:63)-:63@(@1 Dasx ay 6902)-951-:102
®(a1 Daz®arDez)-x1 23D (a2 D ag Dags®cy) -T2 - T3
®(a1 ®az®az®a; ®az®az)-xy -T2 - T3 (B7)
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