
GDP Festschrift ENTCS, to appear

Event Domains, Stable Functions and

Proof-Nets

Samson Abramsky1 ,2

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, U.K.

Abstract

We pursue the program of exposing the intrinsic mathematical structure of the “space of proofs” of a
logical system [AJ94b]. We study the case of Multiplicative-Additive Linear Logic (MALL). We use tools
from Domain theory to develop a semantic notion of proof net for MALL, and prove a Sequentialization
Theorem. This work forms part of a continuation of previous joint work with Radha Jagadeesan [AJ94b]
and Paul-André Melliès [AM99].

Keywords: Linear Logic, Proof Nets, Domain Theory, Event Structures, Stable Functions.

Dedication

Gordon Plotkin was a major formative influence on me as a researcher, as he

has been on the entire field of semantics of computation. He has also been a true

friend, over these many years. It is a great pleasure to dedicate this paper to him

on the occasion of his sixtieth birthday. I hope he will be pleased by the new uses

it finds for some of the fundamental tools of semantic investigation which he has

done so much to create and develop.

1 Introduction

One can distinguish two views on how Logic relates to Structure:

(i) The Descriptive View. Logic is used to talk about structure. This is the view

taken in Model Theory, and in most of the uses of Logic (Temporal logics, MSO

etc.) in Verification. It is by far the more prevalent and widely-understood

view.

1 This research was partly supported by EPSRC Grant EP/D038987/1
2 Email: samson@comlab.ox.ac.uk

mailto:samson@comlab.ox.ac.uk

(ii) The Intrinsic View. Logic is taken to embody structure. This is, implic-

itly or explicitly, the view taken in the Curry-Howard isomorphism, and more

generally in Structural Proof Theory, and in (much of) Categorical Logic. For

example, in the Curry-Howard isomorphism, one is not using logic to talk about

functional programming; rather, logic (in this aspect) is functional program-

ming.

If we are to find structure in the proof theory of a logic, we face a challenge. Proof

systems are subject to many minor “design decisions”, which does not impart con-

fidence that the objects being described — formal proofs — have a robust intrinsic

structure. It is perhaps useful to make an analogy with Geometry. A major concern

of modern Geometry has been to find instrinsic, typically coordinate-free, descrip-

tions of the geometric objects of study. We may view the rôle of syntax in Proof

Theory as analogous to coordinates in Geometry; invaluable for computation, but

an obstacle to finding the underlying invariant structure.

Some particularly promising progress in finding more intrinsic descriptions of

proofs, their geometric structure, and their dynamics under Cut-elimination, has

taken place in the study of proof-nets in Linear Logic [Gir87], and the associ-

ated study of Geometry of Interaction [Gir89]. On the semantic side, the develop-

ment of Game Semantics and Full Completeness results [AJ94b] (and subsequently

[Loa94,BS98,AM99,DHPP99,BHS05]) has greatly enriched and deepened the struc-

tural perspective.

In the present paper, we build on previous joint work with Radha Jagadeesan

[AJ94a] and Paul-André Melliès [AM99]. We study Multiplicative-Additive Linear

Logic (MALL). We use tools from Domain theory to develop a semantic notion of

proof net for MALL, and prove a Sequentialization Theorem for this notion.

1.1 Related Work

We build on the previous work on proof-nets and semantics for MALL. In particular,

our “semantic” approach to proof nets for MALL can be seen as an (in our opinion,

more elegant) alternative to the development of weighted nets in [Gir96]. Recent

work by Faggian and Curien on Ludics nets [FM05,CF05] is also clearly related

— although it should be emphasized that Ludics deals with polarized (and hence

“sequentialized”) Linear Logic, whereas we are dealing with full classical MALL.

See [Abr03] for further discussion of this issue.

An important recent contribution to the proof theory of MALL is the work of

Hughes and van Glabeek [HvG05]. They give what can be considered an optimal

notion of proof net for MALL, in the sense that it contains the minimal informa-

tion necessary to reconstruct a sequent proof. We hope ultimately to extend our

approach to give an analysis of their notion of proof net, and to relate it to our

semantic ideas. However, this is left to future work.

Finally, as already mentioned, the present paper builds on our own previous

joint work with Radha Jagadeesan [AJ94a] and Paul-André Melliès [AM99]. In

particular, the underlying model which gives rise to our “semantic” notion of proof

nets is essentially derived from the construction given in [AJ94a] (which can be

seen as the precursor of the Int or G construction [JSV96,Abr96]); even the idea of

a domain-theoretic process for the additive part, which builds a tree for each additive

resolution, to which is glued a permutation on the leaves giving the multiplicative

structure, can be found in embryonic form in Section 7 of that paper.

The main novel feature of the present paper is the full semantic development of

proof-nets. We give a detailed proof of the Sequentialization Theorem for our notion.

This follows the lines of the proof in [Gir96] quite closely, but given the very different

form of our proof-nets — no explicit links or weights, the principal ingredients in

[Gir96] — this seems worthwhile. Moreover, we obtain a stronger result than that

in [Gir96]. The relation of “sequentializability” used there is a many-many relation

between proof nets and sequent proofs; while we define a canonical mapping from

sequent proofs to proof nets, such that the sequent proof obtained from a proof

net by sequentialization always denotes a proof net which approximates the one we

started with. Indeed, this result can only meaningfully be stated in our domain-

theoretic setting, where there is a natural order on proof-nets. This in turn opens

up an interesting structure of “degrees of parallelism” within each equivalence class

of proof nets under “extensional equivalence”.

The present paper in fact forms a part of a larger work [Abr07], in which we

revisit the work in [AM99], and prove Full Completeness of a concurrent game se-

mantics for MALL. Much effort in [AM99] is expended on mapping strategies to

proof-structures in the sense of [Gir96], in order to use the sequentialization result

in that paper. The present treatment, in which we use a notion of proof net which

is close to the semantic notion of strategy employed in [AM99], and prove sequen-

tialization directly for that notion, seems more self-contained and illuminating.

1.2 Outline

We briefly outline the contents of the paper. In Section 2 we review proof nets and

sequentialization for MLL, as a warm-up and template for the subsequent treatment

of MALL. In Section 3, we review the basic syntax of MALL. Some notions of domain

theory which we will use are reviewed in Section 4, to make the paper reasonably

self-contained. In Section 5, the semantic notion of proof structure is introduced.

Comparisons with other notions, and the domain-theoretic fine structure of semantic

proof structures, are discussed in Section 6. The corresponding notion of proof net

is defined in Section 7, and Sequentialization is proved in Section 8. Section 9

concludes.

Acknowledgements

As already mentioned, the work in the present paper builds on previous joint

work with Radha Jagadeesan and Paul-André Melliès. I thank them both for the

splendid collaborations I have enjoyed with them, and also Dominic Hughes, with

whom I had some very stimulating and clarifying discussions concerning his work

with Rob van Glabbeek on MALL proof-nets.

2 MLL

The Multiplicative fragment of Linear Logic, minus the units — henceforth MLL —

is a kind of logical paradise. Everything works beautifully smoothly and naturally.

The ideas are simple and compelling, and yet non-trivial. Thus we will use it as

a template for our subsequent discussion of Multiplicative-Additive Linear Logic

(MALL).

2.1 Syntax of MLL

The formulas of the system are built from literals, i.e. propositional atoms α, β,

. . . , (positive literals), and their negations α⊥, β⊥, . . . , (negative literals), by the

grammar

A ::= α | α⊥ | A⊗A | AOA.

Here ⊗ (Times) and O (Par) are the multiplicative connectives.

Negation is definitionally extended to general formulas by the equations

(A⊗B)⊥ = A⊥ OB⊥ (AOB)⊥ = A⊥ ⊗B⊥ A⊥⊥ = A.

We also define linear implication A ⊸ B by:

A ⊸ B = A⊥ OB.

A sequent in MLL is an expression ⊢ Γ, where Γ is a finite sequence of formulas.

2.2 Sequent Calculus for MLL

Axiom/Cut

⊢ A,A⊥
Id

⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ,∆
Cut

Structural Rule
⊢ Γ
⊢ σΓ

Exchange

Multiplicatives

⊢ Γ, A ⊢ ∆, B

⊢ Γ,∆, A⊗B
Times

⊢ Γ, A,B

⊢ Γ, AOB
Par

2.3 Proof Structures

We now turn to a “geometrization” of syntax. We shall introduce (Cut-free) proof-

structures in a streamlined form [Gir88,AJ94b]. We consider firstly the version of

the sequent calculus where the Axiom is restricted to atomic instances:

⊢ α,α⊥
Id

Note that any Cut-free proof of a sequent Γ will necessarily reproduce the struc-

ture of the formulas in Γ, in some order of application of the rules which is of no

intrinsic significance, except insofar as it indicates how the occurrences of literals

are introduced in pairs by the Axiom. Thus we take the bold step of saying that

the essential content of a proof is this information, which can be represented by

a listing of the matched pairs of literal occurrences {li, lj}, where lj = l⊥i . More

conveniently, we can take a proof structure to be a literal-respecting involution on

the set L(Γ) of literal occurrences in Γ: i.e. a permutation

σ : L(Γ) −→ L(Γ)

such that σ = σ−1, and if σ(a) = b, then λ(a) = λ(b)⊥, where λ(a) is the literal

of which a is an occurrence. Note that such a function is necessarily fixpoint-free,

i.e. σ(a) 6= a for all a ∈ L(Γ).

Example

Consider the sequent ⊢ α⊥ O α⊥, α ⊗ α. There are in fact only two Cut-free

proofs of this sequent (corresponding to the identity and the twist map). They

correspond to the following proof structures:

α⊥ O α

α⊥ α

α⊥ ⊗ α

α⊥ α

α⊥ O α

α⊥ α

α⊥ ⊗ α

α⊥ α

2.4 Interpreting Sequent Proofs as Proof Structures

We now show how every sequent proof can be interpreted as a proof structure.

Axiom

⊢ α,α⊥
Id

We assign the transposition α↔ α⊥.

Tensor
⊢ Γ, A ⊢ B,∆

⊢ Γ, A⊗B,∆
Times

Suppose we have assigned the permutation σ to the proof of ⊢ Γ, A, and τ to the

proof of ⊢ B,∆. Then we assign the disjoint union σ+τ to the proof of Γ, A⊗B,∆.

This makes sense since L(Γ, A⊗B,∆) is the disjoint union of L(Γ, A) and L(B,∆).

Thus

σ + τ(a) = σ(a), a ∈ L(Γ, A), σ + τ(b) = τ(b), b ∈ L(B,∆).

Par
Γ, A,B

⊢ Γ, AOB
Par

Since (essentially) L(Γ, A O B) = L(Γ, A,B), we can assign the same permutation

to the conclusion as to the premise!

2.5 Proof Nets

This raises the question: how can we characterize which permutations arise as the

interpretations of proofs? If we can do this, we have the right to regard such permu-

tations as being the intrinsic representations of proofs, laying bare their essential

structure and content. A first approach is via a geometric criterion: this is the

notion of proof net.

Switching Graphs

A switching S of Γ assigns L or R to each occurrence of O. Given a sequent Γ,

a proof structure σ, and a switching S, the switching graph GΓ(σ, S) has:

• subformula occurrences in Γ as vertices;

• an edge connecting A to A ⊗ B and an edge connecting B to A ⊗ B for each

occurrence of A⊗B;

• an edge connecting A to AOB if S assigns L to AOB, and an edge connecting

B to AOB if S assigns R to AOB;

• an edge connecting literal occurrences a and b if σ(a) = b.

The Danos-Regnier criterion

A proof-structure σ for Γ is an MLL proof-net if for every switching S, GΓ(σ, S)

is acyclic and connected.

Proposition 2.1 (Soundness) The proof structures arising as interpretations of

sequent proofs are proof nets.

The major result on MLL proof nets is the following [Gir87,DR89,Gir91,Tro92]:

Theorem 2.2 (Sequentialization Theorem) Every proof net arises from a se-

quent proof.

The key case in the proof is when all the non-literal conclusions in the sequent

are tensors; we need to find a splitting tensor A⊗B such that we can split Γ, A⊗B

into Γ1, A and Γ2, B in such a way that our proof-net decomposes into two sub-proof

nets with these conclusions. This is done via the notion of empire. We will see all

these ideas developed in detail in the more complex setting of MALL.

Discussion

The step involved in representing proof structures by permutations on literal oc-

currences — which is not the standard formulation of proof-nets [Gir87,Gir91,Tro92]

— is already a significant step towards a semantic view of proofs. It leads directly

to the Geometry of Interaction [Gir88,Gir89], and to Full Completeness results

[AJ94b]. These in turn provide an elegant compositional account of the dynamics

of Cut-Elimination. Our approach can be seen as a continuation of these ideas in

the richer setting of MALL, where new ideas are needed.

3 Syntax of MALL

The formulas of the system are built from literals, i.e. propositional atoms α, β,

. . . , and their negations α⊥, β⊥, . . . , by the grammar

A ::= α | α⊥ | A⊗A | AOA | A⊕A | A&A.

Here ⊗ and O are the multiplicative connectives, while ⊕, & are the additive con-

nectives.

Negation is definitionally extended to general formulas by the equations

(A⊗B)⊥ = A⊥ OB⊥ (AOB)⊥ = A⊥ ⊗B⊥

(A⊕B)⊥ = A⊥&B⊥ (A&B)⊥ = A⊥ ⊕B⊥

A⊥⊥ = A.

A sequent in MALL is an expression ⊢ Γ, where Γ is a finite sequence of formulas.

3.1 Sequent Calculus for MALL

Axiom/Cut

⊢ A,A⊥
Id

⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ,∆
Cut

Structural Rule
⊢ Γ
⊢ σΓ

Exchange

Multiplicatives

⊢ Γ, A ⊢ ∆, B

⊢ Γ,∆, A⊗B
Times

⊢ Γ, A,B

⊢ Γ, AOB
Par

Additives

⊢ Γ, A

⊢ Γ, A⊕B
PlusL

⊢ Γ, B

⊢ Γ, A⊕B
PlusR

⊢ Γ, A ⊢ Γ, B

⊢ Γ, A&B
With

3.2 Generalized Axioms

In order to carry out the proof of the Sequentialization Theorem, it is useful to

introduce generalized axioms, following [Gir91,Gir96]. In our setting, it is most

convenient to proceed in the following manner. We introduce a set of parameters

ξ, ζ, . . ., distinct from the propositional atoms α, β, Each parameter ξ has an

arity k, and parameter instances ξ1, . . . , ξk. Formulas can be built from parameter

instances as well as propositional atoms. We extend the definition of negation by

ξ⊥i = ξi.

For each parameter ξ of arity k there is a sequent rule (a “proper axiom”):

⊢ ξ1, . . . , ξk
Ax

The idea is that ξ1, . . . , ξk indicate the conclusions of a ‘box’. Given a Cut-free

sequent proof Π1 of Γ[ξ1, . . . , ξk], and a proof Π2 of ∆ = B1, . . . , Bk, we can form

a sequent proof Π1[Π2] of Γ[∆/ξ1, . . . , ξk] by replacing the use of Ax to derive ⊢

ξ1, . . . , ξk by Π2.

3.3 Occurrences and Linear Contexts

It is necessary to speak of occurrences of formulas in a given formula or sequent.

This often leads to awkwardness, imprecision, or both. A convenient way to handle

occurrences is via linear contexts. These are built up with the same syntax as

formulas or sequents, but with a single use of a “hole” [·].

Example The context A ⊗ ([·] &C) corresponds to the occurrence of B in the

formula A⊗ (B&C).

Linear contexts are in evident biunique correspondence with occurrences, and

permit convenient inductive definitions. We shall pass freely between an occurrence

O of a formula A in a formula B (or a sequent Γ), and the corresponding context

C[·] such that C[A] = B (or C[A] = Γ). We shall use the letters O, P , Q, R for

occurrences, V and W for With occurrences and L and M for literal occurrences.

We write O(Γ) for the set of occurrences in a sequent Γ; and L(Γ) for the set of

occurrences of literals.

4 Background on Domains

In order to make the paper reasonably self-contained, we shall briefly review some

background material on domain theory. A useful reference is [Win86]. although we

will work in a much more restricted setting. The seminal references for these ideas

are [KP93,NPW81]

We make a global assumption, that all domains considered in this paper are

finite. This means that we can disregard all considerations of completeness and

continuity. All the definitions in this section are made under the assumption that

the underlying poset is finite.

We shall work exclusively with bounded-complete posets; that is, partially or-

dered sets in which every bounded subset (i.e. subset having an upper bound in the

poset) has a least upper bound. Such posets also have non-empty meets. Note in

particular that bounded complete posets have least elements, denoted ⊥.

A prime in a poset is an element p such that p ⊑ x ⊔ y implies p ⊑ x or p ⊑ y.

We write Pr(P) for the set of prime elements of P . An event domain is a bounded

complete poset D in which every element is the least upper bound of the primes

below it, which we write

x =
⊔

↓Pr(x),

where ↓Pr(x) = {p ∈ Pr(D) | p ⊑ x}.

Proposition 4.1 An event domain is distributive: that is

x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z)

whenever y and z are bounded. Otherwise put, every principal lower set ↓(x) is a

distributive lattice.

The covering relation in a poset is defined by:

x ≺ y ≡ x ⊏ y ∧ (x ⊑ z ⊑ y ⇒ (x = z) ∨ (y = z)).

An atom in an event domain is an element a such that ⊥ ≺ a. An event domain is

atomic if all primes other than ⊥ are atoms.

Another class of event domains we will refer to are the (distributive) concrete

domains, which satisfy an additional axiom. We omit the definition, which can be

found in [KP93,Win86].

Constructions on Domains

We will use a few constructions on domains:

• The one-point domain, written 1.

• The cartesian product D × E, ordered pointwise.

• The lift D⊥ obtained by adjoining a new bottom element to D.

• The separated sum (D + E)⊥ obtained by forming the disjoint union of D and

E, and adjoining a bottom element.

• Flat domains X⊥ obtained by adjoining a bottom element to a set X, with the

order relation: x ⊑ y iff x = ⊥ or x = y.

• The set of partial bijections on a set X, ordered by inclusion.

• We use the notation O = 1⊥, for the Sierpinski domain, i.e. the 2-element lattice

⊥ ⊑ ⊤.

Proposition 4.2 Event domains and concrete domains are closed under all the

above constructions. Atomic domains are closed under all but lifting and separated

sum.

Notation We write Max(D) for the set of maximal elements of an event domain D,

and MaxPr(D) for the set of maximal primes in D, i.e. MaxPr(D) = Max(Pr(D)).

Thus a “maximal prime” is maximal in Pr(D), as a sub-poset of D.

4.1 Functions on Domains

All functions between domains will be assumed to be monotone:

x ⊑ y ⇒ f(x) ⊑ f(y).

We will be concerned with an additional property, of stability [Ber78]. A function

f : D −→ E is stable (first version) if whenever x and y are bounded, f(x ⊓ y) =

f(x) ⊓ f(y). There is an equivalent definition, which is more enlightening, and will

prove more useful to us. Suppose we have an input x ∈ D, and y ∈ E such that

y ⊑ f(x). We define the modulus of stability to be the least x′ ⊑ x such that

y ⊑ f(x′). Such an element may not exist in general. If it always does, we say that

f is stable (second version), and denote this modulus by M(f, x, y). If f is stable

(first version) we can define this modulus by

M(f, x, y) =
l

{x′ ⊑ x | y ⊑ f(x′)}.

Conversely, one can show that if D and E are event domains (and actually much

more generally), the second version of stability implies the first.

A further property we shall refer to will be sequentiality. We will not define this

here; see [Cur93].

Proposition 4.3 Both the stable and the sequential functions are closed under all

the following operations associated with the constructions on domains described in

the previous sub-section; constant functions, composition, identities, projections,

pairing, injections, and the usual conditionals.

We will also make some use of embedding-projections, which express how one

domain fits as a sub-domain inside another. An embedding-projection is written

e : D � E : p

where D and E are event domains, and e : D −→ E and p : E −→ D are monotone

maps, satisfying:

p ◦ e = 1D, e ◦ p ⊑ 1E .

The ordering on functions we are using here is the pointwise order:

f ⊑ g ⇔ ∀x. f(x) ⊑ g(x).

This is the only order on functions we will use, even for stable functions; we will

never need to consider function spaces and higher-order functions.

4.2 Decompositions of Domains

We develop some technical notions which will prove useful.

We introduce a notion of restriction on event domains D. If d is an element of

D, and P is a set of primes in D, we define:

d↾P =
⊔

{p ∈ ↓Pr(d) | p ∈ P}.

We can define a sub-domain DP of D in either of the following two equivalent ways:

• DP is generated by P , as the set of joins of bounded subsets of P .

• DP is the image of the deflation rP : d 7→ d↾P .

We can define an embedding-projection

e : DP �D : p

where e : DP
⊂ - D is the inclusion, and p(d) = d↾P .

Now suppose that we have a monotone function

f : V1 × V2 −→ D.

We assume given sets of primes P1, P2 ⊆ D, and corresponding embedding-projections

ei : Di �D : pi, i = 1, 2.

We assume that the sub-domains Di are themselves event domains. Note that there

are stable embedding-projections

φi : Vi � V : πi, i = 1, 2

φ1(v1) = (v1,⊥), φ2(v2) = (⊥, v1),

where V = V1 × V2. Thus we can define functions

fi = pi ◦ f ◦ φi : Vi −→ Di i = 1, 2.

Note that if f is stable, so are the fi, since φi is stable, while pi preserves all meets

since it is a projection.

How can we (approximately) reconstruct f from f1 and f2? We assume that

f ◦φi factors through the inclusion Di
⊂ - D, i = 1, 2. Hence we can define stable

functions

f ′i = ei ◦ fi ◦ πi : V −→ D i = 1, 2.

Note that f ′i ⊑ f , i = 1, 2. Hence we can define f1[f2] : V −→ E by

f1[f2] : v 7→ f ′1(v) ⊔ f
′
2(v).

Proposition 4.4 (i) f1[f2] ⊑ f .

(ii) If fi ⊑ gi, i = 1, 2, then f1[f2] ⊑ g1[g2].

5 Semantic Proof Structures

We begin by reviewing the Hughes-van Glabeek (HvG) definition of proof structure

and proof net [HvG05].

Preliminary definitions for HvG Proof nets

They define an additive resolution of a MALL sequent Γ to be the result of

deleting one argument of each occurrence of an additive connective &/⊕. An axiom

link is an edge between a pair of complementary occurrences of some literal. A

linking λ on an additive resolution of Γ is a set of axiom links, each of which

involves occurrences which remain in the additive resolution, and such that each

literal occurrence remaining in the additive resolution is in exactly one link in λ. A

&-resolution of Γ is the result of deleting one argument of each occurrence of & in

Γ. A linking is on a &-resolution if every literal occurrence in the linking is in the

&-resolution. A O-switching of an additive resolution of Γ is the result of deleting

one argument of each occurrence of O in the additive resolution.

Definition 5.1 An HvG proof-net for Γ is a set Θ of linkings on additive resolutions

of Γ such that:

(i) For each &-resolution of Γ, there is exactly one linking λ ∈ Θ on that &-

resolution.

(ii) Every O-switching of every λ ∈ Θ is connected and acyclic.

(iii) A further, rather subtle technical condition known as Toggling.

We shall not discuss Toggling further here. It remains a far from intuitive notion,

and a goal for future research is to understand it better. We hope that the tools

developed in the present paper will help towards this. We shall take a minor lib-

erty with terminology, and refer to sets of linkings satisfying the first of the above

conditions as HvG proof-structures.

5.1 A Domain-theoretic Formalization of HvG

The various notions used by Hughes and van Glabeek, such as additive resolution,

&-resolution etc., are quite intuitive. They also provide formal definitions of these

concepts, in terms of labelled graphs. We shall pursue an alternative, more “seman-

tic” formalization, in domain-theoretic terms. This exposes some mathematical

structure inherent in these definitions, but not made explicit in [HvG05], and which

will prove useful and enlightening. Our approach will build on the semantic insights

from [AJ94a,AM99].

Given a MALL sequent Γ, we shall introduce a number of event domains asso-

ciated with Γ. We will use these in our presentation of MALL proof-nets.

5.1.1 Formalizing Additive Resolutions

Firstly, we define a poset D(A) for each MALL formula A, inductively as follows:

D(α) = D(α⊥) = O

D(A⊗B) = D(AOB) = D(A) ×D(B)

D(A&B) = D(A⊕B) = (D(A) + D(B))⊥

D(ξ) = O.

We extend this assignment to sequents Γ = A1, . . . , Ak by

D(Γ) = D(A1) × · · · × D(Ak).

Note that this is consistent with treating the sequent as the Par of its formulas.

Recall that O = 1⊥ is the two-element lattice ⊥ ⊑ ⊤.

The intuitions behind these definitions follow those from [AJ94a,AM99], and are

discussed extensively in [Abr03]. Briefly, the interpretation of multplicative connec-

tives as products reflect their connection with concurrency and causality ; while the

interpretation of the additives as separated sum reflect their connection with choice,

conflict and moments of synchronization (cf. [Gir87,Gir88]). The interpretation of

the atoms by the Sierpinski domain O should be seen as a convenient instance at

which to take what is really a parametric (in fact, functorial) definition, with the

propositional atoms as the parameters.

Notation We shall often write DΓ rather than D(Γ) for convenience.

Example

Consider the sequent Γ = (α⊥ O α⊥)& (α⊥ O α⊥), α⊗ α. The domain DΓ is:

(O2 + O
2)⊥ × O

2.

We illustrate the bottom element and atoms of this domain as follows:

(⊥, (⊥,⊥))

(inl((⊥,⊥)), (⊥,⊥)) (inr((⊥,⊥)), (⊥,⊥)) (⊥, (⊤,⊥)) (⊥, (⊥,⊤))

The increase in the ordering in the first component to decide the separated sum

corresponds to resolving the additive choice.

We now relate this formal structure to the HvG notions, with the following

simple observation.

Proposition 5.2 The maximal elements of DΓ are in one-to-one correspondence

with the additive resolutions of Γ; while the maximal primes of DΓ are in one-to-one

correspondence with the occurrences of literals and parameter instances in Γ.

The latter part of this proposition shows the convenience of using O as the

interpretation of the literals. Note, for example, that the interpretation of any purely

multiplicative sequent Γ is the product O
L(Γ) indexed over the literal occurrences in

Γ. There is a unique maximal element, namely the tuple in which all components

are ⊤. The maximal primes are those tuples in which exactly one component is

⊤, yielding the bijective correspondence. If we had used the one-point domain 1

instead of O, then the corresponding product would still have just one element!

In the above example, note that there are two additive resolutions of this for-

mula, corresponding to choosing the left or right argument of &; the corresponding

maximal elements are (inl((⊤,⊤)), (⊤,⊤)) and (inr((⊤,⊤)), (⊤,⊤)). The leftmost

occurrence of α (positive literal) corresponds to the maximal prime (⊥, (⊤,⊥)).

Notation

For each literal occurrence L in Γ, we write aL for the corresponding maximal

prime in DΓ. Given d ∈ DΓ, we define:

|d| = {aL | L ∈ L(Γ), aL ⊑ d}.

Fact 5.3 If d ⊑ d′, then |d|Γ ⊆ |d′|Γ.

5.1.2 Formalizing Linkings

To specify a linking on an additive resolution of Γ explicitly, we must give two

things:

• An additive resolution of Γ, which by Proposition 5.2 corresponds to a maximal

element d of DΓ.

• A set of axiom links which partition the literal occurrences in the additive resolu-

tion into complementary pairings {L,L⊥}. This amounts to specifying a literal-

respecting partial involution (just as for MLL) on |d|.

This is naturally formalized as a dependent sum. We write S∂(X) for the set of

partial bijections on a set X, ordered by inclusion. Representing partial bijections

by their graphs, we have:

X ⊆ Y =⇒ S∂(X) ⊆ S∂(Y).

We now define the domain of pre-linkings:

EΓ = (Σd ∈ DΓ)S∂(|d|)

= {(d, π) | d ∈ DΓ, π ∈ S∂(|d|)}

with the pointwise ordering:

(d, π) ⊑ (d′, π′) ⇐⇒ d ⊑ d′ ∧ π ⊆ π′.

We define a linking to be a maximal element (d, π) of EΓ such that π is a literal-

respecting involution on |d|.

Example Continued

Continuing with the example from the previous sub-section, a maximal element

of DΓ is d = (inl((⊤,⊤)), (⊤,⊤)). The corresponding set of literal occurrences is

|d| = {ai | i = 1, . . . , 4}, where

a1 = (inl((⊤,⊥)), (⊥,⊥)), a2 = (inl((⊥,⊤)), (⊥,⊥)), a3 = (⊥, (⊤,⊥)), a4 = (⊥, (⊥,⊤)).

The linkings on the additive resolution d are

(d, {a1 ↔ a3, a2 ↔ a4}), (d, {a1 ↔ a4, a2 ↔ a3}).

We illustrate the first of these linkings as follows:

&

O

α⊥ α⊥

⊗

α α

5.1.3 Formalizing &-Resolutions

Let W(Γ) be the set of occurrences of Withs (i.e. of subformulas of the form A&B)

in Γ. Let VΓ be the poset of partial functions from W(Γ) into B = {0, 1}, ordered

by inclusion. Equivalently, VΓ = B
W(Γ)
⊥

, a product of flat domains. We refer to

elements of VΓ as (partial) valuations; maximal elements are total valuations. These

correspond to &-resolutions on Γ in an evident fashion.

If v is a valuation, and W ∈ W(Γ), we define a new valuation v¬W , with

v¬W (W ′) = v(W ′), W ′ 6= W

v¬W (W) = ¬v(W)

where:

¬0 = 1, ¬1 = 0, ¬⊥ = ⊥.

We refer to this as “toggling W”.

We also define the valuation v\W , such that v\W : W 7→ ⊥, and v\W : W ′ 7→

v(W ′), for W ′ 6= W . This extends to a set of With occurrences, v\{W1, . . . ,Wk},

in the obvious fashion.

5.1.4 HvG Proof Structures Formalized

We can now formalize HvG proof structures in our terms.

Definition of HvG proof structures: first attempt

An HvG proof structure on a MALL sequent Γ is a function

f : Max(VΓ) −→ Max(EΓ)

which assigns to each &-resolution (total valuation) a linking on an additive res-

olution of Γ (a maximal element (d, π) of EΓ such that π is a literal-respecting

involution on |d|).

This definition falls short of capturing the HvG definition in that we have not

expressed the condition that the linking corresponding to a &-resolution must be

on that &-resolution. Intuitively, this expresses the idea that the With resolution

is being specified “externally” by the environment or context, and we must simply

replicate this resolution in the corresponding “slice” of the proof structure.

We illustrate the necessity for this condition by the following (non-)example.

Non-Example

Consider the sequent Γ = α⊕ (α&α), α⊥, and the set of linkings {λ1, λ2}:

⊕

⊕

α α

&

α α α⊥

λ1

λ2

If we assign the first linking λ1 to the valuation which sets the unique With-

occurrence W to 0, and the second to the valuation setting W = 1, then we get

a function satisfying the above definition; and yet this set of linkings evidently

does not correspond to any sequent proof. However, both these linkings are on the

&-valuation [W = 1], and hence this is not an HvG proof structure.

In order to formulate the condition that a linking is on a &-resolution, we need to

capture the idea that every literal occurrence L remaining in the additive resolution

d, i.e. such that aL ⊑ d, induces a partial valuation on With occurrences which is

consistent with the &-resolution.

To do this, we need to relate occurrences in the sequent Γ to elements of DΓ.

Semantic Occurrences

For each occurrence of a formula B in A, with corresponding linear context C[·],

we define LC[·]MA ∈ Pr(D(A)):

L[·]MA = ⊥D(A)

LC[·]mBMA mB = (LC[·]MA,⊥), m ∈ {⊗,O}

LAmC[·]MA mB = (⊥, LC[·]MB), m ∈ {⊗,O}

LC[·]aBMA a B = inl(LC[·]MA), a ∈ {&,⊕}

LAaC[·]MA a B = inr(LC[·]MB), a ∈ {&,⊕}

We extend this to occurrences in sequents Γ = Γ1, A,Γ2 by

LΓ1,C[·],Γ2MΓ = (⊥, . . . ,⊥, LC[·]MA,⊥, . . . ,⊥).

Example Continued

In our running example, the unique With occurrence W has the corresponding

prime LW M = (⊥, (⊥,⊥)). Note that in general many distinct syntactic occurrences

can be mapped to the same prime in DΓ.

We define a function

out : DΓ −→ VΓ

which makes explicit how an additive resolution induces a valuation (in general

partial) on With occurrences. For each W ∈ W(Γ), with corresponding context C[·]

with C[A&B] = Γ, we define:

out(d)(W) =



















0, LC[[·] &B]MΓ ⊑ d

1, LC[A& [·]]MΓ ⊑ d

⊥, otherwise

An immediate consequence of the definitions is the following:

Proposition 5.4 If d ∈ DΓ and W ∈ W(Γ), then:

LW M 6⊑ d ⇒ out(d)(W) = ⊥.

Example Continued

In our running example, the additive resolution (inl((⊤,⊤)), (⊤,⊤)) is mapped

by out to the valuation [W = 0], while (inr((⊤,⊤)), (⊤,⊤)) is mapped to [W = 1].

Note that (⊥, (⊤,⊤)) is mapped to [W = ⊥].

For convenience, we then lift this function to linkings:

p : EΓ −→ VΓ :: (d, π) 7→ out(d).

Now given a total valuation v, and a linking (d, π), we can define (d, π) to be on

v if for all literal occurrences L:

aL ⊑ d =⇒ out(aL) ⊑ v.

Note that we are using the pointwise order on functions to compare the (in general

partial) valuation out(aL) with v.

There is a final subtlety. The HvG definition of a proof structure is simply a set

of linkings. When we “uniformize” their definition into a function from valuations

to linkings, this set will be the image of the function. Thus the condition that

for every &-resolution, there is a unique linking in the set which is on that &-

resolution, translates to uniqueness in the image of the function — a global rather

than pointwise property.

Finally, we can provide our formal definition of HvG proof structures:

Definition 5.5 An HvG proof structure on a MALL sequent Γ is a function

f : Max(VΓ) −→ Max(EΓ)

which assigns to each &-resolution (total valuation) v a linking (d, π) which is on

v. Moreover, it must satisfy the following image-uniqueness condition: for all valu-

ations v′, if (d, π) is on v′, then f(v′) = (d, π) = f(v).

Proposition 5.6 The image-uniqueness condition is equivalent to the following,

more “local” condition:

(Tog) For all With occurrences W , if LW M 6⊑ d, then f(v) = f(v¬W).

Proof. Assume image-uniqueness. If LW M 6⊑ d, then for all aL ⊑ d, out(aL)(W) =

⊥. Hence d is on v¬W , and f(v) = f(v¬W).

For the converse, suppose that d is on v′. We can write v′ = v¬W1···¬Wk
. Suppose

that for some Wi, we had LWiM ⊑ d. Then for some literal occurrence L above Wi,

we would have aL ⊑ d, and out(aL)(Wi) = v(Wi). This would contradict d on v′,

since clearly out(aL) 6⊑ v′. So we must have LWiM 6⊑ d, i = 1, . . . , k. Hence by k

applications of (Tog), f(v) = f(v′). 2

Non-Example Continued

We re-examine our counter-example to our first attempt at defining HvG. This

translates into the function

[W = 0] 7→ ((inl(inl(⊤)),⊤), {a1 ↔ a5}), [W = 1] 7→ ((inr(inr(⊤)),⊤), {a4 ↔ a5})

where

a1 = (inl(inl(⊤)),⊥), a4 = (inr(inr(⊤)),⊥), a5 = (⊥,⊤).

Note that this function does assign a linking to each valuation, which is on that

valuation; however, since the assignment to [W = 0] is also on [W = 1] (since

out(a1) = ⊥), it fails the image-uniqueness property.

5.2 Monotone Proof Structures

The HvG definitions are phrased in terms of complete additive and &-resolutions,

which correrspond to maximal elements of our domains. Nevertheless, we have

already found the domain structure useful, in defining occurrences as primes, and

in formalizing the condition of a linking being on a &-resolution. Moreover, the

HvG Toggling condition and related notions refer implicitly to partial valuations

(via saturated sets of linkings) [HvG05].

We shall now make further and more essential use of the domain structure, to

formulate a wider notion of proof structure, which we will subsequently use as the

basis for our notion of proof net.

A monotone proof structure is simply a monotone function

f : VΓ −→ EΓ.

Note that such a function maps arbitrary valuations, not just total ones, into arbi-

trary pre-linkings.

What conditions should such a proof structure satisfy? An obvious one is that

its restriction to total valuations should give rise to an HvG proof structure:

(PS1) The monotone function f cuts down to a map

fm : Max(VΓ) −→ Max(EΓ)

which is an HvG proof structure.

Next, we shall generalize the condition of unique linkings for each &-resolution to

cover partial valuations. The HvG definitions are phrased in a “top-down” style in

terms of linkings. In our setting, it is preferable to work upwards in the ordering, in

a more constructive fashion. It then becomes more natural to formulate conditions

in terms of the With occurrences themselves. In fact, we have already seen an

example of such a reformulation in Proposition 5.6.

A first condition is that “relevant” With occurrences — those reachable in the

output — should be decided as they are in the input. Formally:

(PS2) For W ∈ W(Γ), and f(v) = (d, π):

LW M ⊑ d =⇒ out(d)(W) = v(W).

Proposition 5.7 The condition (PS2) implies that p ◦ f ⊑ id, and that (d, π) is

on v.

Proof. For a With occurrence W ∈ W(Γ), if out(d)(W) 6= ⊥, then LW M ⊑ d, and

hence by (PS2), out(d)(W) ⊑ v(W). Thus p ◦ f ⊑ id. Similarly, if aL ⊑ d, then

out(aL) ⊑ out(d) ⊑ v. 2

Example For a simple example, consider the formula α&α. Any monotone function

f which maps [W = 0] either to ⊥ or to inr(⊤) violates (PS2); in fact, the only

permissible choice is of the form inl(d).

Proposition 5.8 Given a valuation v, and d ∈ DΓ such that out(d) ⊑ v, there is

a least d′ ⊒ d satisfying (PS2): i.e. such that, for all With occurrences W :

LW M ⊑ d′ =⇒ out(d′)(W) = v(W).

Notation: We write d′ = γv(d).

Proof. We define Dv = {x ∈ DΓ | out(x) ⊑ v}. We define a function on Dv:

x 7→ x⊔{p ∈ Pr(DΓ) | ∃W. LW M ⊑ x ∧ LW M ≺ p ∧ out(x)(W) ⊏ out(p)(W) = v(W)}.

This function is increasing, and hence has a least fixpoint d′ above d. By the fixpoint

property, d′ satisfies (PS2). It is easily checked that d′ is the meet of all elements of

DΓ above d which satisfy (PS2), and that γv is a closure operator onDv. Intuitively,

the process of constructing γv(d) = d′ “fills all (hereditarily) accessible With cells

according to v”. 2

Proposition 5.9 (PS2) is equivalent to the following, more algebraic condition:

p ◦ f ⊑ id ∧ (γv × id) ◦ f(v) = f(v).

We shall generalize the “global” aspect of the unique linkings condition by the

following equation:

(PS3) If v is a total valuation, then f ◦ p ◦ f(v) = f(v).

This encapsulates the idea that the only With choices which actually affect the

output are those which are “relevant” or “reachable”, and hence appear in the

output. This equation can also be seen as replacing the rather obscure “technical

condition” in [Gir96].

Proposition 5.10 Let f be a monotone proof structure satisfying (PS2). Then

(PS3) is equivalent to the following, more “local” condition:

(Loc): If v is total and f(v) = (d, π), then for any W1, . . . ,Wk ∈ W(Γ):

∀i. LWiM 6⊑ d =⇒ f(v) = f(v\{W1, . . . ,Wk}).

Proof. Firstly, assume (PS3). If LWiM 6⊑ d, then p ◦ f(v)(Wi) = ⊥. Hence

f(v) = f ◦ p ◦ f(v) ⊑ f(v\{W1, . . . ,Wk}), while f(v\{W1, . . . ,Wk}) ⊑ f(v) by

monotonicity.

Conversely, assume (Loc). By (PS2), v′ = p ◦ f(v) ⊑ v. We can write v′ =

v\{W1, . . . ,Wk}, where LWiM 6⊑ d, i = 1, . . . , k. Hence by (Loc), f(v′) = f(v). 2

By monotonicity, the condition (Loc) evidently implies that if f(v) = (d, π)

with v total, then for any W ∈ W(Γ):

LW M 6⊑ d =⇒ f(v) = f(v¬W)

which by Proposition 5.6 is equivalent to the image-uniqueness part of the linkings

condition.

Hence (PS1) is over-specified; it is sufficient to ask that f cuts down to a map

fm carrying total valuations to linkings.

Discussion

It would have been more in the spirit of making definitions constructively, “from

below”, to have stated the condition (PS3) for all valuations, not just total ones.

In fact, this stronger axiom would have led to a perfectly viable theory of stable

proof nets; in particular, the stable proof nets we shall assign to sequent proofs in

Section 7 do satisfy this stronger condition. Our reasons for preferring the weaker

axiom are as follows:

• Firstly, we wish to allow a wider class of proof structures, beyond the stable ones,

with an eye to future developments. The restricted condition we have given allows

for this. For example, Proposition 6.1 in the next Section would no longer hold

if we used the stronger axiom.

• The condition (PS3) as stated suffices to prove Sequentialization (see in partic-

ular the proof of Lemma 8.7), and hence we get a stronger version of the result

by using it.

Non-Example Continued

We look again our counter-example to our first attempt at defining HvG. Any

monotone extension of the function

[W = 0] 7→ ((inl(inl(⊤)),⊤), {a1 ↔ a5}), [W = 1] 7→ ((inr(inr(⊤)),⊤), {a4 ↔ a5})

must map [W = ⊥] to (⊥, d), d ∈ O. Such a function violates (PS3), since

f ◦ p ◦ f([W = 0]) = f([W = ⊥]) = (⊥, d) 6= f([W = 0]).

Definition 5.11 We call a monotone function satisfying (PS1)–(PS3) a semantic

proof structure.

Example Continued

In our running example, the map

[W = ⊥] 7→ ((⊥, (⊥,⊥)),∅), [W = 0] 7→ (d1, π1), [W = 1] 7→ (d2, π2)

where we display the linkings as

(d1, π1) = ((inl((
a1

• ,
a2

•)), (
a3

• ,
a4

•)), {a1 ↔ a3, a2 ↔ a4})

(d2, π2) = ((inr((
a′

1

• ,
a′

2

•)), (
a3

• ,
a4

•)), {a′1 ↔ a4, a
′
2 ↔ a3})

is a semantic proof structure.

6 Proof Structures Compared

6.1 HvG vs. Semantic Proof Structures

Semantic proof structures contain more information than HvG structures; they

describe a process of developing an additive resolution and a linking as a function

of increasing partial information about the &-resolution, as provided by an external

environment. This has both positive and negative aspects:

• On the plus side, this process view leads to an elegant, compositional approach

to Cut-Elimination, as shown in [AJ94a,AM99].

• On the negative side, we can see the HvG proof structures as a “fully abstract”

representation; by adding extra, “intensional” information we are making addi-

tional distinctions.

We can define an extensional equivalence on semantic proof structures:

f ≈ g ⇐⇒ fm = gm.

Thus semantic proof structures are extensionally equivalent if they determine the

same HvG proof structures. Conversely, to each HvG proof structure f there is

a corresponding extensional equivalence class E[f] of semantic proof structures,

comprising all monotone extensions of f satisfying (PS1)–(PS3). We can think

of these extensions as realizations of f .

6.2 Structure of extensional equivalence classes

We make some basic observations.

Proposition 6.1 Each HvG proof structure

f : Max(VΓ) −→ Max(EΓ)

has a greatest monotone extension

f̂ : VΓ −→ EΓ :: v 7→
l

{f(v′) | v ⊑ v′ ∈ Max(VΓ)}

to a semantic proof structure. We refer to this as the canonical extension.

Proof. Since Hughes and van Glabbeek do not consider generalized axioms, we

shall assume these are not present in the sequent. The condition (PS1) is imme-

diate, since (f̂)m = f . Consider some valuation v, and a With occurrence W . Let

(d, π) = f̂(v). Consider firstly the case when LW M ⊑ d, and the sub-case when

v(W) 6= ⊥. For any maximal extension v′ of v, there is a literal occurrence L above

W , such that LW M ⊑ aL ⊑ d′, where f(v′) = (d′, π′). Since d′ must be on v′, we have

out(aL)(W) = v′(W) = v(W). This shows that out(d)(W) = v(W). Now consider

the sub-case when v(W) = ⊥. Then there are maximal extensions v1 and v2 with

v1(W) = 0 and v2(W) = 1. Let (di, πi) = f(vi), i = 1, 2. By the same reasoning as

in the first sub-case, out(d1)(W) = 0 and out(d2)(W) = 1. Hence out(d)(W) = ⊥.

Thus f̂ satisfies (PS2).

Now suppose that v is total, and LWiM 6⊑ d, i = 1, . . . , k. By Proposition 5.10,

to show that f̂ satisfies (PS3), it suffices to show that f̂(v) = f̂(v\{W1, . . . ,Wk}).

The maximal extensions of v\{W1, . . . ,Wk}) have the form v′ = v¬Wi1
···¬Wil

, where

the Wij are a subset of the Wi. For each such v′, we have f(v) = f(v′) by Proposi-

tion 5.6. Hence f̂(v) = f̂(v\{W1, . . . ,Wk}), as required. 2

Note that (f̂)m = f , so we can recover the HvG proof structure from its canonical

extension. In effect, we can regard HvG proof structures as embedded in the larger

space of semantic proof structures via their canonical extensions. Moreover, any

extensional equivalence class can be written as E[fm], where f is any representative

of the class.

It is easily seen that semantic proof structures in the same extensional equiva-

lence class are closed under pointwise sup. Hence we have the following.

Proposition 6.2 E[f] forms an upper semilattice under the pointwise ordering,

with f̂ as the greatest element.

6.3 Sequential vs. parallel realizations

Proposition 6.3 DΓ and EΓ are event domains. S∂(X) and VΓ are atomic do-

mains.

Since semantic proof structures are monotone functions between event domains,

they can in particular be stable or sequential. We note that in general, the canonical

extension f̂ of an HvG proof structure will be a parallel function — i.e. neither

sequential nor stable. The example given at the end of Section 1 of [HvG05] provides

a suitable illustration of this, which we will not reproduce here. A fine structure

of “degrees of parallelism” thus opens up in looking at the realizations E[f] of an

HvG proof structure.

6.4 Girard proof structures

It is also possible to relate semantic proof structures to Girard’s notion of proof

structures for MALL [Gir96], but we will not elaborate on this here. Note that

Hughes and van Glabeek [HvG05] discuss how their proof structures can be con-

verted into Girard proof structures (in general not satisfying the monomial condition

[Gir96]). Also, in the extended version of [AM99], another route is given from a

game semantics closely related to our present approach to Girard proof structures

(in this case, which do satisfy the monomial condition). The purpose of this was to

use the Sequentializability Theorem of [Gir96] in proving the Full Completeness of

the concurrent games model in [AM99]. One the main motivations for our present

approach, by contrast, is to prove Sequentialization directly for our “semantic proof

nets”, and hence enable a more self-contained, and in our view illuminating, route

to Full Completeness.

7 Stable Proof Nets

We now come to the key definition of stable proof nets. These will be the class of

semantic proof structures which correspond to MALL proofs.

One might ask: why should “semantic” objects such as our semantic proof struc-

tures be seen as reasonable representations of proofs? But: why not! We are seeking

a “geometric”, intrinsic representation of proofs. As we have seen, MLL proof nets

can be represented as certain permutations on literals, also a “geometric” and “se-

mantic” idea. The important point is that this representation has sufficient struc-

ture to allow us to prove a Sequentialization Theorem, which enables us to find a

sequent proof for each such permutation. More particularly, given the permutation,

we can define a set of switching graphs and formulate the Danos-Regnier criterion

to identify which permutations arise from proofs.

We shall follow an entirely analogous procedure here. We shall use the domain-

theoretic structure, and in particular the property of stability of the proof structure,

to define a dependency relation in a semantic style, as an analogue to the syntactic

notion in [Gir96]. This will then allow us to define the set of switching graphs for a

stable semantic proof structure, and to formulate a Danos-Regnier criterion. Hence

we can define our notion of stable proof net, for which we can prove an appropriate

form of Sequentialization Theorem (in fact, a stronger form than in [Gir96]).

7.1 The dependency relation

Let f : VΓ −→ EΓ be a stable proof structure, and v ∈ Max(VΓ). Given a With

occurrence W ∈ W(Γ), and an occurrence O ∈ O(Γ), we say that O depends on W

in v if v′(W)↓, where v′ = M(f, v, e), and one of the following cases holds:

(i) e = (LOMΓ,∅).

(ii) O = L is an occurrence of a literal l, and there is an occurrence M of l⊥ such

that

e = (aL ⊔ aM , {(aL, aM), (aM , aL)}).

(iii) O is an occurrence ξi, and e = (Lξ1MΓ ⊔ · · · ⊔ LξkMΓ,∅).

.

7.2 Switchings and Switching Graphs

Now given v ∈ Max(VΓ) with f(v) = (d, π), define a switching S to be an assignment

of L or R to every occurrence of O in d, and a choice of a jump for every occurrence

W of a With in d, where a jump is an occurrence O depending on W in v. We

say that a jump is normal if it is the premise of W specified by v(W), and proper

otherwise.

We can then define a switching graph GΓ(f, v, S) with:

• vertices given by the subformula occurrences in d, i.e. occurrences O ∈ O(Γ) with

LOMΓ ⊑ d;

• an edge connecting A to A ⊗ B and an edge connecting B to A ⊗ B for each

occurrence of A⊗B;

• an edge connecting A to AOB if S assigns L to AOB, and an edge connecting

B to AOB if S assigns R to AOB;

• an edge connecting literal occurrences L and M if π(aL) = aM ;

• if ξ1, . . . , ξk are the occurrences of a parameter ξ, there are edges connecting ξi
and ξi+1, for 1 ≤ i < k;

• an edge connecting each ⊕ to its unique premise in d;

• an edge connecting each With occurrence to its jump as specified by S.

We say that f is a stable MALL proof net if for every v ∈ Max(VΓ) and switching

S, GΓ(f, v, S) is connected and acyclic.

Example Continued

We show one of the switching graphs for the proof structure considered above:

&

α⊥ O α⊥

α⊥ α⊥

α⊗ α

α α

Here we are showing the graph for the valuation v = [W = 0], and the switching

S which sets the Par occurrence to R, and chooses the proper jump from the With

occurrence W to the leftmost occurrence of α. Note that this occurrence depends

on W because the axiom link it is connected to in this valuation does.

This switching graph is a tree; and in fact, the proof structure is a proof-net.

7.3 Assignment of Proof Structures to Cut-Free Sequent Proofs

Axiom

⊢ α,α⊥
Id

We assign ⊥ 7→ ((⊤,⊤), {(aL, aM), (aM , aL)}, where L and M are the occurrences

of α and α⊥.

Generalized Axiom

⊢ ξ1, . . . , ξk
Ax

Since |ξ1, . . . ξk|Γ = ∅, there is a unique proof structure for this sequent, which we

assign.

Multiplicatives

⊢ Γ, A ⊢ B,∆

⊢ Γ, A⊗B,∆
Times

Suppose we have assigned f1 to the proof of ⊢ Γ, A, and f2 to the proof of ⊢ B,∆.

The set of With occurrences in ⊢ Γ, A⊗B,∆ is the disjoint union of the occurrences

in the two premises, which in turn induces a decomposition of valuations as v =

(v1, v2). Suppose that fi(vi) = (di, πi), i = 1, 2. We assign the proof structure f ,

defined by

f(v) = ((d1, d2), π1 + π2)

to the conclusion of the rule.

⊢ Γ, A,B

⊢ Γ, AOB
Par

In this case, up to associativity of the cartesian product and disjoint union, the

same proof structure is assigned to the conclusion as to the premise of the Par rule.

Additives

⊢ Γ, A

⊢ Γ, A⊕B
PlusL

⊢ Γ, B

⊢ Γ, A⊕B
PlusR

Suppose the proof structure assigned to the premise of the PlusL rule is f . Then

the proof structure assigned to the conclusion is given by

L(f) :: v 7→ ((d, inl(d)), π) where f(v) = ((d, d), π).

The assignment g 7→ R(g) for the PlusR rule is similar.

⊢ Γ, A ⊢ Γ, B

⊢ Γ, A&B
With

Suppose the proof structures assigned to the two premises of the rule are f and g.

We write a valuation in V(Γ, A&B) as (v, b), where b ∈ B⊥ is the value assigned to

the With occurrence A&B appearing in the conclusion of the rule. Then we assign

the proof structure h to the conclusion, where:

h(v, 0) = L(f)(v)

h(v, 1) = R(g)(v)

h(v,⊥) = ⊥v.

Here, using the notation of Proposition 5.8, ⊥v = (γv,⊥(⊥),∅).

Note that the last equation in this definition is the only place where any latitude

appears in the definition of the assignment of proof structures to sequent proofs.

The above definition can be written using a sequential conditional :

h(v, b) = ⊥v ⊔ if b then L(f)(v) else R(g)(v).

This is the least (most conservative, most lazy) possible definition.

Note that we can use the same assignment to define the HvG proof structure

f : Max(VΓ) −→ Max(EΓ)

assigned to a sequent proof, except that we can simply omit the last case in the

definition of the function assigned to the With rule, since we are only concerned

with total valuations.

Proposition 7.1 For every sequent proof, the corresponding proof structure given

by the above assignment is sequential.

Proof. We argue by induction on the structure of the sequent proof. All cases

except for the With rule are straightforward, by virtue of Proposition 4.3. For the

With rule, we informally exhibit a sequential algorithm (in the sense of [Cur93]) for

computing the function assigned to the rule. Recalling the demand-driven nature

of sequential algorithms, we distinguish two cases in the output cell which may be

requested:

• In the first case, the requested cell may correspond to a With occurrence which is

hereditarily accessible from the initial state ⊥, and hence should be filled accord-

ing to v. The important point is that whether this case applies can be statically

determined, independent of the input (v, b). A With occurrence W is hereditarily

accessible if the path from W to the root of its formula tree contains only multi-

plicatives and Withs. In this case, taking the With occurrences on this path in

reverse order, starting from the root (conclusion), we form a sequence of queries

to the input v. If all of these queries are answered successfully, i.e. v is defined

on all of them, and gives the answers corresponding to the path to W , then we

ask v for W itself, and fill the cell for W accordingly. It is clear that the cells we

can fill in this way correspond exactly to ⊥v.

• In case any other cell is requested, we firstly request the cell corresponding to b;

if we receive an answer 0, we apply the sequential algorithm corresponding to f ,

while if we receive 1, we apply the sequential algorithm corresponding to g.

Note that we can assume inductively that f and g, since they both satisfy (PS2),

would agree on the cells covered by the first case, and would fill them as in ⊥v. 2

Theorem 7.2 (Soundness) For every sequent proof, its denotation as a proof

structure is a proof net.

We could also use a parallel conditional in defining the proof net assignment for

the With rule: the final case h(v,⊥) = ⊥v is then replaced by

h(v,⊥) = L(f)(v) ⊓ R(g)(v).

This is the greatest (most eager) definition compatible with the monotonicity of

h. This still yields a well-defined proof structure, which is indeed extensionally

equivalent to the sequential one given by the above assignment. However, we would

no longer have stability, and hence could not define the dependency relation and

jumps as above. This would correspond to doing without the monomial condition in

[Gir96]. Hughes and van Glabbeek have shown that it is possible to work without

the monomial condition; it remains a challenge to conceptualize their approach

within our framework.

8 Sequentialization

The major result on proof nets is the Sequentialization Theorem, due to Girard, and

incorporating a significant refinement due to Danos and Regnier [Gir87,DR89,Gir91,Gir96].

Theorem 8.1 (Sequentialization) For every stable proof net f , there is a se-

quent proof Π such that g ⊑ f (in the pointwise order), where g = JΠK is the

sequential proof net assigned to Π.

Corollary 8.2 With notation as in the Theorem: fm = gm.

Proof. If g ⊑ f , then for any v ∈ Max(VΓ), g(v) ⊑ f(v). But g(v) ∈ Max(EΓ),

hence g(v) = f(v). 2

Since our notions of proof structure and proof net are formulated very differently

to those in [Gir96], and since our result is stronger, we shall give a detailed proof of

this Theorem. We shall follow the proof in [Gir96] quite closely, indicating where

differences arise.

8.1 Empires

In this subsection, we fix a sequent Γ, stable proof net f , and total valuation v ∈

Max(VΓ). All switchings S will be relative to v.

We say than an occurrence P of a formula A is a premise of an occurrence O

of a formula B in GΓ(f, v, S) if there is an edge from P to O in GΓ(f, v, S), and A

is an immediate subformula of B. Note that P can be the premise of at most one

occurrence.

Let O be an occurrence in GΓ(f, v, S). We consider the sub-graph GO−

Γ (f, v, S)

obtained by erasing the edge, if any, connecting O as a premise to an occurrence

P . Since GΓ(f, v, S) is connected by hypothesis, GO−

Γ (f, v, S) contains at most two

connected components. We define GO
Γ (f, v, S) to be the component containing O.

We define the empire of O, eO =
⋂

S GO
Γ (f, v, S), to be the intersection of the

graphs GO
Γ (f, v, S) as S ranges over all switchings relative to v.

We verify the basic properties of empires.

Lemma 8.3 (Closure Properties) Let O be an occurrence in GΓ(f, v, S).

(i) If O is the premise of an occurrence O′ of a Par or With, then O′ is not in

eO.

(ii) If α α⊥ is an axiom link in GΓ(f, v, S), then α ∈ eO iff α⊥ ∈ eO.

(iii) If ξ1, . . . , ξk are the occurrences of ξ in GΓ(f, v, S), then ξi ∈ eO iff ξj ∈ eO,

for 1 ≤ i, j ≤ k.

(iv) An occurrence of A⊗B, both of whose premises are distinct from O, is in eO

iff the corresponding occurrence of A is in eO, iff the corresponding occurrence

of B is in eO.

(v) An occurrence of A⊕B, both of whose premises are distinct from O, is in eO

iff the corresponding occurrence of C is in eO, where C is whichever of A or

B is present in GΓ(f, v, S).

(vi) An occurrence of AOB,, both of whose premises are distinct from O, is in eO

iff the corresponding occurrences of both A and B are in eO.

(vii) An occurrence W of A&B, both of whose premises are distinct from O, is in

eO iff for every occurrence O′ depending on W in v, O′ is in eO.

Proof. Parts (i)–(v) are straightforward from the definitions. Parts (vi) and (vii)

are similar; we prove (vii). Suppose firstly that w ∈ eO, and O′ depends on W in

v. Assume for a contradiction that for some switching S, O′ 6∈ GO
Γ (f, v, S). It must

be the case that O is the premise of a link P , and S connects O′ and P . Moreover,

after removing the edge O P , O′ is in the same component as P . The jump

from W specified by S links it to an occurrence Q. This edge cannot lie on the

path from P to O′ in GO−

Γ (f, v, S). If we modify S by replacing this jump by one

to O′, resulting in a switching S′, then W is still in GO
Γ (f, v, S′), since W is in eO.

Moreover, P and O′ are still connected in GO
Γ (f, v, S′), while W is now connected

to O′. Hence we get a cycle

O · · ·WO′ · · ·PO

in GΓ(f, v, S′), yielding the required contradiction.

Now assume that all occurrences O′ depending on W in v are in eO. (Note that

there is at least one such occurrence, namely the normal jump of W). Given any

switching S, GΓ(f, v, S) has an edge between W and some occurrence O′, which by

hypothesis belongs to eO and hence to GO
Γ (f, v, S). Hence W belongs to GO

Γ (f, v, S).

It follows that W is in eO. 2

Lemma 8.4 (Principal Switchings) For each occurrence O, there is a switching

S such that eO = GO
Γ (f, v, S). S is called a principal switching for O.

Proof. S is defined as follows. If O is the premise of a Par or With occurrence O′,

set S to connect O to O′. Otherwise:

• If O′ is an occurrence of a Par formula which is not in eO, then by Lemma 8.3,

at least one of the premises of O′, say P , is not in eO. Set S to connect P and

O′.

• If W is an occurrence of a With formula which is not in eO, then by Lemma 8.3,

at least one occurrence depending on W in v, say P , is not in eO. Set S to

connect P and W .

The remaining With and Par occurrences can be set arbitrarily by S. 2

Lemma 8.5 (Nesting Property) Let O and O′ be distinct occurrences in GΓ(f, v, S),

and assume that O′ 6∈ eO. Then

(i) If O ∈ eO′, then eO ⊂ eO′.

(ii) If O 6∈ eO′, then eO ∩ eO′ = ∅.

Proof. The construction of a principal switching S for eO′ as in Lemma 8.4 is

further specified as follows:

• If P is a Par or With occurrence which is in eO′ but not in eO, then we set S as

we would for a principal switching for eO.

• If O is the premise of a Par or With occurrence Q in eO′, then we set S so as to

connect O and Q.

Thus S is still a principal switching for eO′, so that eO′ = Go′

Γ (f, v, S), which

moreover does not contain any edges connecting eO ∩ eO′ with eOc ∩ eO′, except

possibly for an edge between O and Q. We argue by cases:

• If O ∈ eO′, since by assumption O′ 6∈ eO, while O′ ∈ eO′, there is an edge

between eO and eOc in eO′, which must be between O and Q. This implies that

any path from O to O′ in GO′

Γ (f, v, S) must go via the edge from O to Q, and hence

there is no path from O to O′ in GO
Γ (f, v, S)∩GO′

Γ (f, v, S). Since the only edge in

GO
Γ (f, v, S) which is not in GO′

Γ (f, v, S), if any, is that connecting O′ as premise

to its conclusion, we conclude that we must have GO
Γ (f, v, S) ⊆ GO′

Γ (f, v, S). But

then eO ⊆ GO
Γ (f, v, S) ⊆ GO′

Γ (f, v, S) = eO′. Also, O′ ∈ eO′ \ eO.

• If O 6∈ eO′, there is no edge between eO and eOc in eO′, and since O′ ∈ eOc,

no occurrence in eO is in eO′. Since in this case the conditions on O and O′ are

symmetric, we conclude that eO ∩ eO′ = ∅.

2

An occurrence Q in eO is said to be a door of eO if it is either a premise of an

occurrence R which is not in eO, or a conclusion in Γ. The occurrence O itself is

a door of eO, the main door ; the other doors are the auxiliary doors. The set of

doors of eO is the border of eO.

The following is an immediate consequence of Lemma 8.3.

Lemma 8.6 Let Q be an auxiliary door of eO which is not a conclusion. Then Q

is the premise of a Par or With occurrence.

8.2 Maximal Empires

In this sub-section, we keep Γ, f and v fixed as before, with f(v) = (d, π). We

additionally assume that O is a With occurrence, and that eO is maximal among

empires of this form.

Lemma 8.7 Let W be any With occurrence, and consider P,Q ∈ GΓ(f, v, S) such

that both P and Q depend on W in v. Then P ∈ eO iff Q ∈ eO.

Proof. Suppose that P ∈ eO. Then there is e ⊑ f(v) such that v0(W)↓, where

v0 = M(f, v, e). Hence f(v) 6= f(v\W). Since f(v) = f ◦ p ◦ f(v), this implies

that p ◦ f(v)(W)↓, and hence that LW MΓ ⊑ d. By Lemma 8.3, P ∈ eW , hence

eO∩eW 6= ∅. By maximality of eO, eO ⊂ eW is impossible. Hence by Lemma 8.5,

W ∈ eO. By Lemma 8.3, this implies Q ∈ eO. 2

The proof of this Lemma shows how the equation f = f ◦ p ◦ f takes the place of

Girard’s “technical condition” on his proof structures.

Lemma 8.8 If P is a premise of a With or Par occurrence Q, and P depends on

a With occurrence W 6= Q in v, then Q also depends on W in v.

Proof. If Q is a Par occurrence, then LP MΓ = LQMΓ. If Q is a With occurrence,

let v0 = M(f, v, LQMΓ). By property (PS2) of proof structures, M(f, v, LP MΓ) =

v0 ∪ {Q 7→ v(Q)}, so if P depends on W , so does Q. 2

Lemma 8.9 If P is a border occurrence of eO, and W is any With occurrence,

with f(v¬W) = (d′, π′), then LP MΓ ⊑ d′, i.e. the border occurrences are still present

in f(v¬W).

Proof. Either P is a conclusion, in which case LP MΓ = ⊥, or P is a premise of

some occurrence Q, which by Lemma 8.6 must be a With or Par. Suppose for

a contradiction that LP MΓ 6⊑ d′. Then P depends on W in v, and hence also by

Lemma 8.8 so does Q, but P ∈ eO while Q 6∈ eO. Lemma 8.7 yields the required

contradiction. 2

8.3 Stability of Maximal Empires

In this section we show that if O is a With occurrence in a total valuation v with

a maximal empire eO relative to v, then its empire remains maximal in any total

valuation v′. It is sufficient to show that eO remains maximal in v¬W for any With

occurrence W , since any total valuation v′ can be reached from v by successively

“toggling” With occurrences.

Lemma 8.10 Suppose that O depends neither on W nor on W ′ in v. Then this

remains true in v¬W .

Proof. If v0 = M(f, v, LOMΓ), then v0(W) = ⊥ = v0(W
′). Hence LOMΓ ⊑ f(v\{W,W ′}),

and v0 = M(f, v¬W , LOMΓ). 2

Lemma 8.11 Suppose that P ∈ eO with respect to v, and that P does not depend

on a With occurrence W . Then we still have P ∈ eO in v¬W .

Proof. If O is a conclusion, eO contains all occurrences in f(v) for any v, so the

Lemma holds straightforwardly.

Otherwise, O is the premise of some occurrence Q, and Q 6∈ eO. We argue by

cases:

• If W ∈ eO, then by Lemma 8.3, the occurrences outside eO do not depend on W

in v, hence by Lemma 8.10, changing from v to v¬W does not alter the dependency

relation outside eO. Assume for a contradiction that there is a switching S for

v¬W , with P 6∈ GO
Γ (f, v¬W , S). Since O is the premise of Q, Q 6∈ GO

Γ (f, v¬W , S).

Then we can define a switching S′ for v which makes the same choices outside eO

as S, which is possible since the dependencies are the same outside eO. Then P

and Q are still connected in GO−(f, v, S′), and so P 6∈ GO(f, v, S′), yielding the

required contradiction.

• If W 6∈ eO, then by Lemma 8.7, no occurrences inside eO depend on W , hence

by Lemma 8.10, changing from v to v¬W does not alter the dependency relation

inside eO. Assume for a contradiction that there is a switching S for v¬W , with

P 6∈ GO
Γ (f, v¬W , S). Then we can define a switching S′ for v which makes the

same choices inside eO as S, which is possible since the dependencies are the

same inside eO. Then P and O are still not connected in GO−(f, v, S′), and so

P 6∈ GO(f, v, S′), yielding the required contradiction.

2

Lemma 8.12 eO is maximal with respect to v¬W .

Proof. Assume for a contradiction that, with respect to v¬W , eO ⊂ eP with

eP maximal. By Lemma 8.5 (with respect to v¬W), O ∈ eP , but P 6∈ eO. By

Lemma 8.9, O does not depend on W . Hence by the maximality of eP with respect

to v¬W , and Lemma 8.11, we still have O ∈ eP in v. Similarly, using the maximality

of eO with respect to v, and arguing contrapositively, we must still have P 6∈ eO

with respect to v. This yields the required contradiction to the assumed maximality

of eO with respect to v. 2

8.4 Proof of the Main Theorem

Proof. We argue by induction on the number n of With occurrences in Γ.

Base Case

The base case is n = 0. In this case, we can use a minor variation on the

standard argument for MLL Sequentialization [Gir91]. We argue by induction on

the size of Γ, and cases on the principal connectives of Γ.

• If all formulas in Γ are atomic, we can argue as usual that a proof-net must consist

of a single (possibly generalized) axiom link.

• If one of the conclusions is a Par or Plus, then we can remove this outermost

connective, obtain a new proof net, and argue inductively that this new proof net

has a sequentialization Π. A single application of a Par or Plus rule to Π then

yields a sequentialization of the original proof net.

• If all compound formulas in Γ are Times formulas Ai ⊗Bi, then among these we

take one, say Ai, with a maximal empire.

Claim The border of eA consists only of Ai and conclusions. We argue by

contradiction. If some occurrence P in the border is not a conclusion, it must be

the premise of a Par occurrence Q which is not in eAi. But Q is the hereditary

premise of some Aj or Bj, say Aj. By Lemma 8.3, Q 6∈ eAi implies Aj 6∈ eAi.

It also follows from Lemma 8.3 that P ∈ eAj , whence eAi ∩ eAj 6= ∅. By

Lemma 8.5, eAi ⊂ eAj, contradicting the maximality of eAi.

It follows from the Claim that eAi is independent of the choice of switching;

hence so also is eBi. It follows from this that the removal of the Times in Ai ⊗Bi

splits the proof net into two connected components, both of which are proof nets

and to which the induction hypothesis can be applied, yielding sequentializations

Π1 and Π2. We can then apply a Times rule to Π1 and Π2 to obtain a sequen-

tialization of the original proof net.

Note that in this case, VΓ = 1, and the proof-net consists of an additive resolution

of all the Plus nodes, together with a set of axiom links for this additive resolution.

It is immediate that in this case f = JΠK, where f is the proof net, and Π the

sequentialization.

Inductive Step

If n > 0, we choose some total valuation v arbitrarily, and choose a With oc-

currence O such that eO is maximal with respect to v. By Lemma 8.9, eO has the

same boundary with respect to any valuation v′, while by Lemma 8.12 it remains

maximal with respect to v′. Moreover, if W is any With occurrence which is in eO

with respect to v, then it is in eO with respect to any v′ in which W is present. This

follows from Lemma 8.11, since v′ can be obtained from v by successively toggling

With occurrences.

It follows that W(Γ) can be written as a disjoint union W(Γ) = W1 ⊎ W2,

where W2 comprises those With occurrences which, in any valuation where they are

present, are in eO, while W1 comprises those which, in any valuation where they

are present, are not in eO. Clearly VΓ
∼= V1 × V2, where Vi = B

Wi

⊥
, i = 1, 2.

Let Γ2 be the sequent corresponding to the conclusions of eO. Two cases arise

at this point:

• O is a conclusion of Γ, in which case Γ2 = Γ.

• O is not a conclusion, in which case Γ2 comprises a sequence of non-nested occur-

rences of subformulas of Γ, not all of which are conclusions of Γ. In this case, we

can define a sequent Γ1[ξ1, . . . , ξk], in which the formulas of Γ2 are replaced by the

instances of a parameter ξ which does not appear in Γ, such that Γ = Γ1[Γ2/ξ].

We shall describe how to proceed in the second case, which effectively subsumes

the first. We define two sets of occurrences: O2 is the set of all occurrences in eO,

while O1 is the set of all occurrences either outside eO or on its border. There are

corresponding sets of primes

Pi = {LOMΓ | O ∈ Oi}, i = 1, 2.

We can now apply the constructions of Section 4.2, to obtain sub-domains Di of DΓ,

corresponding sub-domains Ei of EΓ, and embedding-projections Ei � EΓ, i = 1, 2.

Moreover,

E1
∼= E(Γ1), E2

∼= E(Γ2)⊥.

Hence there are embedding-projections

e1 : E(Γ1) � EΓ : p1, e2 : E(Γ2)⊥ � EΓ : p2.

There are also stable embedding-projections

φ1 : V1 � VΓ : ψ1, φ2 : V2 � VΓ : ψ2.

Since p2 ◦ f ◦ φ2 factors through the inclusion E(Γ2) ⊂ - E(Γ2)⊥, we can define

stable functions

fi = pi ◦ f ◦ φi : Vi −→ E(Γi), i = 1, 2.

These functions are readily seen to be proof nets. For f2, note that any switching

of Γ2 relative to a valuation v2 can be extended to a principal switching S′ of eO

relative to v = (v1, v2), which implies that GΓ2
(f2, v2, S) = GO

Γ (f, v, S′) is acyclic

and connected. For f1 we similarly extend a valuation v1 and switching S to v and

S′, and note that GΓ(f, v, S′) induces paths, not involving any other conclusions

of Γ2, between (the conclusions corresponding to) ξσ(1) and ξσ(2), . . . , ξσ(k−1) and

ξσ(k) for some permutation σ on {1, . . . , k}. This reordering of the conclusions of the

generalized axiom link does not affect the acyclicity of GΓ1
(f1, v1, S), nor — since

the number of vertices and edges remains the same — its connectedness. Hence the

fact that f is a proof net implies that f1 is a proof net.

The induction hypothesis applies immediately to f1, and yields a sequent proof

Π1, with JΠ1K ⊑ f1. In the case of f2, it has a With formula as a conclusion in Γ2.

By setting the corresponding occurrence W to 0 or 1 in the valuation, we obtain

proof nets f ′2, f
′′
2 to which the induction hypothesis applies, yielding sequent proofs

Π′ and Π′′ with JΠ′K ⊑ f ′2, JΠ′′K ⊑ f ′′2 . These can be combined using the With rule

to yield a sequent proof Π2. Clearly JΠ2K ⊑ f2, by a pointwise argument for any

v2 ∈ V2, and cases on v2(W). Now Π1[Π2] is a sequent proof of Γ, with

JΠ1[Π2]K = JΠ1K[JΠ2K] ⊑ f1[f2] ⊑ f.

2

9 Further Directions

We simply list some of the many directions for future work.

• The results of the present paper form a building block for a proof of Full Complete-

ness for a concurrent game semantics of MALL. The strategies in this semantics

are certain closure operators on the domains DΓ, which can readily be related to

semantic proof structures. A refined version of the Full Completeness theorem

from [AM99] has been developed in the current setting in [Abr07].

• The fine structure of the extensional equivalence classes of proof-nets, including

the order structure and issues of sequentiality and parallelism, as discussed in

Section 6, should be developed further.

• Going beyond the stable case, and analyzing the HvG approach in a more con-

ceptual manner in the present setting, is a major desideratum.

• It would also be interesting to look at Linear Logic beyond MALL, in particu-

lar the exponentials, including weak versions suitable for analyzing complexity

classes.

References

[Abr96] S. Abramsky. Retracing Some Paths in Process Algebra. In Proceedings of CONCUR 96, Lecture
Notes in Computer Science Vol. 1119, pp. 1-17. Springer-Verlag 1996.

[Abr03] S. Abramsky. Sequentiality vs. Concurrency In Games And Logic. Mathematical Structures in
Computer Science 13(4): 531-565 (2003)

[Abr07] S. Abramsky. Full Completeness Revisited. Draft paper (50 pages), 2007.

[AJ94a] S. Abramsky, R. Jagadeesan, New Foundations for the Geometry of Interaction, Information and
Computation, 111(1):53-119, 1994.

[AJ94b] S. Abramsky and R. Jagadeesan. Games and Full Completeness for Multiplicative Linear Logic,
Journal of Symbolic Logic, (1994), vol. 59, no. 2, 543–574.

[AM99] S. Abramsky and P.-A. Melliès. Concurrent Games and Full Completeness. Proceedings of the
14th Annual IEEE Symposium on Logic in Computer Science, 431–44, 1999.

[BFSS88] E. S. Bainbridge and P. J. Freyd and A. Scedrov and P. J. Scott. Functorial Polymorphism.
Theoretical Computer Science 70,1:35–64, 1988.

[Ber78] G. Berry. Stable Models of Typed λ-calculi. Proceedings of the Fifth International Colloquium on
Aotomata, languages and Programming, Springer Lecture Notes in Computer Science Vol. 62, 72–89,
1978.

[BS98] Richard Blute, Philip J. Scott: The Shuffle Hopf Algebra and Noncommutative Full Completeness.
J. Symb. Log. 63(4): 1413–1436 (1998).

[BHS05] Richard Blute, Masahiro Hamano, Philip J. Scott: Softness of hypercoherences and MALL full
completeness. Ann. Pure Appl. Logic 131(1-3): 1–63 (2005).

[Cur93] P.-L. Curien. Categorical combinators, sequential algorithms and functional programming. Pitman
1986. Revised edition, Birkhauser 1993.

[CF05] Pierre-Louis Curien, Claudia Faggian: L-Nets, Strategies and Proof-Nets. CSL 2005: 167-183.

[DR89] V. Danos and L. Regnier. The Structure of Multiplicatives. Archive for Mathematical Logic, 28,
181–203, 1989.

[DHPP99] H. Devarajan, D. Hughes, G. Plotkin, V. Pratt. Full completeness of the multiplicative linear
logic of Chu spaces. Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science,
234–242, 1999.

[FM05] Claudia Faggian, Franois Maurel: Ludics Nets, a game Model of Concurrent Interaction. LICS 2005:
376-385.

[Gir87] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.

[Gir88] J.-Y. Girard. Multiplicatives. In G. Lolli, editor, Logic and Computer Science: New Trends and
Applications, pages 11-33, Rendiconti del Seminario Matematico (Torino), Universita Pol. Torino, 1988.

[Gir89] J.-Y. Girard, Geometry of Interaction I: Interpretation of System F. In Logic Colloquium ’88, ed.
R. Ferro et al. North-Holland 1989, pp. 221-260.

[Gir91] J-Y Girard. Quantifiers in linear logic II. In G. Corsi and G. Sambin, editors, Nuovi problemi della
logica e della filosofia della scienza, volume II, Bologna, Italy, 1991.

[Gir96] J.-Y. Girard. Proof-nets: the parallel syntax for proof theory. In P. Agliano and A. Ursini, editors,
Logic and Algebra, Marcel Dekker, 1996.

[HvG05] Dominic Hughes and Rob van Glabeek. Proof Nets for unit-free Multiplicative-Additive Linear
Logic. ACM Transactions on Computational Logic, 2005.

[JSV96] Andre Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical
Proceedings of the Cambridge Philosophical Society, 119(3):447–468, 1996.

[KP93] G. Kahn and G. Plotkin. Concrete Domains. Theoretical Computer Science, 121:187–277, 1993.
Appeared as TR IRIA-Laboria 336 in 1978.

[Loa94] R. Loader. Models of Lambda Calculi and Linear Logic. D.Phil. thesis, Oxford University, 1994.

[NPW81] Mogens Nielsen, Gordon D. Plotkin, Glynn Winskel: Petri Nets, Event Structures and Domains,
Part I. Theor. Comput. Sci. 13: 85-108 (1981)

[Tro92] A. S. Troelstra. Lectures On Linear Logic. CSLI Lecture Notes Number 29. 1992.

[Win86] G. Winskel. Event Structures. U. Cambridge Computer Laboratory Technical Report Number 95.
1986.

	Introduction
	Related Work
	Outline

	MLL
	Syntax of MLL
	Sequent Calculus for MLL
	Proof Structures
	Interpreting Sequent Proofs as Proof Structures
	Proof Nets

	Syntax of MALL
	Sequent Calculus for MALL
	Generalized Axioms
	Occurrences and Linear Contexts

	Background on Domains
	Functions on Domains
	Decompositions of Domains

	Semantic Proof Structures
	A Domain-theoretic Formalization of HvG
	Monotone Proof Structures

	Proof Structures Compared
	HvG vs. Semantic Proof Structures
	Structure of extensional equivalence classes
	Sequential vs. parallel realizations
	Girard proof structures

	Stable Proof Nets
	The dependency relation
	Switchings and Switching Graphs
	Assignment of Proof Structures to Cut-Free Sequent Proofs

	Sequentialization
	Empires
	Maximal Empires
	Stability of Maximal Empires
	Proof of the Main Theorem

	Further Directions
	References

