
Abstract Scalars, Loops, and Free Traced and

Strongly Compact Closed Categories

Samson Abramsky

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, U.K.

http://web.comlab.ox.ac.uk/oucl/work/samson.abramsky/

Abstract. We study structures which have arisen in recent work by the
present author and Bob Coecke on a categorical axiomatics for Quantum
Mechanics; in particular, the notion of strongly compact closed category.
We explain how these structures support a notion of scalar which allows
quantitative aspects of physical theory to be expressed, and how the
notion of strong compact closure emerges as a significant refinement of
the more classical notion of compact closed category.
We then proceed to an extended discussion of free constructions for a
sequence of progressively more complex kinds of structured category,
culminating in the strongly compact closed case. The simple geometric
and combinatorial ideas underlying these constructions are emphasized.
We also discuss variations where a prescribed monoid of scalars can be
‘glued in’ to the free construction.

1 Introduction

In this preliminary section, we will discuss the background and motivation for
the technical results in the main body of the paper, in a fairly wide-ranging
fashion. The technical material itself should be essentially self-contained, from
the level of a basic familiarity with monoidal categories (for which see e.g. [20]).

1.1 Background

In recent work [4, 5], the present author and Bob Coecke have developed a cat-
egorical axiomatics for Quantum Mechanics, as a foundation for high-level ap-
proaches to quantum informatics: type systems, logics, and languages for quan-
tum programming and quantum protocol specification. The central notion in our
axiomatic framework is that of strongly compact closed category. It turns out
that this rather simple and elegant structure suffices to capture most of the key
notions for quantum informatics: compound systems, unitary operations, pro-
jectors, preparations of entangled states, Dirac bra-ket notation, traces, scalars,
the Born rule. This axiomatic framework admits a range of models, including of
course the Hilbert space formulation of quantum mechanics.

Additional evidence for the scope of the framework is provided by recent work
of Selinger [25]. He shows that the framework of completely positive maps acting



on generalized states represented by density operators, used in his previous work
on the semantics of quantum programming languages [24], fits perfectly into the
framework of strongly compact closed categories.1 He also showed that a simple
construction (independently found and studied in some depth by Coecke [9]),
which can be carried out completely generally at the level of strongly compact
closed categories, corresponds to passing to the category of completely positive
maps (and specializes exactly to this in the case of Hilbert spaces).

1.2 Multiplicatives and Additives

We briefly mention a wider context for these ideas. To capture the branching
structure of measurements, and the flow of (classical) information from the result
of a measurement to the future evolution of the quantum system, an additional
additive level of structure is required, based on a functor ⊕, as well as the
multiplicative level of the compact closed structure based around the tensor
product (monoidal structure) ⊗. This delineation of additive and multiplicative
levels of Quantum Mechanics is one of the conceptually interesting outcomes of
our categorical axiomatics. (The terminology is based on that of Linear Logic
[12] — of which our structures can be seen as ‘collapsed models’). In terms of
ordinary algebra, the multiplicative level corresponds to the multilinear-algebraic
aspect of Quantum Mechanics, and the additive level to the linear-algebraic. But
this distinction is usually lost in the sea of matrices; in particular, it is a real
surprise how much can be done purely with the multiplicative structure.

It should be mentioned that we fully expect an exponential level to become
important, in the passage to the multi-particle, infinite dimensional, relativistic,
and eventually field-theoretic levels of quantum theory.

We shall not discuss the additive level further in this paper. For most pur-
poses, the additive structure can be regarded as freely generated, subject to
arithmetic requirements on the scalars (see [4]).

1.3 Explicit constructions of free structured categories

Our main aim in the present paper is to give explicit characterizations of free
constructions for various kinds of categories-with-structure, most notably, for
traced symmetric monoidal and strongly compact closed categories. We aim to
give a synthetic account, including some basic cases which are well known from
the existing literature [20, 19]. We will progressively build up structure through
the following levels:

1 Selinger prefers to use the term ‘dagger compact closed category’, since the notion
of adjoint which is formalized by the dagger operation ()† is a separate structure
which is meaningful in a more general setting.



(1) Monoidal Categories

(2) Symmetric Monoidal Categories

(3) Traced Symmetric Monoidal Categories

(4) Compact Closed Categories

(5) Strongly Compact Closed Categories

(6) Strongly Compact Closed Categories with prescribed scalars

Of these, those cases which have not, to the best of our knowledge,, appeared
previously are (3), (5) and (6). But in any event, we hope that our account will
serve as a clear, accessible and useful reference.

Our constructions also serve to factor the Kelly-Laplaza construction [19]
of the free compact closed category through the G or Int construction [14, 2] of
the compact closed category freely generated by a traced symmetric monoidal
category, which is a central part of (the mathematically civilised version of) the
so-called ‘Geometry of Interaction’ [12, 3].

It should be emphasized that constructions (1)–(4) are free over categories,
(5) over categories with involutions, and (6) over a comma category of cate-
gories with involution with a specified evaluation of scalars. We note that Dusko
Pavlovic has give a free construction of traced categories over monoidal categories
[21]. His construction is elegant, but abstract and less combinatorial/geometric
than ours: perhaps necessarily so, since in our situation the monoidal struc-
ture, which itself has some spatial content, is added freely. Another reference is
by Katis, Sabadini and Walters [16]. They construct a free ‘feedback category’,
which is a trace minus the Yanking axiom — which is very important for the
dynamics of the trace — over a monoidal category, and then formally quotient
it to get a traced category. A treatment in the same style as the present paper
of free traced, compact closed and strongly compact closed categories over a
monoidal category remains a topic for future investigation.

Furthermore, we will work entirely with the strict versions of the categories-
with-structure we will study. Since in each case, every such category is monoidally
equivalent to a strict one, this does not really lose any generality; while by greatly
simplifying the description of the free constructions, it makes their essential
content, especially the geometry that begins to emerge as we add traces and
compact closure (paths and loops), much more apparent.

1.4 Diagrammatics

Our free constructions have immediate diagrammatic interpretations, which make
their geometric content quite clear and vivid. Diagrammatic notation for tensor
categories has been extensively developed with a view to applications in cate-
gorical formulations of topological invariants, quantum groups, and topological
quantum field theories [15]. Within the purely categorical literature, a forerunner
of these developments is the early work of Kelly on coherence [17, 18]; while the



are also several precursors in the non-categorical literature, notably Penrose’s
diagrammatic notation for abstract tensors [22].

Diagrammatic notation has played an important role in our own work with
Coecke on applying our categorical axiomatics to quantum informatics, e.g. to
quantum protocols [4]. For example, the essence of the verification of the tele-
portation protocol is the diagrammatic equality shown in Figure 1. For details,
see [4, 5].

Fig. 1. Diagrammatic proof of teleportation
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1.5 Categorical Quantum Logic

The diagrammatics of our constructions leads in turn to the idea of a logical
formulation, in which the diagrammatic representation of a morphism in the
free category is thought of as a proof-net, in the same general sense as in Linear
Logic [11].

More precisely, morphisms in the free category will correspond to proof nets
in normal form, and the definition of composition in the category gives a direct
construction for normalizing a cut between two such proof nets. One advantage
of the logical formulation is that we get an explicit syntactic description of these
objects, and we can decompose the normalization process into cut-reduction
steps, so that the computation of the normal form can be captured by a rewrit-
ing system. This provides an explicit computational basis for deciding equality
of proofs, which corresponds in the categorical context to verifying the commu-
tativity of a diagram.



In the categorical approach to quantum informatics [4], verifying the correct-
ness of various quantum protocols is formulated as showing the commutativity
of certain diagrams; so a computational theory of the above kind is directly
applicable to such verifications.

In a joint paper with Ross Duncan [6], we have developed a system of Cate-
gorical Quantum Logic along these lines, incorporating additive as well as multi-
plicative features. This kind of logic, and its connection with Quantum Mechan-
ics, is very different to the traditional notion of ‘Quantum Logic’ [8]. Duncan is
continuing to develop this approach in his forthcoming thesis.

1.6 Overview

The further structure of the paper is as follows. In Section 2 we explore the
abstract notion of scalar which exists in any monoidal category. As we will see,
scalars play an important role in determining the structure of free traced and
strongly compact closed categories, as they correspond to the values of loops. In
Section 3, we review the notions of compact closed and strongly compact closed
categories. The need for the notion of strong compact closure, to capture the
structure of the complex spaces arising in Quantum Mechanics, is explained. In
Section 4, we turn to the free constructions themselves.

Notation We set up some notation which will be useful. We define [n] :=
{1, . . . , n} for n ∈ N. We write S(n) for the symmetric group on [n]. If π ∈ S(n)
and σ ∈ S(m), we define π ⊗ σ ∈ S(n+m) by

π ⊗ σ(i) =

{

π(i), 1 ≤ i ≤ n

σ(i− n) + n, n+ 1 ≤ i ≤ n+m.

Given λ : [n] → X , µ : [m] → X , we define [λ, µ] : [n+m] → X by

[λ, µ](i) =

{

λ(i), 1 ≤ i ≤ n

µ(i− n), n+ 1 ≤ i ≤ n+m.

We write M(X) for the free commutative monoid generated by a set X . Con-
cretely, these are the finite multisets over X , with the addition given by multiset
union, which we write as S ] T .

2 Scalars in monoidal categories

The concept of a scalar as a basis for quantitative measurements is fundamental
in Physics. In particular, in Quantum Mechanics complex numbers α play the
role of probability amplitudes, with corresponding probabilities αᾱ = |α|2.



A key step in the development of the categorical axiomatics for Quantum Me-
chanics in [4] was the recognition that the notion of scalar is meaningful in great
generality — in fact, in any monoidal (not necessarily symmetric) category.2

Let (C,⊗, I) be a strict monoidal category . We define a scalar in C to be a
morphism s : I → I, i.e. an endomorphism of the tensor unit.

Example 1. In FdVecK, the category of finite-dimensional vector spaces over
a field K, linear maps K → K are uniquely determined by the image of 1,
and hence correspond biuniquely to elements of K ; composition corresponds to
multiplication of scalars. In Rel, there are just two scalars, corresponding to the
Boolean values 0, 1.

The (multiplicative) monoid of scalars is then just the endomorphism monoid
C(I, I). The first key point is the elementary but beautiful observation by Kelly
and Laplaza [19] that this monoid is always commutative.

Lemma 1. C(I, I) is a commutative monoid

Proof.

I ======== I ⊗ I ====== I ⊗ I ======== I

I

s

6

======== I ⊗ I

s⊗ 1

6

s⊗ t- I ⊗ I

1 ⊗ t

?
======== I

t

?

I

t

?
======== I ⊗ I

1 ⊗ t

?
====== I ⊗ I

s⊗ 1

6

======== I

s

6

2

We remark that in the non-strict case, where we have unit isomorphisms

λA : I ⊗A→ A ρA : A⊗ I → A

the proof makes essential use of the coherence axiom λI = ρI.
The second point is that a good notion of scalar multiplication exists at this

level of generality. That is, each scalar s : I → I induces a natural transformation

sA : A
'- I ⊗A

s⊗ 1A- I ⊗A
'- A .

2 Susbsequently, I became aware through Martin Hyland of the mathematical lit-
erature on Tannakian categories [23, 10], stemming ultimately from Grothendieck.
Tannakian categories embody much stronger assumptions than ours, in particular
that the categories are abelian as well as compact closed, although the idea of strong
compact closure is absent. But they certainly exhibit a consonant development of a
large part of multilinear algebra in an abstract setting.



with the naturality square

A
sA - A

B

f

?

sB

- B

f

?

Thus scalars act globally on the whole category.
We write s • f for f ◦ sA = sB ◦ f . Note that

1 • f = f (1)

s • (t • f) = (s ◦ t) • f (2)

(s • g) ◦ (t • f) = (s ◦ t) • (g ◦ f) (3)

(s • f) ⊗ (t • g) = (s ◦ t) • (f ⊗ g) (4)

which exactly generalizes the multiplicative part of the usual properties of scalar
multiplication.

3 Strongly Compact Closed Categories

A compact closed category is a symmetric monoidal category in which to each
object A a dual A∗, a unit ηA : I → A∗ ⊗ A and a counit εA : A ⊗ A∗ → I are
assigned in such a way that the following ‘triangular identities’ hold:

A
1A ⊗ ηA - A⊗A∗ ⊗ A

εA ⊗ 1A - A = 1A (5)

A∗ ηA ⊗ 1A- A∗ ⊗A⊗A∗ 1A ⊗ εA - A∗ = 1A∗ (6)

Viewing monoidal categories as bicategories with a single 0-cell, this amounts to
the axiom:

Every object (1-cell) has an adjoint

We can also view compact closed categories as *-autonomous categories [7] for
which ⊗ = O, and hence as ‘collapsed’ models of Linear Logic [11].

3.1 Examples

– (Rel,×): Sets, relations, and cartesian product. Here ηX ⊆ {∗} × (X ×X)
and we have

ηX = εcX = {(∗, (x, x)) | x ∈ X} .



– (FdVecK,⊗): Vector spaces over a field K, linear maps, and tensor product.
The unit and counit in (FdVecC,⊗) are

ηV : C → V ∗ ⊗ V :: 1 7→

i=n
∑

i=1

ēi ⊗ ei

εV : V ⊗ V ∗ → C :: ej ⊗ ēi 7→ 〈ēi | ej〉

where n is the dimension of V , {ei}
i=n
i=1 is a basis for V and ēi is the linear

functional in V ∗ determined by ēj(ei) = δij .

3.2 Duality, Names and Conames

For each morphism f : A → B in a compact closed category we can construct a
dual f∗ : B∗ → A∗:

f∗ = B∗ ηA ⊗ 1- A∗ ⊗A⊗B∗ 1 ⊗ f ⊗ 1- A∗ ⊗B ⊗B∗ 1 ⊗ εB- A∗

a name

pfq : I → A∗ ⊗B = I
η- A∗ ⊗A

1 ⊗ f- A∗ ⊗B

and a coname

xfy : A⊗B∗ → I = A⊗B∗ f ⊗ 1- B ⊗B∗ ε - I

The assignment f 7→ f∗ extends A 7→ A∗ into a contravariant endofunctor with
A ' A∗∗. In any compact closed category, we have

C(A⊗B∗, I) ' C(A,B) ' C(I, A∗ ⊗B).

For R ∈ Rel(X,Y ) we have

pRq = {(∗, (x, y)) | xRy, x ∈ X, y ∈ Y }

xRy = {((x, y), ∗) | xRy, x ∈ X, y ∈ Y }

and for f ∈ FdVecK(V,W ) with matrix (mij) in bases {eV
i }i=n

i=1 and {eW
j }j=m

j=1

of V and W respectively:

pfq : K → V ∗ ⊗W :: 1 7→

i,j=n,m
∑

i,j=1

mij · ē
V
i ⊗ eW

j

xfy : V ⊗W ∗ → K :: eV
i ⊗ ēW

j 7→ mij .



3.3 Why compact closure does not suffice

In inner-product spaces we have the adjoint :

A
f- B

A �f
†

B

〈fφ | ψ〉B = 〈φ | f †ψ〉A

This is not the same as the dual — the types are different. In “degenerate”
CCC’s in which A∗ = A, e.g. Rel or real inner-product spaces, we have f ∗ = f †.
In complex inner-product spaces such as Hilbert spaces, the inner product is
sesquilinear

〈ψ | φ〉 = 〈φ | ψ〉

and the isomorphism A ' A∗ is not linear, but conjugate linear :

〈λ • φ | −〉 = λ̄ • 〈φ | −〉

and hence does not live in the category Hilb at all!

3.4 Solution: Strong Compact Closure

We define the conjugate space of a Hilbert space H: this has the same additive
group of vectors as H, while the scalar multiplication and inner product are
“twisted” by complex conjugation:

α •H̄ φ := ᾱ •H φ 〈φ | ψ〉H̄ := 〈ψ | φ〉H

We can define H∗ = H̄, since H, H̄ have the same orthornormal bases, and we
can define the counit by

εH : H⊗ H̄ → C :: φ⊗ ψ 7→ 〈ψ | φ〉H

which is indeed (bi)linear rather than sesquilinear!
The crucial observation is this: ()∗ has a covariant functorial extension f 7→

f∗, which is essentially identity on morphisms; and then we can define

f † = (f∗)∗ = (f∗)
∗.

3.5 Axiomatization of Strong Compact Closure

In fact, there is a more concise and elegant axiomatization of strongly compact
closed categories, which takes the adjoint as primitive [5]. It suffices to require
the following structure on a (strict) symmetric monoidal category (C,⊗, I, τ):

– A strict monoidal involutive assignment A 7→ A∗ on objects.
– An identity-on-objects, contravariant, strict monoidal, involutive functor
f 7→ f †.



– For each object A a unit ηA : I → A∗ ⊗ A with ηA∗ = τA∗,A ◦ ηA and such
that either the diagram

A ======= A⊗ I
1A ⊗ ηA - A⊗ (A∗ ⊗ A)

A

1A

?
======= I ⊗A �

(η†A ◦ τA,A∗) ⊗ 1A

(A⊗A∗) ⊗A

w

w

w

w

w

w

w

w

w

(7)

or the diagram

A ======= I ⊗ A
ηA ⊗ 1A- (A∗⊗ A) ⊗A == A∗⊗ (A⊗A)

A

1A

?
======= I ⊗ A �

η
†
A ⊗ 1A

(A∗⊗ A) ⊗A == A∗⊗ (A⊗A)

1A∗⊗ τA,A

?

(8)

commutes, where τA,A : A⊗A ' A⊗A is the twist map.
– Given such a functor ()†, we define an isomorphism α to be unitary if
α−1 = α†. We additionally require that the canonical natural isomorphism
for symmetry given as part of the symmetric monoidal structure on C is
(componentwise) unitary in this sense.

While diagram (7) is the analogue to (5) with η†A◦τA,A∗ playing the role of the
counit, diagram (8) expresses Yanking with respect to the canonical trace of the
compact closed structure.3 We only need one commuting diagram as compared
to (5) and (6) in the definition of compact closure, since due to the strictness
assumption (i.e. A 7→ A∗ being involutive) we were able to replace the second
diagram by ηA∗ = τA∗,A ◦ ηA.

3 In fact, we have used the ‘left trace’ here rather than the more customary ‘right trace’
which we shall use in our subsequent discussion of traced monoidal categories. In
the symmetric context, the two are equivalent; we chose the left trace here because,
given our other notational conventions, it requires less use of symmetries in stating
the axiom.



Standard triangular identities diagrammatically

= =

(εA ⊗ 1A) ◦ (1A ⊗ ηA) = 1A (1A∗ ⊗ εA) ◦ (ηA ⊗ 1A∗) = 1A∗

Yanking diagrammatically

=

(η†A ⊗ 1A) ◦ (1A∗ ⊗ τA,A) ◦ (ηA ⊗ 1A) = 1A.

4 Free Constructions

We will now give detailed descriptions of free constructions for a number of types
of category-with-structure. We shall consider the following cases:

(1) Monoidal Categories

(2) Symmetric Monoidal Categories

(3) Traced Symmetric Monoidal Categories

(4) Compact Closed Categories

(5) Strongly Compact Closed Categories

(6) Strongly Compact Closed Categories with prescribed scalars



For cases (1)–(4), we shall consider adjunctions of the form

Cat

FS -
⊥�
US

S−Cat

where S ranges over the various kinds of structure. Specifically, we shall give ex-
plicit descriptions in each case of FS(C) for a category C. This explicit description
— not algebraically by generators and relations, but giving direct combinatorial
definitions of the normal forms and how they compose, thus solving the word
problem over these categories — is the strongest form of coherence theorem
available for notions such as compact closure and traces. In these cases, cyclic
structures arise, violating the compatibility requirements for stronger forms of
coherence developed in [17, 18]. This point is discussed in the concluding section
of [19].

In case (5), we consider an adjunction

InvCat

FSCC -
⊥�

USCC

SCC−Cat

where InvCat is the category of categories with a specified involution, (what
Selinger calls ‘dagger categories’ in [25]), and functors which preserve the involu-
tion. Finally, in (6) we consider an adjunction with respect to a comma category,
which allows us to describe the free strongly compact slosed category generated
by a category C, together with a prescribed multiplicative monoid of scalars.

Our treatment will be incremental, reflecting the fact that in our sequence
(1)–(6), each term arises by adding structure to the previous one. Each form of
structure is reflected conceptually by a new feature arising in the corresponding
free construction:

M monoidal lists

SM symmetric monoidal permutations

Tr traced symmetric monoidal loops

CC compact closed polarities

SCC strong compact closed reversals

We will also begin to see a primitive graph-theoretic geometry of points, lines
and paths begin to emerge as we progress through the levels of structure. There
is in fact more substantial geometry lurking here than might be apparent: the
elaboration of these connections must be left to future work.

Finally, we mention a recurring theme. To form a ‘pure’ picture of each
construction, it is useful to consider the case FS(1) explicitly, where 1 is the
category with (one object and) one morphism (i.e. one generator, no relations).



4.1 Monoidal Categories

We begin with the simple case of monoidal categories. The objects of FM(C),
the free monoidal category generated by the category C, are lists of objects of
C. The (strict) monoidal structure is given by concatenation; the tensor unit I
is the empty sequence.
Arrows:

A1 A2 An
• • · · · •

•

f1
?

•

f2
?

· · · •

fn

?

B1 B2 Bn

fi : Ai → Bi

An arrow from one list of objects to another is simply a list of arrows of C of
the appropriate types. Note that there can only be an arrow between lists of the
same length. Composition is performed pointwise in the obvious fashion.
Formally, we set [n] := {1, . . . , n}, and define an object of FM(C) to be a pair
(n,A), where n ∈ N, and A : [n] → Ob C. Tensor product of objects is defined
by (n,A) ⊗ (m,B) = (n+m, [A,B]). The tensor unit is I = (0, !), where ! is the
unique function from the empty set.

A morphism λ : (n,A) → (m,B) can only exist if n = m, and is specified by
a map λ : [n] → Mor C, satisfying

λi : Ai −→ Bi.

Arrows in FM(C) are thus simply those expressible in the form

f1 ⊗ · · · ⊗ fk : A1 ⊗ · · · ⊗Ak −→ B1 ⊗ · · · ⊗Bk.

Unicity of the monoidal functor to a monoidal category M extending a given
functor F : C → UMM is then immediate.
Note that

FM(1) = (N,=,+, 0).

4.2 Symmetric Monoidal Categories

The objects of FSM(C) are the same as in the monoidal case.
An arrow (n,A) −→ (n,B) is given by (π, λ), where π ∈ S(n) is a permuta-

tion, and λi : Ai → Bπ(i), 1 ≤ i ≤ n.

A1 A2 A3 A4
• • • •

•� •

-

•? •
-

B1 B2 B3 B4



Composition in FSM(C) is described as follows. Form paths of length 2, and
compose the arrows from C labelling these paths.

• • •

•�
f 2

•

...........................-

•?

.....................

•�
...
...
...
...
...
...
...
...
...
...
.

•?

.....................
•

g
1

-

=

• • •

•�
...
...
...
...
...
...
...
...
...
...
.

•

...........................-

•

g
1
◦
f
2

-
Note that FSM(1) =

∐

n S(n) (coproduct of categories). Thus the free monoidal
category on the trivial generating category comprises (the disjoint union of) all
the finite symmetric groups.4

Let M be a symmetric monoidal category, and consider a tensor product A1 ⊗
· · · ⊗ An. Each element π ∈ S(n) of the symmetric group S(n) induces an iso-
morphism, which by abuse of notation we also write as π:

π : A1 ⊗ · · · ⊗An

∼=
→ Aπ(1) ⊗ · · · ⊗Aπ(n).

Now note that under the above concrete description of FSM(C), arrows

(π, λ) : (n,A) −→ (n,B)

can be written as

π−1 ◦
n
⊗

i=1

fi :
n
⊗

i=1

Ai −→
n
⊗

i=1

Bi. (9)

Again, the freeness property follows directly. The main observation to be made
is that such arrows are closed under composition:

(σ−1 ◦

n
⊗

i=1

gi) ◦ (π−1 ◦

n
⊗

i=1

fi) = (σ ◦ π)−1 ◦

n
⊗

i=1

(gπ(i) ◦ fi) (10)

and tensor product:

(π−1 ◦
⊗

i

fi) ⊗ (σ−1 ◦
⊗

i

gi) = (π ⊗ σ)−1 ◦

(

⊗

i

fi ⊗
⊗

i

gi

)

, (11)

where if π ∈ S(n), σ ∈ S(m), π ⊗ σ ∈ S(n+m) is the evident concatenation of
the two permutations, as defined in the Introduction.

4 At this point, a possible step towards geometry presents itself. If we considered free
braided monoidal categories, we would find a similar connection to the braid groups
[15]. However, we shall not pursue that here.



The above closed form expression for composition requires the ‘naturality square’:

⊗

i

Bπ(i)

π−1
-
⊗

i

Bi

⊗

i

Cσ◦π(i)

⊗

i gπ(i)

?

σ ◦ (σ ◦ π)−1
-
⊗

i

Cσ(i)

⊗

i gi

?

4.3 Traced Symmetric Monoidal Categories

We now come to a key case, that of traced symmetric monoidal categories. Much
of the structure of strongly compact closed categories in fact appears already at
the traced level. This is revealed rather clearly by our incremental development
of the free constructions.

We begin by recalling the basic notions. let (C,⊗, I, τ) be a symmetric monoidal

category. Here τA,B : A⊗B
∼=
→ B ⊗A is the symmetry or twist natural isomor-

phism. A trace on C is a family of functions

TrUA,B : C(A⊗ U,B ⊗ U) −→ C(A,B)

for objects A, B, U of C, satisfying the following axioms:

– Input Naturality:

TrUA,B(f) ◦ g = TrUA′,B(f ◦ (g ⊗ 1U ))

where f : A⊗ U → B ⊗ U , g : A′ → A,
– Output Naturality:

g ◦ TrUA,B(f) = TrUA,B′((g ⊗ 1U ) ◦ f)

where f : A⊗ U → B ⊗ U , g : B → B′,
– Feedback Dinaturality:

TrUA,B((1B ⊗ g) ◦ f) = TrU
′

A,B(f ◦ (1A ⊗ g))

where f : A⊗ U → B ⊗ U ′, g : U ′ → U ,
– Vanishing (I,II):

TrIA,B(f) = f and TrU⊗V
A,B (g) = TrUA,B(TrVA⊗U,B⊗U (g))

where f : A⊗ I → B ⊗ I and g : A⊗ U ⊗ V → B ⊗ U ⊗ V .
– Superposing:

g ⊗ TrUA,B(f) = TrUW⊗A,Z⊗B(g ⊗ f)

where f : A⊗ U → B ⊗ U and g : W → Z .



– Yanking:

TrUU,U (τU,U ) = 1U .

Diagrammatically, we depict the trace as feedback:

A⊗ U
f - B ⊗ U

A
TrUA,B(f)

- B

· · · · · ·

A U

· · · · · ·
B U

· · ·

It corresponds to contracting indices in traditional tensor calculus.

We now consider the free symmetric monoidal category generated by C,
FSM(C), as described in the previous section. Recall that morphisms in FSM(C)
can be written as

π−1 ◦

n
⊗

i=1

fi :

n
⊗

i=1

Ai −→

n
⊗

i=1

Bi.

Our first observation is that this category is already canonically traced. Under-
standing why this is so, and why FSM(C) is not the free traced category, will lay
bare the essential features of the free construction we are seeking.

Note firstly that, if there is an arrow f : (n,A)⊗ (p, U) → (m,B)⊗ (p, U) in
FSM(C), then we must have n+p = m+p, and hence n = m. Thus we can indeed
hope to form an arrow A→ B in FSM(C). Now we consider the ‘geometry’ arising
from the permutation π, together with the diagrammatic feedback interpretation
of the trace. We illustrate this with the following example.

Example Consider the arrow f = π−1 ◦
⊗4

i=1 fi, where π =





1 2 3 4

2 4 3 1



, and

fi : Ai → Bπ(i). Suppose that Ai = Ui = Bi, 2 ≤ i ≤ 4, and write U =
⊗4

i=2 Ui.

We wish to compute TrUA1,B1
(f). The geometry is made clear by the following

figure.



1 2 3 4

1 2 3 4

We simply follow the path leading from A1 to B1:

1 → 2 → 4 → 1

composing the arrows which label the arcs in the path: thus

TrUA1,B1
(f) = f4 ◦ f2 ◦ f1

in this case. A similar procedure can always be followed for arrows in the form (9),
which as we have seen is general for FSM(C). (It is perhaps not immediately
obvious that a path from an input will always emerge from the feedback zone
into an output. See the following Proposition 1). Moreover, this assignment does
lead to a well-defined trace on FSM(C). However, this is not the free traced
structure generated by C.

To see why this construction does not give rise to the free interpretation of
the trace, note that in our example, the node U3 is involved in a cycle U3 → U3,
which does not appear in our expression for the trace of f . In fact, note that if we
trace an endomorphism f : A → A out completely, i.e. writing f : I⊗A→ I⊗A

we form TrAI,I(f) : I → I, then we get a scalar. Indeed, the importance of scalars
in our context is exactly that they give the values of loops. Now in FSM(C), the
tensor unit is the empty list, and there is only one scalar — the identity. It is
exactly this collapsed interpretation of the scalars which prevents the trace we
have just (implicitly) defined on FSM(C) from giving the free traced category on
C.

We now turn to a more formal account, culminating in the construction of
FTr(C).

Geometry of permutations We begin with a more detailed analysis of per-
mutations π ∈ S(n+m), with the decomposition n+m reflecting our distinction
between the visible (input-output) part of the type, and the hidden (feedback)
part, arising from the application of the trace.

We define an n-path (or if n is understood, an input-output path) of π to be
a sequence

i, π(i), π2(i), . . . , πk+1(i) = j



where 1 ≤ i, j ≤ n, and for all 0 < p < k, πp(i) > n. We write Pπ(i) for the
n-path starting from i, which is clearly unique if it exists, and also pπ(i) = j.
We write P 0

π (i) for the set of elements of {n + 1, . . . , n + m} appearing in the
sequence. A loop of π is defined to be a cycle

j, π(j), . . . , πk+1(j) = j

where n < πp(j) ≤ n+m for p = 0, . . . , k. We write L(π) for the set of all loops
of π.

Proposition 1. The following holds for any permutation π ∈ S(n+m):

1. For each i, 1 ≤ i ≤ n, Pπ(i) is well-defined.
2. pπ ∈ S(n).
3. The family of sets

{P 0
π (i) | 1 ≤ i ≤ n} ∪ L(π)

form a partition of {n+ 1, . . . , n+m}.

Proof. 1. Consider the sequence

i, π(i), π2(i), . . .

Either we reach πk+1 = j ≤ n, or there must be a least l such that

πk+1(i) = πl+1(i) > n, 0 ≤ k < l.

(Note that the fact that i ≤ n allows us to write the left hand term as
πk+1(i)). But then, applying π−1, we conclude that πk(i) = πl(i), a contra-
diction.

2. If pπ(i) = pπ(j), then πk+1(i) = πl+1(j), where say k ≤ l. Applying
(π−1)k+1, we obtain i = πl−k(j) ≤ n, whence l = k and i = j.

3. It is standard that distinct cycles are disjoint. We can reason similarly to
part (2) to show that if P 0

π (i) meets P 0
π (j), then i = j. Similar reasoning to

(1) shows that P 0
π (i) ∩L = ∅, for L ∈ L(π). Finally, iterating π−1 on j > n

either forms a cycle, or reaches i ≤ n; in the latter case, j ∈ P 0
π (i).

2

We now give a more algebraic description of the permutation pπ. Firstly,
we extend our notation by defining [n:m] := {n+ 1, . . . ,m}. Now we can write
[n+m] = [n]t [n:n+m], where t is disjoint union. We can use this decomposition
to express π ∈ S(n+m) as the disjoint union of the following four maps:

π1,1 : [n] −→ [n] π1,2 : [n] −→ [n:n+m]

π2,1 : [n:n+m] −→ [n] π2,2 : [n:n+m] −→ [n:n+m]

We can view these maps as binary relations on [n+m] (they are in fact injective
partial functions), and use relational algebra (union R∪S, relational composition



R;S, transitive closure R+, and reflexive transitive closure R∗) to express pπ in
terms of the πij :

pπ = π1,1 ∪ π1,2;π
∗
2,2;π2,1.

We can also characterize the elements of L(π):

j ∈
⋃

L(π) ⇐⇒ 〈j, j〉 ∈ π+
2,2 ∩ id[n:n+m].

Loops We follow Kelly and Laplaza [19] in making the following basic defi-
nitions. The loops of a category C, written L[C], are the endomorphisms of C
quotiented by the following equivalence relation: a composition

A1
f1 - A2

f2 - · · · Ak

fk - A1

is equated with all its cyclic permutations. A trace function on C is a map on
the endomorphisms of C which respects this equivalence. We note in particular
the following standard result [14]:

Proposition 2. If C is traced, then the trace applied to endomorphisms:

g : A → A 7−→ TrIA,A(f) : I → I

is a (scalar-valued) trace function.

Traces of decomposable morphisms We now turn to a general proposition
about traced categories, from which the structure of the free category will be
readily apparent. It shows that whenever a morphism is decomposable into a
tensor product followed by a permutation (as all morphisms in FSM(C) are),
then the trace can be calculated explictly by composing over paths.

Proposition 3. Let C be a traced symmetric monoidal category, and consider
a morphism of the form

f = π−1 ◦
n+m
⊗

i=1

fi : C −→ D

where C =
⊗n

i=1 Ai ⊗
⊗n+m

j=n+1 Uj, D =
⊗n

i=1Bi ⊗
⊗n+m

j=n+1 Uj , π ∈ S(n+m),
and fi : Ci → Dπ(i). Then

TrUC,D(f) =





∏

l∈L(π)

sl



 • (p−1
π ◦

n
⊗

i=1

gn)

where for each 1 ≤ i ≤ n, with n-path

Pπ(i) = i, p1, . . . , pk, j



gi is the composition

Ai

fi - Up1

fp1- · · · · · · Upk

fpk - Bj

and for l = p1, · · · , pk, p1 ∈ L(π), sl = Tr
Up1

I,I (fpk
◦ · · · ◦ fp1

). The product
∏

l sl

refers to multiplication in the monoid of scalars, which we know by Proposition 1
to be commutative.

Taken together with the following instance of Superposing:

TrUA,B(s • f) = s • TrUA,B(f) (12)

this Proposition yields a closed form description of the trace on expressions of
the form:

s • (π−1 ◦
⊗

j

fj) :
⊗

j

Aj −→
⊗

j

Bj . (13)

We approach the proof of this Proposition via a number of lemmas.
Firstly, a simple consequence of Feedback Dinaturality:

Lemma 2. Let U =
⊗n

i=1 Ui, and σ ∈ S(n). Let σU =
⊗n

i=1 Uσ(i). Then

TrUA,B(f) = Tr
σ(U)
A,B ((1A ⊗ σ) ◦ f ◦ (1B ⊗ σ−1)).

Lemma 3.

TrUA,B(f) ⊗ TrVC,D(g) = TrV ⊗U
A⊗C,B⊗D((1A ⊗ τU,D⊗V ) ◦ (f ⊗ g) ◦ (1A ⊗ τC⊗V,U )).

The proof is in the Appendix.
We now show how the trace is evaluated along cyclic paths of any length.

We write σk+1 =





1 2 · · · k k + 1

2 3 · · · k + 1 1



, the cyclic permutation of length k+ 1.

Note the useful recursion formula:

σk+1 = (τ ⊗ 1) ◦ (1 ⊗ σk). (14)

Suppose we have morphisms fi : Ai → Ai+1, 1 ≤ i ≤ k + 1. We write U =
⊗k+1

i=2 Ai, and V =
⊗k+1

i=3 Ai. (By convention, a tensor product over an empty
range of indices is taken to be the tensor unit I).

Lemma 4. For all k ≥ 0:

TrUA1,Ak+2
(σk+1 ◦

k+1
⊗

i=1

fi) = fk+1 ◦ fk ◦ · · · ◦ f1.

The proof is relegated to the Appendix. This lemma simultaneously generalizes
Vanishing I (k = 0) and Yanking (k = 1, A1 = A2 = A3, f1 = f2 = 1A1

), and
also the Generalized Yanking of [3]. The geometry of the situation is made clear
by the following diagram.



1 2 k k+1

k+2 2 3 k+1

· · ·

· · ·

· · ·

=

1

k+1

k+2

...

Proof of Proposition 3 Note that for k = 0, this is just Vanishing I. Up to
conjugation by some permutation σ, we can express π as the tensor product of
its n-paths and loops:

π = σ ◦





n
⊗

i=1

Pπ(i) ⊗
⊗

L∈L[π]

L



 ◦ σ−1.

Using Lemmas 3 and 2, we can express the trace of f in terms of the traces of
the morphisms corresponding to the n-paths and loops of π. The trace of each
n-path is given by Lemma 4. ut

Description of FTr(C) The objects are as for FSM(C). A morphism now has
the form (S, π, λ), where (π, λ) are as in FSM(C), and S is a multiset of loops
in L[C], i.e. an element of M(L[C]), the free commutative monoid generated by
L[C].

Note that such a morphism

(S, π, λ) : (n,A) −→ (n,B)

can be written as




∏

[si:A→A]∼∈S

TrAI,I(si)



 • (π−1 ◦

n
⊗

i=1

λi) :
⊗

i

Ai −→
⊗

i

Bi (15)

in the language of traced symmetric monoidal categories. This will be our closed-
form description of morphisms in the free traced category. It follows from Propo-
sition 3, together with equations (1)–(4), (10), (11), (12), that this is indeed
closed under the traced monoidal operations.
We define the main operations on morphisms.



Composition

(T, σ, µ) ◦ (S, π, λ) = (S ] T, σ ◦ π, i 7→ µπ(i) ◦ λi)

Tensor product

(S, π, λ) ⊗ (T, σ, µ) = (S ] T, π ⊗ σ, [λ, µ])

Trace

Trmn,n(S, π, λ) = (S ] T, pπ, µ)

where

T = {|[λπl(j) ◦ · · · ◦ λj ]∼ | πl+1(j) = j ∈ L(π)|},

µ : i 7→ λπk(i) ◦ · · · ◦ λi.

Note that FTr(C)(I, I) = M(L[C]). Also,

FTr(1) = (
∐

n∈N

S(n)) × (N,+, 0).

That is, the objects in this free category are the natural numbers; a morphism
is a pair (π, n), where π is a permutation, and n is a natural number counting
the number of loops.

4.4 Compact Closed Categories

The free construction for compact closed categories was characterized in the
pioneering paper by Kelly and Laplaza [19]. Their construction is rather com-
plex. Even when simplified to the strict monoidal case, several aspects of the
construction are bundled in together, and it can be hard to spot what is going
one. (For example, the path construction we gave for the trace in the previous
section is implicit in their paper — but not easy to spot!). We are now in a good
position to disentangle and clarify their construction. Indeed, we have already
explictly constructed FTr(C), and there is the G or Int construction of Joyal,
Street and Verity [14]5, which is developed in the symmetric monoidal context
with connections to Computer Science issues and the Geometry of Interaction
in [2]. This construction gives the free compact closed category generated by a
traced monoidal category. Thus we can recover the Kelly-Laplaza construction
as the composition of these two adjunctions:

Cat

FTr -
⊥�
UTr

Tr−Cat

G -
⊥�
U

CC−Cat

5 Prefigured in [1], and also in some unpublished lectures of Martin Hyland [13].



Adjoints compose, so FCC(C) = G ◦FTr(C). This factorization allows us to ‘ratio-
nally reconstruct’ the Kelly-Laplaza construction.

The main notion which has to be added to those already present in FTr(C)
is that of polarity. The ability to distincguish between positive and negative
occurrences of a variable will allow us to transpose variables from inputs to
outputs, or vice versa. This possibility of transposing variables means that we
no longer have the simple situation that morphisms must be between lists of
generating objects of the same length. However, note that in a compact closed
category, (A⊗B)∗ ' A∗⊗B∗, so any object constructed from generating objects
by tensor product and duality will be isomorphic to one of the form

⊗

i

Ai ⊗
⊗

j

B∗
j .

Moreover, any morphism

f :
⊗

i

Ai ⊗
⊗

j

B∗
j −→

⊗

k

Ck ⊗
⊗

l

D∗
l (16)

will, after transposing the negative objects, be in biunique correspondence with
one of the form

⊗

i

Ai ⊗
⊗

l

Dl −→
⊗

k

Ck ⊗
⊗

j

Bj . (17)

A key observation is that in the free category, this transposed map (17) will again
be of the closed form (15) which characterizes morphisms in FTr(C), as we saw in
the previous section. From this, the construction of FCC(C) will follow directly.

Objects The objects in FCC(C) are, following the G construction applied to
FTr(C), pairs of objects of FTr(C), hence of the form (n,m,A+, A−), where

A+ : [n] −→ Ob C A− : [m] −→ Ob C.

Such an object can be read as the tensor product
n
⊗

i=1

A+
i ⊗

m
⊗

j=1

(A−
j )∗.

This is equivalent to the Kelly-Laplaza notion of signed set, under which objects
have the form (n,A, sgn), where sgn : [n] → {+,−}.

Operations on objects The tensor product is defined componentwise on the
positive and negative components. Formally:

(n,m,A+, A−) ⊗ (p, q, B+, B−) = (n+ p,m+ q, [A+, B+], [A−, B−]).

The duality simply interchanges positive and negative components:

(n,m,A+, A−)∗ = (m,n,A−, A+).

Note that the duality is involutive, and distributes through tensor:

A∗∗ = A, (A⊗B)∗ = A∗ ⊗B∗.



Morphisms A morphism has the form

(S, π, λ) : (n,m,A+, A−) −→ (p, q, B+, B−)

where we require n+ q = k = m+ p, π ∈ S(k), and λ : [k] → Mor C, such that

λi : [A+, B−]i −→ [B+, A−]π(i).

S is a multiset of loops, just as in FTr(C). Note that (S, λ, π) can indeed be seen
as a morphism in FTr(C) in the transposed form (17), as discussed previously.

We now describe the compact closed operations on morphisms.

Composition Composition of a morphism f : A → B with a morphism g :
B → B is given by feeding ‘outputs’ by f from the positive component of B as
inputs to g (since for g, B occurs negatively, and hence the positive and negative
components are interchanged); and symmetrically, feeding the g outputs from
the negative components of B as inputs to f . This symmetry allows the strong
form of duality present in compact closed categories to be interpreted in a very
direct and natural fashion.

This general prescription is elegantly captured algebraically in terms of the
trace, which co-operates with the duality to allow symmetric interaction between
the two morphisms which are being composed. This is illustrated by the following
diagram, which first appeared in [1]:

f g

A+

A−

C−

C+

B−

B+

B+

B−

A concrete account for FCC(C) follows directly from our description of the
trace in FTr(C): chase paths, and compose (in C) the morphisms labelling the
paths to get the labels. In general, loops will be formed, and must be added to
the multiset. Formally, given arrows

f : A −→ B, g : B −→ C

where

f = (S, π, λ) : (n,m,A+, A−) −→ (p, q, B+, B−)

g = (T, σ, µ) : (p, q, B+, B−) −→ (r, s, C+, C−)



we form the composition

(S ] T ] U, EX(π, σ), ρ) : (n,m,A+, A−) −→ (r, s, C+, C−).

There is an algebraic description of the permutation component EX(π, σ), which
can be derived from our algebraic description of pπ in the previous section. In
the same manner as we did there, we can decompose each of π and σ into four
components, which we write as matrices:

π =





πA+A− πA+B+

πB−A− πB−B+



 σ =





σA+A− σA+B+

σB−A− σB−B+





Now if we write

EX(π, σ) = θ =





θA+A− θA+C+

θC−A− θC−C+





then we can define

θA+A− = πA+A− ∪ πA+B+ ;σB+B− ; (πB−B+ ;σB+B−)∗;πB−A−

θA+C+ = πA+B+ ; (σB+B− ;πB−B+)∗;σB+C+

θC−A− = σC−B− ; (πB−B+ ;σB+B−)∗;πB−A−

θC−C+ = σC−C+ ∪ σC−B− ;πB−B+ ; (σB+B− ;πB−B+)∗;σB+C+ .

This is essentially the ‘Execution formula’ [12] — see also [14] and [2]; it appears
implicitly in [19] as a coequaliser.

Similarly, we can characterize the loops formed by composing π and σ,
L(π, σ), by

j ∈
⋃

L(π, σ) ⇐⇒

〈j, j〉 ∈ ((πB−B+ ;σB+B−)+ ∩ idB−) ∪ ((σB+B− ;πB−B+)+ ∩ idB+).

The labelling function ρ simply labels EX(π, σ) : i 7→ j with the arrow
in C formed by composing the arrows labelling the arcs in the path from i to
j described by the above ‘flow matrix’. Similarly, U is the multiset of loops
labelling the cycles in L(π, σ).

One can give algebraic descriptions of ρ and U by reformulating λ and µ as
graph homomorphisms into (the underlying graph of) C. One can then form a
homomorphism ν : G → UGraphC from a combined graph G, which gives an
‘intensional description’ of the composition. This combined graph will comprise
the disjoint union of the graphs corresponding to the two arrows being composed,
together with explicit feedback arcs, labelled by ν with identity arrows in C. One
then considers the path category G∗ freely generated from this graph [20, 2.VII];
the above flow expressions for EX(π, σ) yield a description of the paths in this
category when relational composition is reinterpreted as concatenation of paths.
We can then read off ρ and U from the unique functorial extension of ν to this
path category.



Tensor Product This is defined componentwise as in FTr(C), with appropri-
ate permutation of indices in order to align positive and negative components
correctly.

Units and Counits Firstly, we describe the identity morphisms explicitly:

id = (∅, id[n+m], i 7→ 1[A,B]i) : (n,m,A+, A−) −→ (n,m,A+, A−).

We join each dot in the input to the corresponding one in the output, and label
it with the appropriate identity arrow.

Now consider the unit ηA : I → A∗⊗A. Once we have unpacked the definition
of what comprises an arrow of this type, we see that we can make exactly the
same definition as for the identity! The unit is just the right transpose of the
identity. Similarly, the counit is the left transpose of the identity.

Thus identities, units and counits are essentially all the same, except that
the polarities allow variables to be transposed freely between the domain and
codomain.

Identity: •+
1 -
` •+

Unit: ` •−
1 - •+

Counit: •+ 1 - •− `

4.5 Strongly Compact Closed Categories

We now wish to analyze the new notion of strongly compact closed category
in the same style as the previous constructions. Fortunately, there is a simple
observation which makes this quite transparent. Provided that the category we
begin with is already equipped with an involution (but no other structure), then
this involution ‘lifts’ through all our constructions, yielding the free ‘dagger
version’ (in the sense of [25]) of each of our constructions. In particular, our
construction of FCC(C) in the previous section in fact gives rise to the free strongly
compact closed category.

More precisely, we shall describe an adjunction

InvCat

FSCC -
⊥�

USCC

SCC−Cat

where InvCat is the category of categories with a specified involution, i.e. an
identity on objects, contravariant, involutive functor; and functors preserving
the involution.

Our previous construction of FCC(C) lifts directly to this setting. The main
point is that we can define an involution ()† on FCC(C), under the assumption
that we are given a primitive ()† on the generating category C. The dagger on



FCC(C) will endow it with the structure of a strongly compact closed category
(for which the compact closed part will coincide with that already described for
FCC(C)).

Given
(S, π, λ) : (n,m,A+, A−) −→ (p, q, B+, B−),

we can define

(S, π, λ)† = ({|[s†]∼ | [s]∼ ∈ S|}, π−1, j 7→ λ
†

π−1(j)).

In short, we reverse direction on the arrows connecting the dots (including re-
versing the direction of loops), and label the reversed arrows with the reversals of
the original labels. This contrasts with the dual f ∗, which by the way types are
interpreted in this free situation, is essentially the same combinatorial object as
f , but with a different ‘marking’ by polarities — there are no reversals involved.
Thus, if we had a labelling morphism

λi = [A+, B−]i
fi- [B+, A−]π(i)=j

then we will get

(λ†)j = [B+, A−]j
f
†
i- [A+, B−]π−1(j)=i.

It is easy to see that ηA = ε
†
A, so this is compatible with our previous construction

of FCC(C).

4.6 Parameterizing on the Monoid

So far, the scalars have arisen intrinsically from the loops in the generating
category C. However, we may wish for various reasons to be able to ‘glue in’
a preferred multiplicative monoid of scalars into our traced, compact closed,or
strongly compact closed category, For example, we may wish to consider only a
few generating morphisms, but to take the complex numbers C as scalars. We
will present a construction which accomodates this, as a simple refinement of
the previous ones. There are versions of this construction for each of the traced,
compact closed, and strongly compact closed cases: we shall only discuss the last
of these.

Firstly, we note that there is a functor

L : InvCat −→ InvSet

which sends a category to its sets of loops. The dagger defines an involution
on the set of loops. Involution-preserving functors induce involution-preserving
functions on the loops.

Now let InvCMon be the category of commutative monoids with involution,
and involution-preserving homomorphisms. There is an evident forgetful functor



UInvCMon −→ InvSet. We can form the comma category (L ↓ UInvCMon),
whose objects are of the form (C, ϕ,M), where ϕ is an involution-preserving
map from L[C] to the underlying set of M . Here we can think of M as the
prescribed monoid of scalars, and ϕ as specifying how to evaluate loops from C
in this monoid.
There is a forgetful functor UV : SCC−Cat −→ V

UV : C 7−→ (USCC(C), f : A→ A 7−→ TrAI,I(f), C(I, I)).

Our task is to construct an adjunction

V

FV -
⊥�
UV

SCC−Cat

which builds the free SCC on a category with prescribed scalars. This is a simple
variation on our previous construction of FSCC(C), which essentially acts by com-
position with the loop evaluation function ϕ on FSCC(C). We use the prescribed
monoid M in place of M(L[C]). Thus a morphism in FV(C) will have the form
(m,π, λ), where m ∈ M . Multiset union is replaced by the monoid operation of
M . The action of the dagger functor on elements of M is by the given involution
on M . When loops in C arise in forming compositions in the free category, they
are evaluated in M using the function ϕ.

The monoid of scalars in this free category will of course be M .
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Appendix

The following equational proofs involve some long typed formulas. To aid in
readability, we have annotated each equational step (reading down the page) by
underlining each redex, and overlining the corresponding contractum.

Proof of Lemma 3

Proof.

TrUA,B(f) ⊗ TrVC,D(g)

= {Superposing}

TrVA⊗C,B⊗D(TrUA,B(f) ⊗ g)

= {Naturality of τ}

TrVA⊗C,B⊗D(τD⊗V,B ◦ (g ⊗ TrUA,B(f)) ◦ τA,C⊗V )

= {Superposing}

TrVA⊗C,B⊗D(τD⊗V,B ◦ TrUC⊗V ⊗A,D⊗V ⊗B(g ⊗ f) ◦ τA,C⊗V )

= {Input/Output Naturality}

TrVA⊗C,B⊗D(TrUA⊗C⊗V,B⊗D⊗V ((τD⊗V,B ⊗ 1U ) ◦ (g ⊗ f) ◦ (τA,C⊗V ⊗ 1U )))

= {SM Coherence}

TrVA⊗C,B⊗D(TrUA⊗C⊗V,B⊗D⊗V ((1A ⊗ τU,D⊗V ) ◦ (f ⊗ g) ◦ (1A ⊗ τC⊗V,U )))

= {Vanishing II}

TrV ⊗U
A⊗C,B⊗D((1A ⊗ τU,D⊗V ) ◦ (f ⊗ g) ◦ (1A ⊗ τC⊗V,U)).
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Proof of Lemma 4

Proof. Note that for k = 0, this is just Vanishing I. We now reason inductively
when k > 0.

TrUA1,Ak+2
(σk+1 ◦

⊗k+1
i=1 fi)

= {Vanishing II}

TrA2

A1,Ak+2
(TrVA1⊗A2,Ak+2⊗A2

(σk+1 ◦
⊗k+1

i=1 fi))

= {(14)}

TrA2

A1,Ak+2
(TrVA1⊗A2,Ak+2⊗A2

((τ ⊗ 1) ◦ (1 ⊗ σk) ◦
⊗k+1

i=1 fi))

= {Naturality in Ak+2 ⊗A2}

TrA2

A1,Ak+2
(τ ◦ TrVA1⊗A2,A2⊗Ak+2

((1 ⊗ σk) ◦
⊗k+1

i=1 fi))

= {Bifunctoriality of ⊗}

TrA2

A1,Ak+2
(τ ◦ TrVA1⊗A2,A2⊗Ak+2

((1 ⊗ σk) ◦ (1 ⊗
⊗k+1

i=2 fi) ◦ (f1 ⊗ 1U )))

= {Naturality in A1 ⊗A2}

TrA2

A1,Ak+2
(τ ◦ TrVA2⊗A2,A2⊗Ak+2

((1 ⊗ σk) ◦ (1 ⊗
⊗k+1

i=2 fi)) ◦ (f1 ⊗ 1A2
))

= {Naturality in A1}

TrA2

A2,Ak+2
(τ ◦ TrVA2⊗A2,A2⊗Ak+2

((1 ⊗ σk) ◦ (1 ⊗
⊗k+1

i=2 fi))) ◦ f1

= {Bifunctoriality of ⊗}

TrA2

A2,Ak+2
(τ ◦ TrVA2⊗A2,A2⊗Ak+2

(1 ⊗ (σk ◦
⊗k+1

i=2 fi))) ◦ f1

= {Superposing}

TrA2

A2,Ak+2
(τ ◦ (1 ⊗ TrVA2,Ak+2

(σk ◦
⊗k+1

i=2 fi))) ◦ f1

= {Induction hypothesis}

TrA2

A2,Ak+2
(τ ◦ (1 ⊗ (fk+1 ◦ · · · ◦ f2))) ◦ f1

= {Naturality of τ}

TrA2

A2,Ak+2
(((fk+1 ◦ · · · ◦ f2) ⊗ 1) ◦ τ ) ◦ f1

= {Naturality in Ak+2}

(fk+1 ◦ · · · ◦ f2) ◦ TrA2

A2,A2
(τ) ◦ f1

= {Yanking}

(fk+1 ◦ · · · ◦ f2) ◦ 1A2
◦ f1

= fk+1 ◦ · · · ◦ f2 ◦ f1.
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