
A Game Semantics for Generic Polymorphism

Samson Abramsky
Oxford University Computing Laboratory

Radha Jagadeesan
DePaul University

Dedicated to Helmut Schwichtenberg on the occasion of his sixtieth birthday. His commitment
to the highest scientific standards, coupled with a wise and kind humanity, is a continuing

source of inspiration.

Abstract

Genericity is the idea that the same program can work at many different data types.
Longo, Milstead and Soloviev proposed to capture the inability of generic programs to probe
the structure of their instances by the following equational principle: if two generic programs,
viewed as terms of type ∀X. A[X], are equal at any given instance A[T], then they are equal
at all instances. They proved that this rule is admissible in a certain extension of System
F, but finding a semantically motivated model satisfying this principle remained an open
problem.

In the present paper, we construct a categorical model of polymorphism, based on game
semantics, which contains a large collection of generic types. This model builds on two novel
constructions:

• A direct interpretation of variable types as games, with a natural notion of substitution
of games. This allows moves in games A[T] to be decomposed into the generic part
from A, and the part pertaining to the instance T . This leads to a simple and natural
notion of generic strategy.

• A “relative polymorphic product” Πi(A,B) which expresses quantification over the
type variable Xi in the variable type A with respect to a “universe” which is explicitly
given as an additional parameter B. We then solve a recursive equation involving this
relative product to obtain a universe in a suitably “absolute” sense.

Full Completeness for ML types (universal closures of quantifier-free types) is proved for this
model.

1 Introduction

We begin with an illuminating quotation from Gérard Berry [Ber00]:

Although it is not always made explicit, the Write Things Once or WTO princi-
ple is clearly the basis for loops, procedures, higher-order functions, object-oriented
programming and inheritance, concurrency vs. choice between interleavings, etc.

1

-

? ?

- - -
�

�@
@

?

Figure 1: ‘Generic’ list structure

In short, much of the search for high-level structure in programming can be seen as the search for
concepts which allow commonality to be expressed. An important facet of this quest concerns
genericity : the idea that the same program can work at many different data types.

For illustration, consider the abstraction step involved in passing from list-processing pro-
grams which work on data types List[T] for specific types T , to programs which work generically
on List[X]. Since lists can be so clearly visualized, it is easy to see what this should mean (see
Figure 1). A generic program cannot probe the internal structure of the list elements. Thus
e.g. list concatenation and reversal are generic, while summing a list is not. However, when
we go beyond lists and other concrete data structures, to higher-order types and beyond, what
genericity or type-independence should mean becomes much less clear.

One very influential proposal for a general understanding of the uniformity which generic
programs should exhibit with respect to the type instances has been John Reynolds’ notion of
relational parametricity [Rey83], which requires that relations between instances be preserved
in a suitable sense by generic programs. This has led to numerous further developments, e.g.
[MR92, ACC93, PA93].

Relational parametricity is a beautiful and important notion. However, in our view it is not
the whole story. In particular:

• It is a “pointwise” notion, which gets at genericity indirectly, via a notion of uniformity
applied to the family of instantiations of the program, rather than directly capturing the
idea of a program written at the generic level, which necessarily cannot probe the structure
of an instance.

• It is closely linked to strong extensionality principles, as shown e.g. in [ACC93, PA93],
whereas the intuition of generic programs not probing the structure of instances is prima
facie an intensional notion—a constraint on the behaviour of processes.

An interestingly different analysis of genericity with different formal consequences was proposed
by Giuseppe Longo, Kathleen Milsted and Sergei Soloviev [LMS93, Lon95]. Their idea was
to capture the inability of generic programs to probe the structure of their instances by the
following equational principle: if two generic programs, viewed as terms t, u of type A[X], are
equal at any given instance T , then they are equal at all instances:

∃T. t{T} = u{T} : A[T] =⇒ ∀U. t{U} = u{U} : A[U].

2

This principle can be stated even more strongly when second-order polymorphic quantification
over type variables is used. For t, u : ∀X. A:

t{T} = u{T} : A[T]
t = u : ∀X. A

.

We call this the Genericity Rule. In one of the most striking syntactic results obtained for
System F (i.e. the polymorphic second-order λ-calculus [Gir72, Rey74]), Longo, Milsted and
Soloviev proved in [LMS93] that the Genericity Rule is admissible in the system obtained by
extending System F with the following axiom scheme:

(C) t{B} = t{C} : A (t : ∀X. A, X 6∈ FV(A)).

While many of the known semantic models of System F satisfy axiom (C), there is no known
naturally occurring model which satisfies the Genericity principle (i.e. in which the rule of Gener-
icity is valid). In fact, in the strong form given above, the Genericity rule is actually incompatible
with well-pointedness and parametricity, as observed by Longo. Thus if we take the standard
polymorphic terms representing the Boolean values

ΛX. λx:X. λy:X. x, ΛX. λx:X. λy:X. y : ∀X. X → X → X

then if the type ∀X. X → X has only one inhabitant — as will be the case in a parametric
model — then by well-pointedness the Boolean values will be equated at this instance, while
they cannot be equated in general on pain of inconsistency.

However, we can state a more refined version. Say that a type T is a generic instance if for
all types A[X]:

t{T} = u{T} : A[T] =⇒ t = u : ∀X. A.

This leads to the following problem posed by Longo in [Lon95], and still, to the best of our
knowledge, open:

Open Problem 2. Construct, at least, some (categorical) models that contain
a collection of “generic” types. . . . If our intuition about constructivity is correct,
infinite objects in categories of (effective) sets should satisfy this property.

In the present paper, we present a solution to this problem by constructing a categorical
model of polymorphism which contains a large collection of generic types. The model is based
on game semantics; more precisely, it extends the “AJM games” of [AJM00] to provide a model
for generic polymorphism. Moreover, Longo’s intuition as expressed above is confirmed in the
following sense: our main sufficient condition for games (as denotations of types) to be generic
instances is that they have plays of arbitrary length. This can be seen as an intensional version
of Longo’s intuition about infinite objects.

In addition to providing a solution to this problem, the present paper also makes the following
contributions.

3

• We interpret variable types in a simple and direct way, with a natural notion of substitution
of games into variable games. The crucial aspect of this idea is that it allows moves in
games A[T] to be decomposed into the generic part from A, and the part pertaining to the
instance T . This in turn allows the evident content of genericity in the case of concrete data
structures such as lists to be carried over to arbitrary higher-order and polymorphic types.
In particular, we obtain a simple and natural notion of generic strategy. This extends the
notion of history-free strategy from [AJM00], which is determined by a function on moves,
to that of a generic strategy, which is determined by a function on the generic part of the
move only, and simply acts as the identity on the part pertaining to the instance. This
captures the intuitive idea of a generic program, existing “in advance” of its instances, in
a rather direct way.

• We solve the size problem inherent in modelling System F in a somewhat novel way. We
define a “relative polymorphic product” Πi(A,B) which expresses quantification over the
type variable Xi in the variable type A with respect to a “universe” which is explicitly
given as an additional parameter B. We then solve a recursive equation involving this
relative product to obtain a universe in a suitably “absolute” sense: a game U with the
requisite closure properties to provide a model for System F.

• We prove Full Completeness for the ML types (i.e. the universal closures of quantifier-free
types).

2 Background

2.1 Syntax of System F

We briefly review the syntax of System F. For further background information we refer to
[GLT89].

Types (Formulas)

A ::= X | A→ B | ∀X. A

Typing Judgements

Terms in context have the form

x1 : A1, . . . , xk : Ak ` t : A

Assumption
Γ, x : T ` x : T

Implication

Γ, x : U ` t : T

Γ ` λx:U. t : U → T
(→− I) Γ ` t : U → T Γ ` u : U

Γ ` tu : T
(→− E)

4

Second-order Quantification

Γ ` t : A
Γ ` ΛX. t : ∀X. A

(∀ − I) Γ ` t : ∀X. A
Γ ` t{B} : A[B/X]

(∀ − E)

The (∀− I) rule is subject to the usual eigenvariable condition, that X does not occur free in Γ.
The following isomorphism is definable in System F:

∀X. A→ B ∼= A→ ∀X. B (X 6∈ FV(A)).

This allows us to use the following normal form for types:

∀ ~X. T1 → · · · → Tk → X (k ≥ 0)

where each Ti is inductively of the same form.

2.2 Notation

We write ω for the set of natural numbers.
If X is a set, X∗ is the set of finite sequences (words, strings) over X. We use s, t, u, v to

denote sequences, and a, b, c, d, m, n to denote elements of these sequences. Concatenation
of sequences is indicated by juxtaposition, and we don’t distinguish notationally between an
element and the corresponding unit sequence. Thus as denotes the sequence with first element
a and tail s. However, we will sometimes write a · s or s · a to give the name a to the first or
last element of a sequence.

If f : X −→ Y then f∗ : X∗ −→ Y ∗ is the unique monoid homomorphism extending f . We
write |s| for the length of a finite sequence, and si for the ith element of s, 1 ≤ i ≤ |s|. We write
numoccs(a, s) for the number of occurrences of a in the sequence s.

We write X + Y for the disjoint union of sets X, Y .
If Y ⊆ X and s ∈ X∗, we write s � Y for the sequence obtained by deleting all elements not

in Y from s. In practice, we use this notation in the context where X = Y + Z, and by abuse
of notation we take s � Y ∈ Y ∗, i.e. we elide the use of injection functions. We also use several
variations on the notion of projection onto a sub-sequence, defining any which are not obvious
from the context.

We write s v t if s is a prefix of t, i.e. t = su for some u. We write s veven t if s is an
even-length prefix of t. Pref(S) is the set of prefixes of elements of S ⊆ X∗. S is prefix-closed if
S = Pref(S).

3 Variable Games and Substitution

3.1 A Universe of Moves

We fix an algebraic signature consisting of the following set of unary operations:

p, q, {li | i ∈ ω}, r.

5

We take M to be the algebra over this signature freely generated by ω. Explicitly, M has the
following “concrete syntax”:

m ::= i (i ∈ ω) | p(m) | q(m) | li(m) (i ∈ ω) | r(m).

For any algebra (A, pA, qA, {lA
i | i ∈ ω}, rA) and map f : ω −→ A, there is a unique homomor-

phism f † :M−→ A extending f , defined by:

f †(i) = f(i), f †(φ(m)) = φA(f †(m)) (φ ∈ {p, q, r} ∪ {li | i ∈ ω}).

We now define a number of maps onM by this means.

• The labelling map λ :M−→ {P,O}. The polarity algebra on the carrier {P,O} interprets
p, q, r as the identity, and each li as the involution (̄), where P̄ = O, Ō = P . The map
on the generators is the constant map sending each i to O.

• The map ρ : M −→ ω sends each move to the unique generator occurring in it. All the
unary operations are interpreted as the identity, and the map on generators is the identity.

• The substitution map. For each move m′ ∈M, there is a map

hm′ :M−→M

induced by the constant map on ω which sends each i to m′. We write m[m′] for hm′(m).

• An alternative form of substitution is written m[m′/i]. This is induced by the map which
sends i to m′, and is the identity on all j 6= i.

Proposition 3.1 Substitution is associative and left-cancellative:

(1) m1[m2[m3]] = (m1[m2])[m3]
(2) m[m1] = m[m2] =⇒ m1 = m2

Note that substitution is right-cancellative only up to permutation of generators:

m[i][m′] = m[m′] = m[j][m′] for all i, j ∈ ω.

Proposition 3.2 Substitution interacts with λ and ρ as follows.

1. λ(m[m′]) =
{

λ(m′) if λ(m) = P
λ(m′) if λ(m) = O

2. ρ(m[m′]) = ρ(m′).

We extend the notions of substitution pointwise to sequences and sets of sequences of moves in
the evident fashion.
We say that m1,m2 ∈M are unifiable if for some m3,m4 ∈M, m1[m3] = m2[m4]. A set S ⊆M
is unambiguous if whenever m1,m2 ∈ S are unifiable, m1 = m2.

6

Proposition 3.3 If S is unambiguous, and for each m ∈ S the set Tm is unambiguous, then so
is the following set:

{m1[m2] | m1 ∈ S ∧ m2 ∈ Tm1}.

Proof Suppose that (m1[m2])[m3] = (m′
1[m

′
2])[m

′
3]. We must show that m1[m2] = m′

1[m
′
2]. By

associativity, m1[m2[m3]] = m′
1[m

′
2[m

′
3]]. Since S is unambiguous, this implies that m1 = m′

1.
By left cancellativity, this implies that m2[m3] = m′

2[m
′
3]. Since Tm1 is unambiguous, this implies

that m2 = m′
2. 2

Given a subset S ⊆M and i ∈ ω, we write

Si = {m ∈ S | ρ(m) = i}.

We define a notion of projection of a sequence of moves s onto a move m inductively as follows:

ε �m = ε
m[m′] · s �m = m′ · (s�m)
m′ · s �m = s�m, ∀m′′.m′ 6= m[m′′].

Dually, given an unambiguous set of moves S, and a sequence of moves s in which every move
has the form m[m′] for some m ∈ S (necessarily unique since S is unambiguous), we define a
projection s�S inductively as follows:

ε �S = ε
m[m′] · s �S = m · (s�S) (m ∈ S ∧ ρ(m) > 0)
m[m′] · s �S = m[m′] · (s�S) (m ∈ S0)

3.2 Variable Games

A variable game is a structure
A = (OA, PA,≈A)

where:

• OA ⊆M is an unambiguous set of moves: the occurrences of A. We then define:

– λA = λ�OA.

– ρA = ρ�OA.

– MA = {m[m′] | m ∈ O0
A ∧ m′ ∈M} ∪

⋃
j>0O

j
A.

• PA is a non-empty prefix-closed subset of M∗
A satisfying the following form of alternation

condition: the odd-numbered moves in a play are moves by O, while the even-numbered
moves are by P . Here we regard the first, third, fifth, . . . occurrences of a move m in a
sequence as being by λA(m), while the second, fourth, sixth . . . occurrences are by the
other player.

7

• ≈A is an equivalence relation on PA such that:

(e1) s ≈A t =⇒ s←→ t
(e2) ss′ ≈A tt′ ∧ |s| = |t| =⇒ s ≈A t
(e3) s ≈A t ∧ sa ∈ PA =⇒ ∃b. sa ≈A tb.

Here s←→ t holds if

s = 〈m1, . . . ,mk〉, t = 〈m′
1, . . . ,m

′
k〉

and the correspondence mi ←→ m′
i is bijective and preserves λA and ρA. We write

π : s←→ t

to give the name π to the bijective correspondence mi ←→ m′
i.

A move m ∈ Oi
A, i > 0, is an occurrence of the type variable Xi, while m ∈ O0

A is a bound
occurrence.

The set of variable games is denoted by G(ω). The set of those games A for which the range
of ρA is included in {0, . . . , k} is denoted by G(k). Note that if k ≤ l, then

G(k) ⊆ G(l) ⊆ G(ω).

G(0) is the set of closed games.

Comparison with AJM games The above definition of game differs from that in [AJM00]
in several respects.

1. The notion of bracketing condition, requiring a classification of moves as questions or
answers, has been omitted. This is because we are dealing here with pure type theories,
with no notion of “ground data types”.

2. The alternation condition has been modified: we still have strict OP -alternation of moves,
but now successive occurrences of moves within a sequence are regarded as themselves
having alternating polarities. Since in the PCF games in [AJM00] moves in fact only
occur once in any play, they do fall within the present formulation. The reason for the
revised formulation is that moves in variable games are to be seen as occurrences of type
variables, which can be expanded into plays at an instance. Another motivation comes
from considering copy-cat strategies, in which (essentially) the same moves are played
alternately by O and P .

Technically, modifying the alternation condition in this way simplifies the definition of
substitution (see Section 3.4) and of the games Xi corresponding to type variables (see
Section 3.5).

3. We have replaced the condition (e1) from [AJM00] with a stronger condition, which is in
fact satisfied by the games in [AJM00].

8

3.3 Constructions on games

Since variable games are essentially just AJM games with some additional structure on moves,
the cartesian closed structure on AJM games can be lifted straighforwardly to variable games.

Unit type

The unit type 1 is the empty game.

1 = (∅, {ε}, {(ε, ε)}).

Product

The product A&B is the disjoint union of games.

OA&B = {p(m) | m ∈ OA} ∪ {q(m) | m ∈ OB}

PA&B = {p∗(s) | s ∈ PA} ∪ {q∗(t) | t ∈ PB}

p∗(s) ≈A&B p∗(t) ≡ s ≈A t q∗(s) ≈A&B q∗(t) ≡ s ≈B t.

Function Space

The function space A⇒ B is defined as follows.

OA⇒B = {li(m) | i ∈ ω ∧ m ∈ OA} ∪ {r(m) | m ∈ OB}.

PA⇒B is defined to be the set of all sequences in M∗
A⇒B satisfying the alternation condition,

and such that:

• ∀i ∈ ω. s�li(1) ∈ PA.

• s�r(1) ∈ PB.

Let S = {li(1) | i ∈ ω} ∪ {r(1)}. Note that S is unambiguous. Given a permutation α on ω, we
define

ᾰ(li(1)) = lα(i)(1), ᾰ(r(1)) = r(1).

The equivalence relation s ≈A⇒B t is defined by the condition

∃α ∈ S(ω). ᾰ∗(s�S) = t�S ∧ s�r(1) ≈B t�r(1) ∧ ∀i ∈ ω. s�li(1) ≈A t�lα(i)(1)).

This is essentially identical to the definition in [AJM00]. The only difference is that we use the
revised version of the alternation condition in defining the positions, and that we define A⇒ B
directly, rather than via the linear connectives (and !.

9

3.4 Substitution

Given A ∈ G(k), and B1, . . . , Bk ∈ G(l), we define A[~B] ∈ G(l) as follows.

OA[~B] = O0
A ∪

k⋃
i=1

{m[m′] | m ∈ Oi
A ∧ m′ ∈ OBi}.

PA[~B] = {s ∈M∗
A[~B]
| s�A ∈ PA ∧ ∀i : 1 ≤ i ≤ k.∀m ∈ Oi

A. s�m ∈ PBi}

s ≈A[~B] t ≡ s�A ≈A t�A ∧ π : s�A←→ t�A =⇒ ∀i : 1 ≤ i ≤ k.∀m ∈ Oi
A. s�m ≈Bi t�π(m).

Here by convenient abuse of notation we write s�A for s�OA.

Proposition 3.4 A[~B] is a well-defined game. In particular:

1. OA[~B] is unambiguous.

2. PA[~B] satisfies the alternation condition.

3. ≈A[~B] satisfies (e1)–(e3).

Proof

1. This follows directly from Proposition 3.3, since by assumption OA and each OBi are
unambiguous.

2. We begin by formulating the alternation condition more precisely. We define the parity
function

parity : ω −→ {−1,+1} parity(k) = (−1)k.

Also, for the purposes of this argument we shall interpret P as −1 and O as +1. We can
now define the alternation condition on a sequence s as follows:

∀t ·m v s. parity(|t|) = parity(numoccs(m, t))λ(m).

We now consider a play t ·m1[m2] ∈ PA[~B]. Note firstly that if ρ(m1) = 0, there is nothing
more to prove, since in that case t · m1[m2]�A = (t�A) · m1[m2] satisfies the alternation
condition by assumption, and hence, since |t| = |t�A|, so does t ·m1[m2].

Otherwise, ρ(m1) > 0. We shall use the following identities to verify the alternation
condition for this play.

(1) |t| = |t�A|
(2) |t�m1| = numoccs(m1, t�A)
(3) numoccs(m1[m2], t) = numoccs(m2, t�m1)
(4) λ(m1[m2]) = λ(m1)λ(m2)
(5) parity(|t�A|) = parity(numoccs(m1, t�A))λ(m1)
(6) parity(|t�m1|) = parity(numoccs(m2, t�m1))λ(m2).

10

Of these, (1)–(3) are easily verified; (4) follows from Proposition 3.2; and (5) and (6) hold
by assumption for plays in A and each Bi respectively. Now

parity(|t|) = parity(|t�A|) (1)
= parity(numoccs(m1, t�A))λ(m1) (5)
= parity(|t�m1|)λ(m1) (2)
= parity(numoccs(m2, t�m1))λ(m1)λ(m2) (6)
= parity(numoccs(m1[m2], t))λ(m1[m2]) (3), (4)

3. We verify (e3). Suppose that s ≈A[~B] t and s · m1[m2] ∈ PA[~B]. This implies that
s�A ≈A t�A and (s�A) ·m1 ∈ PA. By (e3) for A, for some m′

1, (s�A) ·m1 ≈A (t�A) ·m′
1,

and clearly if π : (s�A) · m1 ←→ (t�A) · m′
1, then π(m1) = m′

1. If ρ(m1) = 0, there is
nothing more to prove. Otherwise, if m1 ∈ Oi

A, 1 ≤ i ≤ k, then s�m1 ≈Bi t�m′
1, and

(s�m1) ·m2 ∈ PBi . By (e3) for Bi, for some m′
2, (s�m1) ·m2 ≈Bi (t�m′

1) ·m′
2. Clearly

s ·m1[m2] ≈A[~B] t ·m′
1[m

′
2], as required.

2

3.4.1 Variants of substitution

Firstly, note that the above definitions would still make sense if we took k = ω and/or l = ω, so
that, for example, there is a well-defined operation

G(ω)× G(ω)ω −→ G(ω).

In practice, the finitary versions will be more useful for our purposes here, as they correspond
to the finitary syntax of System F.

More importantly, it is useful to define an operation of substitution for one type variable
only. We write this as

A[B/Xi]

where B is being substituted for the i’th type variable Xi, i > 0.
The definition is a simple variation on that of A[~B] given above. Nevertheless, we give it

explicitly, as we will make significant use of this version of substitution.

OA[B/Xi] =
⋃
j 6=i

Oj
A ∪ {m[m′] | m ∈ Oi

A ∧ m′ ∈ OB}.

PA[B/Xi] = {s ∈M∗
A[B/Xi]

| s�A ∈ PA ∧ ∀m ∈ Oi
A. s�m ∈ PB}

s ≈A[B/Xi] t ≡ s�A ≈A t�A ∧ π : s�A←→ t�A =⇒ ∀m ∈ Oi
A. s�m ≈B t�π(m).

11

3.5 Properties of substitution

Proposition 3.5 If A ∈ G(k), B1, . . . , Bk ∈ G(l), and C1, . . . , Cl ∈ G(m), then:

A[B1[~C], . . . , Bk[~C]] = (A[B1, . . . , Bk])[~C].

Proof We show firstly that

OA[B1[~C],...,Bk[~C]] = O(A[B1,...,Bk])[~C].

Expanding the definitions, we can write the occurrence set of the LHS of the equation as follows:

O0
A ∪

⋃
i

Oi
A[O0

Bi
] ∪

⋃
i,j

Oi
A[Oj

Bi
[OCj]]

using the notation S[T] = {m1[m2] | m1 ∈ S ∧ m2 ∈ T}.
Similarly, the occurrence set of the RHS can be expanded to

O0
A ∪ (

⋃
i

Oi
A[OBi])

0 ∪
⋃
j

((
⋃
i

Oi
A[Oj

Bi
])[OCj].

Equating terms, the equality of these two sets follows from the fact that ρ(m[m′]) = ρ(m′), and
hence S[T]i = S[T i], and that m1[m2[m3]] = (m1[m2])[m3], and hence S[T [U]] = (S[T])[U]..

Next we show that the conditions on plays on the two sides of the equation are equivalent.
Expanding the condition on plays on the LHS of the equation we see that s ∈ PA[B1[~C],...,Bk[~C]]
if:

1. s�A ∈ PA

2. ∀i.∀m ∈ Oi
A. s�m�Bi ∈ PBi

3. ∀i.∀j.∀m ∈ Oi
A.∀m′ ∈ Oj

Bi
. s�m�m′ ∈ PCj

Similarly, expanding the condition on plays on the RHS yields:

1. s�A[~B]�A ∈ PA

2. ∀i.∀m ∈ Oi
A. s�A[~B]�m ∈ PBi

3. ∀j.∀m ∈ Oj

A[~B]
. s�m ∈ PCj .

Note firstly that for any m ∈ Oj

A[~B]
, for some i, m = m1[m2] for m1 ∈ Oi

A, m2 ∈ Oj
Bi

. Now
equating terms, we see that the equivalence of the two conditions is implied by the following
equations:

1. s�A[~B]�A = s�A
2. s�A[~B]�m = s�m�Bi (m ∈ Oi

A)
3. s�m1�m2 = s�m1[m2]

12

These equations are easily verified from the definitions of the projection operations. Firstly, note
that every move in these games has the form (1) m1[m2[m3]], where for some i, j: m1 ∈ Oi

A,
m2 ∈ Oj

Bi
, and m3 ∈ OCj ; or the form (2) m1[m2], where m1 ∈ O0

A; or (3) m1[m2[m3]], where
m1 ∈ Oi

A, m2 ∈ O0
Bi

. The LHS of equation (1) projects a move (1) firstly onto m1[m2], then
onto m1, whereas the RHS projects it directly onto m1. Moves of the form (2) are left unchanged
in both cases; while moves of the form (3) are projected onto m1 in both cases. In equation (2),
the effect of the projection operations on both sides of the equation is to restrict the sequence
to moves of the form m[m2[m3]], and to project each such move onto m2. Finally, the effect of
both sides of equation (3) is to project m1[m2[m3]] onto m3.

The argument for the coincidence of the equivalence relations is similar. 2

For each i > 0 we define the variable game Xi as follows.

OXi = {i}
PXi = M∗

Xi

s ≈Xi t ≡ |s| = |t|

Proposition 3.6 1. For all B1, . . . Bk ∈ G(ω), i ≤ k: Xi[B1, . . . Bk] = Bi.

2. For all A ∈ G(k): A[X1, . . . , Xk] = A.

Proposition 3.7 The cartesian closed structure commutes with substitution:

1. (A⇒ B)[~C] = A[~C]⇒ B[~C].

2. (A &B)[~C] = A[~C] & B[~C].

Combining Propositions 3.6 and 3.7, we obtain:

Proposition 3.8 The cartesian closed constructions can be obtained by substitution from their
generic forms:

1. A⇒ B = (X1 ⇒ X2)[A,B]
2. A &B = (X1 &X2)[A,B].

4 Constructing a Universe for Polymorphism

4.1 Two Orders on Games

We will make use of two partial orders on games.

• The approximation order A v B. This will be used in constructing games as solutions of
recursive equations.

• The inclusion order A E B. This will be used to define a notion of “subgame” within a
suitable “universal game” in our construction of a model of System F.

13

4.1.1 The Approximation Order

We define A v B if:

• OA ⊆ OB

• PA = PB ∩M∗
A

• s ≈A t ⇐⇒ s ∈ PA ∧ s ≈B t

Thus if we are given B and OA ⊆ OB, then A is completely determined by the requirement that
A v B. Note that if A v B and OA = OB, then A = B.

This order was studied in the context of AJM games in [AM95], and the theory of recursively
defined games was developed there and shown to work very smoothly, in direct analogy with the
treatment of recursion on Scott information systems [Win93]. All of this theory carries over to
the present setting essentially unchanged. The main facts which we will need can be summarized
as follows.

Proposition 4.1 1. (G(ω), v) is a (large) cpo, with least upper bounds of directed sets being
given by componentwise unions.

2. All the standard constructions on games, in particular product and function space, are
monotonic and continuous with respect to the approximation order.

3. If a function G(ω) −→ G(ω) is v -monotonic, and continuous on move-sets, then it is
v -continuous.

Thus if
F : (G(ω), v) −→ (G(ω), v)

is continuous, we can solve the recursive equation

X = F (X)

using the least fixed point theorem in the standard fashion to construct a least solution in G(ω).

4.1.2 The Inclusion Order

We define A E B by:

• OA ⊆ OB

• PA ⊆ PB

• s ≈A t ⇐⇒ s ∈ PA ∧ s ≈B t

14

Thus the only difference between the two orders is the condition on plays. Note that

A v B =⇒ A E B.

The inclusion order is useful in the following context. Suppose we fix a “big game” U to serve
as a “universe”. Define a sub-game of U to be a game of the form

A = (OU , PA,≈U ∩P 2
A),

where PA ⊆ PU , and
s ∈ PA ∧ s ≈U t =⇒ t ∈ PA.

Thus sub-games of U are completely determined by their sets of positions. We write Sub(U) for
the set of sub-games of U . Note that, for A,B ∈ Sub(U):

A E B ⇐⇒ PA ⊆ PB.

Proposition 4.2 1. Sub(U) is a complete lattice, with meets and joins given by intersections
and unions respectively.

2. If S ⊆ PU , then the least sub-game A ∈ Sub(U) such that S ⊆ PA is defined by

PA = {u | ∃s ∈ S.∃t. t v s ∧ u ≈U t}.

It is straightforward to verify that function space and product are monotonic with respect to
the inclusion order. This leads to the following point, which will be important for our model
construction.

Proposition 4.3 Suppose that U is such that

U ⇒ U v U , U &U v U , 1 v U .

Then Sub(U) is closed under these constructions.

Proof Firstly,
A,B ∈ Sub(U) implies A⇒ B E U ⇒ U ,

by E -monotonicity of ⇒. But U ⇒ U v U by assumption, and since v ⊆ E , A ⇒ B E U ,
i.e. A⇒ B ∈ Sub(U). Similarly, Sub(U) is closed under products. 2

We also note the following for future reference.

Proposition 4.4 Substitution A[B1, . . . , Bk] is both E -monotonic and v -monotonic in A and
each Bi, 1 ≤ i ≤ k.

Proof We show v -monotonicity for plays. Suppose A v A′ and ~B v ~B′. If s ∈M∗
A[~B]

, then

s�A = s�A′, and for m ∈ Oj
A, 1 ≤ j ≤ k, s�m ∈M∗

Bj
, and hence, since Bj v B′

j ,

s�m ∈ PBj ⇐⇒ s�m ∈ PB′
j
.

2

15

Adjoints of substitution Let A be a variable game, and s ∈ PA[U/Xi]. We can use the
substitution structure to compute the least instance B (with respect to E) such that s ∈
PA[B/Xi]. We define

A∗
i (s) = {t | ∃u. ∃m ∈ Oi

A. t ≈ u ∧ u v s�m}

Proposition 4.5 With notation as in the preceding paragraph, let B = A∗
i (s).

1. s ∈ PA[B/Xi].

2. s ∈ PA[C/Xi] =⇒ B E C.

Proof Fix s ∈ PA[U/Xi]. For C ∈ Sub(U),,

s ∈ PA[C/Xi] ⇐⇒ {s�m | m ∈ Oi
A} ⊆ PC .

By Proposition 4.2(2), A∗
i (s) is the least B ∈ Sub(U) containing this set. 2

4.2 The Relative Polymorphic Product

Given A,B ∈ G(ω) and i > 0, we define the relative polymorphic product Πi(A,B) (the “second-
order quantification over Xi in the variable type A relative to the universe B”) as follows.

OΠi(A,B) = OA[0/i] = {m[0/i] | m ∈ OA}.

PΠi(A,B) = {s ∈ PA[B/Xi] | ∀t · a v
even s. A∗

i (t · a) = A∗
i (t)}

s ≈Πi(A,B) t ⇐⇒ s ≈A[B/Xi] t.

To understand the definition of PΠi(A,B), it is helpful to consider the following alternative,
inductive definition (cf. [Abr96]):

PΠi(A,B) = {ε}
∪ {sa | s ∈ P even

Πi(A,B) ∧ ∃C ∈ Sub(B). sa ∈ PA[C]}
∪ {sab | sa ∈ P odd

Πi(A,B) ∧ ∀C ∈ Sub(B). sa ∈ PA[C] ⇒ sab ∈ PA[C]}

The first clause in the definition of PΠ(F) is the basis of the induction. The second clause refers
to positions in which it is Opponent’s turn to move. It says that Opponent may play in any way
which is valid in some instance. The final clause refers to positions in which it is Player’s turn
to move. It says that Player can only move in a fashion which is valid in every possible instance.
The equivalence of this definition to the one given above follows easily from Proposition 4.5.

Intuitively, this definition says that initially, nothing is known about which instance we
are playing in. Opponent progressively reveals the “game board” ; at each stage, Player is
constrained to play within the instance thus far revealed by Opponent.

The advantage of the definition we have given above is that it avoids quantification over
subgames of B in favour of purely local conditions on the plays.

Proposition 4.6 The relative polymorphic product commutes with substitution.

16

1. Πi(A,B)[C/Xi] = Πi(A,B).

2. If A ∈ G(k + 1) and C1, . . . , Ck ∈ G(n), then:

Πk+1(A,B)[~C] = Πn+1(A[~C, Xn+1], B).

Proof We prove (2). Firstly, we compare the occurrence sets. Expanding the definitions on
the LHS of the equation, we obtain

O0
A ∪ Ok+1

A [0] ∪
k⋃

i=1

{m1[m2] | m1 ∈ Oi
A ∧ m2 ∈ OCi}

Similarly, on the RHS we obtain

O0
A ∪

k⋃
i=1

{m1[m2] | m1 ∈ Oi
A ∧ m2 ∈ OCi} ∪ O

n+1

A[~C,Xn+1]
[0]

Since On+1

A[~C,Xn+1]
[0] = Ok+1

A [n + 1][0] = Ok+1
A [0], we conclude that these two sets are equal.

We now show the equivalence of the conditions on plays. In similar fashion to the proof of
associativity of substitution (Proposition 3.5), this is a straightforward matter of expanding the
definitions. The main point is to show the equivalence of the conditions restricting plays in the
polymorphic products. This reduces to showing that

A∗
k+1(s�Πk+1(A,B)) = A[~C, Xn+1]∗n+1(s),

which in turn reduces to showing that

{s�Πk+1(A,B)�m | m ∈ Ok+1
A } = {s�m[n + 1] | m ∈ Ok+1

A },

and finally to showing that for m ∈ Ok+1
A ,

s�Πk+1(A,B)�m = s�m[n + 1].

This holds because the projection s�Πk+1(A,B) projects moves of the form m′[m′′] with m′ ∈ Oi
A,

1 ≤ ρA(m′) ≤ k, onto m′, and leaves the sub-sequence of elements of the form m[m′′] unchanged.
Finally, we note that projecting with m or m[n + 1] yields identical results. 2

Proposition 4.7 The relative polymorphic product Πi is E -monotonic and v -continuous as
a function

G(ω)× G(ω) −→ G(ω).

Proof For v -monotonicity, suppose A v A′ and B v B′. By Proposition 4.4, A[B/Xi] v
A′[B′/Xi]. For t·a ∈M∗

A[B/Xi]
, the further conditions on plays C∗

i (t·a) = C∗
i (t), for C = A or A′,

depend only on the sets
{u�m | m ∈ Oi

A}, u = t or t · a
which depend only on u and not on C.

For v -continuity, we use Proposition 4.1(3), by which it suffices to show continuity on
occurrence sets. The action of Πi on occurrence sets is just that of substitution, which is defined
pointwise and hence preserves unions. 2

17

4.3 A Domain Equation for System F

We define a variable game U ∈ G(ω) of System F types by the following recursive equation:

U = &i>0Xi & 1 & (U &U) & (U ⇒ U) & &i>0Πi(U ,U).

Explicitly, U is being defined as the least fixed point of a function F : G(ω) −→ G(ω). This
function is continuous by Propositions 4.1 and 4.7.

We can then define second-order quantification by:

∀Xi. A
M= Πi(A,U).

Although it is not literally the case that

Xi v U , U ⇒ U v U , etc.

for trivial reasons of how disjoint union is defined, with a little adjustment of definitions we can
arrange things so that we indeed have

• Xi v U
• 1 v U
• A,B v U =⇒ A &B v U &U v U
• A,B v U =⇒ A⇒ B v U ⇒ U v U
• A v U =⇒ ∀Xi. A = Πi(A,U) v Πi(U ,U) v U .

Thus we get a direct inductive definition of the types of System F as sub-games of U .
Moreover, if A and B are (the variable games corresponding to) System F types, then a

simple induction on the structure of A using Propositions 3.6, 3.7 and 4.6 shows that

A[B/Xi] v U ,

and similarly for simultaneous substitution.

5 Strategies

Fix a variable game A. Let
g : OA −⇀ OA

be a partial function. We can extend g to a partial function

ĝ : MA[~U] −⇀ MA[~U]

by

ĝ(m[m′]) =
{

g(m)[m′], g(m) defined
undefined otherwise

18

Now we can define a set of plays σg ⊆M∗
A[~U]

inductively as follows:

σg = {ε} ∪ {sab | s ∈ σg ∧ sa ∈ PA[~U] ∧ ĝ(a) = b}.

For all ~B E ~U , we can define the restriction of σg to ~B by:

σ ~B = {ε} ∪ {sab ∈ σg | sa ∈ PA[~B]}.

(Note that σg = σ~U in this notation.) We say that σg is a generic strategy for A, and write
σg : A, if the following restriction condition is satisfied:

• σ ~B ⊆ PA[~B] for all ~B E ~U , so that the restrictions are well-defined.

Note that σ = σg has the following properties.

• σ is a non-empty set of even-length sequences, closed under even-length prefixes.

• σ is deterministic, meaning that

sab ∈ σ ∧ sac ∈ σ ⇒ b = c.

• σ is history-free, meaning that

sab ∈ σ ∧ t ∈ σ ∧ ta ∈ PA[~U] ⇒ tab ∈ σ.

• σ is generic:

s ·m1[m′
1] ·m2[m′

2] ∈ σ ∧ t ∈ σ ∧ t ·m1[m′′
1] ∈ PA[~U] ⇒ t ·m1[m′′

1] ·m2[m′′
1] ∈ σ.

These conditions imply that

s ·m1[m′
1] ·m2[m′

2] ∈ σ ⇒ m′
1 = m′

2).

Moreover, for any set σ ⊆ PA[~U] satisfying the above conditions, there is a least partial function
g : OA −⇀ OA such that σ = σg. This function can be defined explicitly by

g(m1) = m2 ⇐⇒ ∃s. s ·m1[a] ·m2[a] ∈ σ.

The equivalence ≈A on plays can be lifted to a partial equivalence (i.e. a symmetric and tran-
sitive relation) on strategies on A, which we also write as ≈. This is defined most conveniently
in terms of a partial pre-order (transitive relation) /, which is defined as follows.

σ / τ ≡ sab ∈ σ ∧ t ∈ τ ∧ sa ≈A ta′ =⇒ ∃b′. ta′b′ ∈ τ ∧ sab ≈A ta′b′.

We can then define
σ ≈ τ ≡ σ / τ ∧ τ / σ.

A basic well-formedness condition on strategies σ is that they satisfy this relation, meaning
σ ≈ σ. Note that for a generic strategy σ = σ~U , using the equivalence on plays in A[~U]:

σ ≈ σ =⇒ σ ~B ≈ σ ~B for all ~B E ~U .

A cartesian closed category of games is constructed by taking partial equivalence classes of
strategies, i.e. strategies modulo ≈, as morphisms. See [AJM00] for details.

19

5.1 Copy-Cat Strategies

One additional property of strategies will be important for our purposes. A partial function
f : X −⇀ X is said to be a partial involution if it is symmetric, i.e. if

f(x) = y ⇐⇒ f(y) = x.

It is fixed-point free if we never have f(x) = x. Note that fixed-point free partial involutions on
a set X are in bijective correspondence with pairwise disjoint families {xi, yi}i∈I of two-element
subsets of X (i.e. the set of pairs {x, y} such that f(x) = y, and hence also f(y) = x). Thus they
can thought of as “abstract systems of axiom links”. See [AL00, AL01] where a combinatory
algebra of partial involutions is introduced, and an extensive study is made of realizability over
this combinatory algebra.

For us, the important correspondence is with copy-cat strategies, first identified in [AJ94a]
as central to the game-semantical analysis of proofs (and so-named there). We say that σ is a
copy-cat strategy if σ = σg where g is a fixed-point free partial involution.

Lemma 5.1 (The Copy-Cat Lemma) Let σg : A be a generic copy-cat strategy. If g(m) =
m′, then for all s ∈ σ:

s�m = s�m′.

Proof By induction on |s|. The base case is immediate. Suppose that s = t ·m1[a] ·m2[a] and
that g(m3) = m4. By the partial involution property of g,

{m1,m2} = {m3,m4} or {m1,m2} ∩ {m3,m4} = ∅.

In the first case,
s�m1 = (t�m1) · a = (t�m2) · a = s�m2,

where the middle equation follows from the induction hypothesis.
In the second case,

s�m3 = t�m3 = t�m4 = s�m4,

where the middle equation again follows from the induction hypothesis. 2

5.2 Cartesian Closed Structure

The required operations on morphisms to give the structure of a cartesian closed category can be
defined exactly as for AJM games [AJM00]. We give the basic definitions, referring to [AJM00]
for motivation and technical details.

We write PInv(X) for the set of partial involutions on a set X.

Proposition 5.2 1. If f ∈ PInv(X) and g ∈ PInv(Y), then f + g ∈ PInv(X + Y).

2. If f ∈ PInv(Y), then idX × f ∈ PInv(X × Y).

20

3. Partial involutions are closed under conjugation by isomorphisms:

f ∈ PInv(X) ∧ α : X
∼=−→ Y =⇒ α ◦ f ◦ α−1 ∈ PInv(Y).

Our basic examples of partial involutions will be “twist maps” (i.e. symmetries) on disjoint
unions:

twistX = [in2, in1] : X + X −→ X + X.

More generally, to get a partial involution on OA we will specify O′A ⊆ OA and O1, . . . ,Ok such
that:

O′A ∼= (O1 +O1) + · · ·+ (Ok +Ok).

We then define a partial involution by conjugation by the indicated isomorphism of the evident
disjoint union of k twist maps. The partial involution is undefined on OA \ O′A.

Identity For identity morphisms idA : A⇒ A,

OA⇒A = ω ×OA +OA.

Define O′A = {0} × OA +OA ⊆ OA⇒A. Then

O′A ∼= OA +OA,

so we obtain the required partial involution as a twist map. This is the basic example of a
copy-cat strategy.

Projections Take for example π1 : A &B ⇒ A.

OA & B⇒A = ω × (OA +OB) +OA.

Define
O′A & B⇒A = {0} × (OA + ∅) +OA ⊆ OA & B⇒A.

Then O′A ∼= OA + OA, and we obtain the required partial involution by conjugating the twist
map by the evident isomorphism.

Pairing Suppose we are given partial involutions

f ∈ PInv(OC⇒A), g ∈ PInv(OC⇒B).

OC⇒A & B = ω ×OC +OA +OB.

Using some bijection ω ∼= ω + ω,

OC⇒A & B
∼= (ω + ω)×OC +OA +OB
∼= ω ×OC + ω ×OC +OA +OB
∼= (ω ×OC +OA) + (ω ×OC +OB)
= OC⇒A +OC⇒B.

Then f + g ∈ PInv(OC⇒A + OC⇒B), and conjugating by the indicated isomorphism yields the
required partial involution.

21

Application For application

ApA,B : (A⇒ B) &A⇒ B,

OA = ω × ((ω ×OA +OB) +OA) +OB
∼= ω × (ω ×OA +OB) + ω ×OA +OB

⊇ {0} × (ω ×OA +OB) + ω ×OA +OB
∼= (ω ×OA + ω ×OA) + (OB +OB),

yielding the required partial involution.

Currying Suppose that f ∈ PInv(OA & B⇒C).

OA & B⇒C = ω × (OA +OB) +OC
∼= ω ×OA + (ω ×OB +OC)
= OA⇒(B⇒C).

Conjugating f by the indicated isomorphism yields the required partial involution.

Composition Finally, we consider composition. We begin with some preliminaries on partial
involutions. We write Rel(X) for the set of relations on a set X, i.e. Rel(X) = P(X × X).
Note that PInv(X) ⊆ Rel(X). We assume the usual regular algebra operations on relations:
composition R · S, union R ∪ S, and reflexive transitive closure: R∗ =

⋃
k∈ω Rk.

Any R ∈ Rel(X + Y) can be written as a disjoint union

R = RXX ∪RXY ∪RY X ∪RY Y ,

where
RST = {(a, b) ∈ R | a ∈ S ∧ b ∈ T}.

Now given R ∈ Rel(X + Y), S ∈ Rel(Y + Z), we define R ./ S ∈ Rel(X + Z) as follows:

(R ./ S)XX = RXX ∪ RXY · SY Y · (RY Y · SY Y)∗ ·RY X

(R ./ S)XZ = RXY · (SY Y ·RY Y)∗ · SY Z

(R ./ S)ZX = SZY · (RY Y · SY Y)∗ ·RY X

(R ./ S)ZZ = SZZ ∪ SZY ·RY Y · (SY Y ·RY Y)∗ · SY Z .

Proposition 5.3 1. ./ is associative, with identity given by the twist map.

2. If f ∈ PInv(X + Y) and g ∈ PInv(Y + Z), then f ./ g ∈ PInv(X + Z).

Proof For (1), see [AJ94a]. For (2), we write Rc for relational converse. Note that

(R · S)c = Sc ·Rc, (R ∪ S)c = Rc ∪ Sc, (R∗)c = (Rc)∗, Rc c = R.

If R ∈ Rel(X + Y), then

R = Rc ⇐⇒ Rc
XX = RXX ∧ Rc

XY = RY X ∧ Rc
Y X = RXY ∧ Rc

Y Y = RY Y .

22

Now if R = Rc, S = Sc:

(R ./ S)cXX = (RXX ∪ RXY · SY Y · (RY Y · SY Y)∗ ·RY X)c

= Rc
XX ∪ Rc

Y X · (Sc
Y Y ·Rc

Y Y)∗ · Sc
Y Y ·Rc

XY

= RXX ∪ RXY · (SY Y ·RY Y)∗ · SY Y ·RY X

= RXX ∪ RXY · SY Y · (RY Y · SY Y)∗ ·RY X

= (R ./ S)XX ,

using the regular algebra identity U · (V · U)∗ = (U · V)∗ · U . The other cases are handled
similarly. 2

Now suppose we are given

f ∈ PInv(OA⇒B), g ∈ PInv(OB⇒C).

OA⇒B = ω ×OA +OB OB⇒C = ω ×OB +OC .

Now idω × f ∈ PInv(ω × (ω ×OA +OB)), but using some bijection ω ∼= ω × ω,

ω × (ω ×OA +OB) ∼= (ω × ω)×OA + ω ×OB
∼= ω ×OA + ω ×OB.

Let !f be the conjugation of idω×f by the indicated isomorphism. Then

!f ./ g ∈ PInv(ω ×OA +OC) = PInv(OA⇒C)

as required.
We show that composition is compatible with genericity at the level of partial involutions.

Recall that ĝ = g × idMU . Note that if g ∈ PInv(X), ĝ ∈ PInv(X ×MU).

Proposition 5.4 If f ∈ PInv(X + Y) and g ∈ PInv(Y + Z), then

(f × idU) ./ (g × idU) = (f ./ g)× idU ∈ PInv((X + Z)× U).

Proof This is immediate from the definition of ./, since −×idU distributes over composition
and union:

(h ◦ k)× idU = (h× idU) ◦ (k × idU), (h ∪ k)× idU = (h× idU) ∪ (k × idU).

2

Next, we give a direct definition of composition on strategies as sets of plays. If σg : A⇒ B
and σh : B ⇒ C, we define

σg;σh = {s�A,C | s ∈ (ω ×MA[~U] + ω ×MB[~U] + MC[~U])
∗ ∧ s�A,B ∈ σ!g ∧ s�B,C ∈ σh}.

Proposition 5.5 σg;σh = σ!g./h.

Proof See [AJ94a]. 2

Finally, we show the compatibility of composition with restrictions to instances.

Proposition 5.6 (σ; τ) ~D = σ ~D; τ ~D.

23

Remark The arbitrariness involved in the choice of bijections ω ∼= ω + ω and ω ∼= ω ×
ω and the use of 0 as a particular element of ω in the above definitions is factored out by
the partial equivalence ≈, as explained in [AJM00]. Note that all the other ingredients used
in constructing the above isomorphisms are canonical, arising from the symmetric monoidal
structures of cartesian product and disjoint union on the category of sets, and the distributivity
of cartesian product over disjoint union. For the general axiomatics of the situation, see [AHS02].

6 The Model

We shall use the hyper-doctrine formulation of model of System F, as originally proposed by Seely
[See87] based on Lawvere’s notion of hyperdoctrines [Law70], and simplified by Pitts [Pit88]; a
good textbook presentation can be found in [Cro93].

We begin with a key definition:

GU (k) = Sub(U) ∩ G(k),

where U is the universe of System F types constructed in Section 6.

6.1 The Base Category

We firstly define a base category B. The objects are natural numbers. A morphism n −→ m is
an m-tuple

〈A1, . . . , Am〉, Ai ∈ GU (n), 1 ≤ i ≤ m.

Composition of 〈A1, . . . , Am〉 : n −→ m with 〈B1, . . . , Bn〉 : k −→ n is by substitution:

〈A1, . . . , Am〉 ◦ ~B = 〈A1[~B], . . . , Am[~B]〉 : k −→ m.

The identities are given by:
idn = 〈X1, . . . , Xn〉.

Note that variables act as projections:

Xi : n −→ 1

and we can define pairing by

〈 ~A, ~B〉 = 〈A1, . . . , An, B1, . . . , Bm〉 : k −→ n + m

where
〈A1, . . . , An〉 : k −→ n, 〈B1, . . . , Bm〉 : k −→ m.

Thus this category has finite products, and is generated by the object 1, in the sense that all
objects are finite powers of 1.

24

6.2 The Indexed CCC

Next, we define a functor
C : Bop −→ CCC

where CCC is the category of cartesian closed categories with specified products and exponen-
tials, and functors preserving this specified structure.

The cartesian closed category C(k) has as objects GU (k). Note that the objects of C(k) are
the morphisms B(k, 1); this is part of the Seely-Pitts definition.

The cartesian closed structure at the object level is given by the constructions on variable
games which we have already defined: A⇒ B, A &B, 1. Note that GU (k) is closed under these
constructions by Proposition 4.3.

A morphism A −→ B in C(k) is a generic copy-cat strategy σ : A ⇒ B. Recall that this is
actually defined at the “global instance” U :

σ = σU : (A⇒ B)[~U] = A[~U]⇒ B[~U].

More precisely, morphisms are partial equivalence classes of strategies modulo ≈.
The cartesian closed structure at the level of morphisms was described in Section 5.2.

Reindexing

It remains to describe the functorial action of morphisms in B. For each ~C : n → m, we must
define a cartesian closed functor

~C∗ : C(m) −→ C(n).

We define:
~C∗(A) = A[~C].

If σ : A⇒ B,
~C∗(σ) = σ ~C : (A⇒ B)[~C] = A[~C]⇒ B[~C].

For functoriality, note that

~C∗(σ) ◦ ~C∗(τ) = σ ~C ◦ τ ~C = (σ ◦ τ) ~C = ~C∗(σ ◦ τ).

By Proposition 3.7, ~C∗ preserves the cartesian closed structure.

6.3 Quantifiers as Adjoints

The second-order quantifiers are interpreted as right adjoints to projections. For each n, we
have the projection morphism

〈X1, . . . , Xn〉 : n + 1 −→ n

in B. This yields a functor
~X∗ : C(n) −→ C(n + 1).

25

We must specify a right adjoint
Πn : C(n + 1) −→ C(n)

to this functor. For A ∈ GU (n + 1), we define

Πn(A) = ∀Xn+1. A.

To verify the universal property, for each C ∈ GU (n) we must establish a bijection

Λ : C(n)(C,∀Xn+1. A)
∼=−→ C(n + 1)(~X∗(C), A).

Concretely, note firstly that
~X∗(C) = C[~X] = C.

Next, note that in both hom-sets the strategies are subsets of PC[~U]⇒A[~U ,U/Xn+1]. In the case of
generic strategies σ into A, these are subject to the constraint of the restriction condition: that
is, for each instance ~B,B,

σ ~B,B ⊆ PC[~B]⇒A[~B,B].

In the case of strategies σ into ∀Xn+1. A, these are subject to the constraint that for each
instance ~B,

σ ~B ⊆ PC[~B]⇒∀Xn+1. A[~B,Xn+1].

Thus if we show that these conditions are equivalent, the required correspondence between these
hom-sets is simply the identity (which also disposes of the naturality requirements)!

Suppose firstly that σ satisfies the restriction condition. Assuming that sab ∈ σ, we must
show that A∗

n+1(sab) = A∗
n+1(sa). But if we let B = A∗

n+1(sa), then by Proposition 4.5(1),

sa ∈ PC[~B]⇒A[~B,B],

and the restriction condition implies that

sab ∈ PC[~B]⇒A[~B,B].

For the converse, suppose that σ : C ⇒ ∀Xn+1. A. To show that σ satisfies the restriction
condition, choose an instance B. Suppose that sab ∈ σ and sa ∈ PC[~B]⇒A[~B,B]. We must show

that sab ∈ PC[~B]⇒A[~B,B]. Let D = A∗
n+1(sa). Then by definition of ∀Xn+1. A, sab ∈ A[~B,D],

and by Proposition 4.5(2), D E B. Hence by Proposition 4.4, sab ∈ PC[~B]⇒A[~B,B] as required.
2

Naturality (Beck-Chevalley) Finally, we must show that the family of right adjoints Πn

form an indexed (or fibred) adjunction. This amounts to the following: for each α : m −→ n in
B, we must show that

α∗ ◦Πn = Πm ◦ (α× id1)∗.

Concretely, if α = ~C, we must show that for each A ∈ GU (n + 1),

(∀Xn+1. A)[~C] = ∀Xm+1. A[~C, Xm+1].

This is Proposition 4.6.

26

Remark We are now in a position to understand the logical significance of the relative poly-
morphic product Πi(A,B). We could define

GB(k) = Sub(B) ∩ G(k),

and obtain an indexed category CB(k) based on GB(k) instead of GU (k). We would still have an
adjunction

G(n)(C,Πn+1(A,B)) ∼= CB(n + 1)(~X∗(C), A).

However, in general B would not have sufficiently strong closure properties to give rise to a
model of System F. Obviously, Sub(B) must be closed under the cartesian closed operations of
product and function space. More subtly, Sub(B) must be closed under the polymorphic product
Πi(−, B). (This is, essentially, the “small completeness” issue [Hyl88], although our ambient
category of games does not have the requisite exactness properties to allow our construction to
be internalised in the style of realizability models.1) This circularity, which directly reflects the
impredicativity of System F, is resolved by the recursive definition of U .

7 Homomorphisms

We shall now view games as structures, and introduce a natural notion of homomorphism between
games. These will serve as a useful auxiliary tool in obtaining our results on genericity.

A homomorphism h : A −→ B is a function

h : PA −→ PB

which is

• length-preserving : |h(s)| = |s|

• prefix-preserving : s v t ⇒ h(s) v h(t)

• equivalence-preserving : s ≈ t ⇒ h(s) ≈ h(t).

There is an evident category Games with variable games as objects, and homomorphisms
as arrows.

Lemma 7.1 (Play Reconstruction Lemma) Let A, B be variable games. If we are given
s ∈ PA, and for each m ∈ Oi

A, a play tm ∈ PB with |tm| = numoccs(m, s), then there is a unique
u ∈ PA[B/Xi] such that:

u�A = s, u�m = tm (m ∈ Oi
A).

1However, by the result of Pitts [Pit88], any hyperdoctrine model can be fully and faithfully embedded in an
(intuitionistic) set-theoretic model.

27

Proof We can define u explicitly by:

uj = sj , ρA(sj) 6= i
uj = sj [m], ρA(sj) = i ∧ (tsj)k = m,

where j is the k’th position in s at which sj occurs. 2

This Lemma makes it easy to define a functorial action of variable games on homomorphisms.
Let A be a variable game, and h : B −→ C a homomorphism. We define

A(h) : A[B/Xi] −→ A[C/Xi]

by A(h)(s) = t, where

t�A = s�A, t�m = h(s�m), (m ∈ Oi
A).

Lemma 7.2 (Functoriality Lemma) A(h) is a well-defined homomorphism, and moreover
this action is functorial:

A(g ◦ h) = A(g) ◦A(h), A(idB) = idA[B/Xi].

The second important property is that homomorphisms preserve plays of generic strategies.

Lemma 7.3 (Homomorphism Lemma) Let A be a variable game, σ : A a generic strategy,
and h : C −→ D a homomorphism. Then

s ∈ σA[C/Xi] =⇒ A(h)(s) ∈ σA[D/Xi].

Proof By induction on |s|. The base case is trivial. For the inductive step, let

u ≡ s ·m1[a] ·m2[a] ∈ σA[C/Xi].

By induction hypothesis, A(h)(s) ∈ σA[D/Xi]. By the Copy-Cat Lemma, u�m1 = u�m2. Let
h(u�m1) = v · b. Then A(h)(u) = A(h)(s) ·m1[b] ·m2[b], which is in σA[D/Xi] by genericity of σ.
2

8 Genericity

Our aim in this section is to show that there are generic types in our model, and indeed that,
in a sense to be made precise, most types are generic.

We fix a variable game A ∈ G(1). Out aim is to find conditions on variable games B which
imply that, for generic strategies σ, τ : A:

σB ≈ τB =⇒ Λ(σ) ≈ Λ(τ) : ∀X. A.

Since, as explained in Section 5,
Λ(σ) = σ = σU ,

this reduces to proving the implication

σB ≈ τB =⇒ σU ≈ τU .

Our basic result is the following.

28

Lemma 8.1 (Genericity Lemma) If there is a homomorphism h : U −→ B, then B is
generic.

Proof We assume that σB ≈ τB, and show that σU / τU ; a symmetric argument shows that
τU / σU .
Suppose then that

s ·m1[a] ·m2[a] ∈ σ, t ∈ τ, s ·m1[a] ≈ t ·m′
1[a

′].

Let
s′ ·m1[b] ·m2[b] = A(h)(s ·m1[a] ·m2[a]),
t′ ·m′

1[b
′] = A(h)(t ·m′

1[a
′]).

Then since A(h) is a homomorphism,

s′ ·m1[b] ·m2[b] ∈ PB, t′ ·m′
1[b

′] ∈ PB, s′ ·m1[b] ≈ t′ ·m′
1[b

′].

By the Homomorphism Lemma,

s′ ·m1[b] ·m2[b] ∈ σ, t′ ∈ τ.

Since by assumption σB ≈ τB, there exists m′
2 such that:

t′ ·m′
1[b

′] ·m′
2[b

′] ∈ τ ∧ s′ ·m1[b] ·m2[b] ≈ t′ ·m′
1[b

′] ·m′
2[b

′].

Since τ is generic, this implies that

t ·m′
1[a

′] ·m′
2[a

′] ∈ τ.

It remains to show that s1 ≈ s2, where

s1 ≡ s ·m1[a] ·m2[a], s2 ≡ t ·m′
1[a

′] ·m′
2[a

′].

Since by assumption
s ·m1[a] ≈ t ·m′

1[a
′],

and s′ · m1[b] · m2[b] ≈ t′ · m′
1[b

′] · m′
2[b

′] implies that s1�A ≈ s2�A, it suffices to show that
s1�m2 ≈ s2�m′

2. But by the Copy-Cat Lemma,

s1�m2 = (s�m1) · a, s2�m
′
2 = (t�m′

1) · a′.

But
s ·m1[a] ≈ t ·m′

1[a
′] =⇒ (s�m1) · a ≈ (t�m′

1) · a′,

and the proof is complete. 2

29

Remark The Genericity Lemma applies to any variable type A; in particular, it is not required
that A be a sub-game of U . Thus our analysis of genericity is quite robust, and in particular is
not limited to System F.

We define the infinite plays over a game A as follows: s ∈ P∞
A if every finite prefix of s is

in PA. We can use this notion to give a simple sufficient condition for the hypothesis of the
Genericity Lemma to hold.

Lemma 8.2 If P∞
B 6= ∅, then B is generic.

Proof Suppose s ∈ P∞
B . Let sn ∈ PB be the restriction of s to the first n elements. We define

h : U −→ B by: h(t) = s|t|. It is trivially verified that this is a homomorphism. Genericity of B
then follows by the Genericity Lemma. 2

We now apply these ideas to the denotations of System F types, the objective being to show
that “most” System F types denote generic instances in the model. Firstly, we define a notion
of length for games, which we then transfer to types via their denotations as games.
We define

|A| = sup{|s| | s ∈ PA}.

Note that |A| ≤ ω.
We now show that any System F type whose denotation admits plays of length greater than

2 is in fact generic!

Lemma 8.3 (One, Two, Infinity Lemma) If |T | > 2, then T is generic.

Proof Consider the normal form of T , which can be written as

∀ ~X. T1 → · · · → Tk → X.

If |T | ≥ 3, then there is a play of length three, in which the first move must be made in the
rightmost occurrence of X, the second in a copy of some Ti (by the definition of plays in the
polymorphic product), and the third must also be played in that same copy of Ti (by the usual
switching conditions). But then the second and third moves can be repeated arbitrarily often
in different copies of Ti, giving rise to an infinite play. 2

We now give explicit syntactic conditions on System F types which imply that they are
generic.

Proposition 8.4 Let T = ∀ ~X. T1 → · · · → Tk → X.

1. If for some i : 1 ≤ i ≤ k, Ti = ∀~Y . U1 → · · · → Ul → X, then T is generic.

2. If for some i : 1 ≤ i ≤ k, Ti = ∀~Y . U1 → · · · → Ul → Y , and for some j : 1 ≤ j ≤ l,
Uj = ∀~Z. V1 → · · · → Vm →W , where W is either some Zp ∈ ~Z, or Y , or some Xq ∈ ~X,
then T is generic.

30

Proof It is easily seen that types of the shapes described in the statement of the Proposition
have plays of length 3. Indeed in the first case O plays in the rightmost occurrence of X in T ,
P responds in the rightmost occurrence of X in the given Ti, and then O can respond in that
same occurrence of X. In the second case, O plays in X, P plays in Y , and then O can play in
W . We then apply the previous Lemma. 2

We apply this to the simple and familiar case of “ML types”.

Corollary 8.5 Let T = ∀X. U , where U is built from the type variable X and →. If U is
non-trivial (i.e. it is not just X), then T is generic.

Examples The following are all examples of generic types.

• ∀X. X → X

• ∀X. (X → X)→ X

• ∀X. (∀Y.Y → Y → Y)→ X.

Non-examples The following illustrate the (rather pathological) types which do not fall under
the scope of the above results. Note that the first two both have length 1; while the third has
length 2.

• ∀X.X

• ∀X.∀Y. X → Y .

• ∀X. X → ∀X. X

Remark An interesting point illustrated by these examples is that our conditions on types
are orthogonal to the issue of whether the types are inhabited in System F. Thus the type
∀X. (X → X) → X is not inhabited in System F, but is generic in the games model, while
the type ∀X. X → ∀X. X is inhabited in System F, but does not satisfy our conditions for
genericity.

9 Full Completeness

In this section, we prove full completeness for ML types. The full completeness proof exploits the
decomposition of Intuitionist implication into Linear connectives. We give the basic definitions,
referring to [AJM00] for motivation and technical details.

31

9.1 Linear Structure

The required operations on morphisms to give the categorical structure required to model the
connectives of intuitionist multiplicative exponential linear logic can be defined exactly as for
AJM games [AJM00].

We fix an algebraic signature consisting of the following set of unary operations:

p, q, {ki | i ∈ ω}, l, r, lt, rt.

We take M′ to be the algebra over this signature freely generated by ω. Explicitly, M has the
following “concrete syntax”:

m ::= i (i ∈ ω) | p(m) | q(m) | ki(m) (i ∈ ω) | l(m) | r(m) | lt(m) | rt(m).

The labelling map λ :M′ −→ {P,O}. The polarity algebra on the carrier {P,O} interprets p,
q, r, lt, rt and each ki as the identity, and l as the involution (̄), where P̄ = O, Ō = P . The
map on the generators is the constant map sending each i to O.

Bang: !

!A is defined as follows.

O!A = {ki(m) | i ∈ ω ∧ m ∈ OA}.

P!A is defined to be the set of all sequences in M∗
!A satisfying the alternation condition, and such

that:

• ∀i ∈ ω. s�ki(1) ∈ PA.

Let S = {ki(1) | i ∈ ω}. Given a permutation α on ω, we define

ᾰ(ki(1)) = kα(i)(1).

The equivalence relation s ≈!A t is defined by the condition

∃α ∈ S(ω). ᾰ∗(s�S) = t�S.

This is essentially identical to the definition in [AJM00]. The only difference is that we use the
revised version of the alternation condition in defining the positions.

Linear function space: A (B

The linear function space A (B is defined as follows.

OA(B = {l(m) | m ∈ OA} ∪ {r(m) | m ∈ OB}.

PA(B is defined to be the set of all sequences in M∗
A(B satisfying the alternation condition,

and such that:

32

• s�l(1) ∈ PA.

• s�r(1) ∈ PB.

Let S = {l(1), r(1)}. The equivalence relation s ≈A(B t is defined by the condition

s�S = t�S ∧ s�r(1) ≈B t�r(1) ∧ s�l(1) ≈A t�l(1)).

Tensor: A⊗B

The tensor A⊗B is defined as follows.

OA⊗B = {lt(m) | m ∈ OA} ∪ {rt(m) | m ∈ OB}.

PA⊗B is defined to be the set of all sequences in M∗
A⊗B satisfying the alternation condition, and

such that:

• s�lt(1) ∈ PA.

• s�rt(1) ∈ PB.

Let S = {lt(1), rt(1)}. The equivalence relation s ≈A⊗B t is defined by the condition

s�S = t�S ∧ s�rt(1) ≈B t�rt(1) ∧ s�lt(1) ≈A t�lt(1)).

9.2 Domain equation

Define the two orders E , v on games as before (Section 4). We define a variable game U ′ ∈ G(ω)
of second order types by the following recursive equation:

U ′ = &i>0Xi & 1 & (U ′ &U ′) & (U ′ (U ′) & (U ′ ⊗ U ′) & (!U ′) & &i>0Πi(U ′,U ′).

Explicitly, U ′ is being defined as the least fixed point of a continuous function F : G(ω) −→ G(ω).
We first summarize the key facts required to relate U and U ′. Define A⇒ B = !A (B.

Proposition 9.1

• ⇒, & , Substitution and Relative Polymorphic Product are all E -monotone.

• (Sub(U ′), E) is a complete lattice.

From this proposition, it is clear that U is essentially a subgame of U ′, with the proviso that the
universe of moves underlying U is different from the universe of moves in U ′. More precisely,
consider a renaming map R :M−→M′, that interprets p, q, r ofM as the operations with the
same name on M′, and li as l ◦ ki. The map on the generators is the “identity” map sending
each i ∈M to i ∈M′. Modulo this renaming map, U is a subgame of U ′.

The genericity results for U carry over to U ′, in particular the analog of lemma 8.1.

Lemma 9.2 If P∞
B 6= ∅, then B is generic.

In this light, since U is essentially a subgame of U ′, a full completeness result for U ′ implies full
completeness for U .

33

9.3 Full completeness

Consider an ML (universal closures of quantifier-free types) type T , i.e. T = ∀ ~X.U , where U is
quantifier-free. In the light of lemma 9.2, it suffices to prove the result when the type variables
are instantiated with a game ι such that P∞

ι 6= ∅. Explicitly, suppose that given a strategy
σ of type T , we can find a term M : T such that JMKι ≈ σι. Then genericity implies that
JMKU ′ ≈ σU ′ , and hence that JMK ≈ σ, as required.

We define ι as a well-opened subgame of U ′, to enable us to directly adopt the proofs
from [AJM00]. A game B is well-opened [AJM00] if the opening moves of B can only appear as
O-moves in opening positions. That is, for all a ∈MB, if a ∈ PB then

sa ∈ PA ∧ |s| even =⇒ s = ε.

For notational convenience, we define ι as a subgame of U . By the earlier discussion, there
is a variant of ι that is a subgame of U ′. Consider the System F type (∀X)[(X ⇒ X) ⇒ X].
Let n ∈ ω. Consider the infinite position s given by:

r(n) · l1(r(n)) · l1(l1(n)) · l2(r(n)) · l2(l1(n)) · l3(r(n)) . . .

Define ι as the minimum game under the E order containing all the finite prefixes of s. This is
constructed as in Lemma 4.2. Explicitly, ι is given as the set of positions that are equivalent to
finite prefixes of s in U . An examination of the equivalence in U reveals that ι is well-opened.

Consider an ML type in which all type variables are instantiated by ι. We now relate
strategies in such types to βηΩ-normal forms in the simply typed lambda calculus built on a
single base type ι with a constant Ω at each type. Ω is interpreted in the model as the strategy
⊥ which only contains the empty sequence. For completeness, we record the βηΩ-normal forms.

• For all types T , Ω : T and x : T are βηΩ normal forms.

• Let Mi be βηΩ-normal forms at types Ti, 1 ≤ i ≤ k. Let x be of type T1 → · · · → Tk → ι.
Then λ~x. xM1 . . .Mk is a βηΩ-normal form.

The statement of the decomposition theorem requires some further notation from [AJM00].
Consider

(A1 & . . . &Ak)⇒ ι

where
Ai = Bi,1 ⇒ . . . Bi,li ⇒ ι, (1 ≤ i ≤ li).

If for some 1 ≤ i ≤ k and each 1 ≤ j ≤ li we have

σj : Ã⇒ Bi,j

then we define
Ci(σ1, . . . , σli) : Ã⇒ ι

by
Ci(σ1, . . . , σli) = Ap ◦ 〈. . . Ap ◦ 〈πi, σ1〉, . . . , σli〉.

With this notation, we are ready to state the decomposition lemma.

34

Proposition 9.3 (Decomposition Lemma) Let σ : (A1 & . . . &Ap)⇒ (Ap+1 ⇒ . . . Aq ⇒ ι)
be any strategy, where

Ai = Bi,1 ⇒ . . . Bi,li ⇒ ι, 1 ≤ i ≤ q

We write C̃ = A1, . . . , Ap, D̃ = Ap+1, . . . , Aq. (Notation : if τ : C̃, D̃ ⇒ ι, then ΛD̃(τ) : C̃ ⇒
(Ap+1 ⇒ · · · ⇒ Aq ⇒ ι).)

Then exactly one of the following cases applies.

(i) σ = ΛD̃(⊥C̃,D̃).

(ii) σ = ΛD̃(Ci(σ1, . . . , σli)), where 1 ≤ i ≤ q, and

σj : C̃, D̃ ⇒ Bi,j , 1 ≤ j ≤ li

The proof follows standard arguments [AJM00, AL00]. In particular, since ι is well-opened,
the Bang Lemma (Proposition 3.3.4 of [AJM00]) applies. The remainder of the proof follows
Proposition 3.4.5 of [AJM00].

The Decomposition Lemma provides for one step of decomposition of an arbitrary strategy
into a form matching that of βηΩ normal forms in the λΩ calculus. However, infinite strategies
such as the Y combinator will not admit a well-founded inductive decomposition process.

We conclude by describing a “finiteness” notion on strategies to identify the strategies for
which the decomposition terminates. We define a notion of positive occurrences of !, following
the usual definition of positive occurrences of variables in a formula. Consider a linear type built
out of !,(and type variables. We define positive and negative occurrences of ! by structural
induction.

• In !A, the positive occurrences of ! are the positive occurrences in A and the outermost !.
The negative occurrences of ! in !A are the negative occurrences in A.

• In A (B, the positive occurrences of ! are the positive occurrences in B and the negative
occurrences in A. The negative occurrences of ! are the negative occurrences in B and
positive occurrences in A.

For any linear type T built out of !,(and ι, consider T ′ obtained by erasing the positive
occurrences of ! from T . There is a canonical morphism δT : T (T ′ built by structural
induction from dereliction maps (at the positive occurrences of !) and identities (everywhere
else). A strategy σ for an ML type ∀X.F [X] is finite if there is a finite partial involution f
inducing σι; δF [ι].

The decomposition process is well-founded for finite strategies.

Theorem 9.4 For any ML type ∀X.F [X], every finite strategy σ is definable by a λΩ term in
βηΩ-normal form.

Stronger results can be proved, although we will not enter into details here because of space
restrictions. Firstly, if we extend the syntax of λΩ terms to allow infinite terms (i.e. we take
the ideal completion under the Ω-match ordering), then we can remove the finiteness hypothesis

35

in the Theorem. Secondly, if we refine the game model to introduce a notion of winning infinite
play, and use this to restrict to winning strategies, as in [Abr96], then we can obtain a full
completeness result for the ML types of System F itself, without any need to introduce Ω into
the syntax.

10 Related Work

A game semantics for System F was developed by Dominic Hughes in his D.Phil. thesis [Hug99].
A common feature of his approach with our’s is that both give a direct interpretation of open
types as certain games, and of type substitution as an operation on games. However, his approach
is in a sense rather closer to syntax; it involves carrying type information in the moves, and the
resulting model is much more complex. For example, showing that strategies in the model are
closed under composition is a major undertaking. Moreover, the main result in [Hug99] is a
full completeness theorem essentially stating that the model is isomorphic to the term model
of System F (with βη-equivalence), modulo types being reduced to their normal forms. As
observed by Longo [Lon95], the term model of System F does not satisfy Genericity ; in fact, it
does not satisfy Axiom (C). It seems that the presence of explicit type information in the moves
will preclude the model in [Hug99] from having genericity properties comparable to those we
have established for our model.

The D.Phil thesis of Andrzej Murawski [Mur01] takes a broadly similar approach to modelling
polymorphism to that of [Hug99], although the main focus in [Mur01] is on modelling Light
Linear Logic.

Acknowledgements. Samson Abramsky was supported in part by UK EPSRC GR/R88861.
Radha Jagadeesan was supported in part by NSF CCR-0244901.

References

[ACC93] M. Abadi, L. Cardelli and P.-L. Curien. Formal Parametric Polymorphism. In Proc.
20th ACM Symposium on Principles of Programming Languages, 1993.

[Abr96] S. Abramsky. Semantics of Interaction. In Semantics and Logics of Computation,
edited by A. Pitts and P. Dybjer, Cambridge University Press 1997, 1–32.

[AHS02] S. Abramsky, E. Haghverdi and P. Scott. Geometry of Interaction and linear com-
binatory algebras. Math. Struct. in Comp. Science 12:625–665, 2002.

[AJ94a] S. Abramsky, R. Jagadeesan. Games and Full Completeness for Multiplicative Linear
Logic, J. of Symbolic Logic 59(2), 1994, 543–574.

[AJM00] S. Abramsky, R. Jagadeesan, P. Malacaria. Full Abstraction for PCF, Inf. and Comp.
163, 2000, 409–470.

36

[AL00] S. Abramsky, M. Lenisa. A Fully-Complete PER Model for ML Polymorphic Types,
CSL’00 Conf. Proc., P. Clote, H.Schwichtenberg eds., LNCS 1862, 2000, 140–155.

[AL01] S. Abramsky, M. Lenisa. A Fully Complete Minimal PER Model for the Simply
Typed λ-calculus, CSL’01 Conf. Proc., LNCS 2001.

[AM95] S. Abramsky and G. McCusker. Games for Recursive Types. In C. Hankin, I. Mackie
and R. Nagarajan, eds. Theory and Formal Methods of Computing 1994. Imperial
College Press, 1995.

[Ber00] G. Berry. The Foundations of Esterel. In Proof, Language and Interaction: Essays
in honour of Robin Milner, eds. G. Plotkin, C. Stirling and M. Tofte. MIT Press
2000, 425–454.

[Cro93] R. Crole, Categories for Types, Cambridge University Press, 1993.

[Gir72] J.Y. Girard. Interprétation functionelle et élimunation des coupures de
l’arithmètique d’ordre supérieur, Thèse d’Etat, Université Paris VII, 1972.

[GLT89] J.-Y. Girard, Y. Lafont and P. Taylor. Proofs and Types. Cambridge University Press
1989.

[Hug99] D. J. D. Hughes. Hypergame Semantics: Full Completeness for System F. D.Phil.
thesis, University of Oxford, 1999.

[Hyl88] J. M. E. Hyland. A small complete category. Annals of Pure and Applied Logic, 40,
1988.

[HRR90] J. M. E. Hyland, E. Robinson, G. Rosolini. Algebraic types in PER models, MFPS
Conf. Proc., M. Main et al. eds, LNCS 442, 1990, 333–350.

[Law70] F. W. Lawvere. Equality in hyperdoctrines and the comprehension schema as an
adjoint functor, Proc. Symp. on Applications of Categorical Logic, 1970.

[LMS93] G. Longo, K. Milsted, S. Soloviev. The Genericity Theorem and Parametricity in
the Polymorphic λ-Calculus, TCS 121(1&2):323–349, 1993.

[Lon95] G. Longo. Parametric and Type-Dependent Polymorphism. Fundamenta Informati-
cae 22(1/2):69–92.

[MR92] Q.-Q. Ma and J. C. Reynolds. Types, Abstraction and Parametric Polymorphism,
Part 2. In S. Brookes et al. editors, Mathematical Foundations of Programming Lan-
guage Semantics. LNCS 598, 1992.

[Mur01] A. Murawski. On Semantic and Type-Theoretic Aspects of Polynomial-Time Com-
putability. D.Phil thesis, University of Oxford, 2001.

[Pit88] A. Pitts. Polymorphism is set-theoretic constructively, CTCS’88 Conf. Proc., D.Pitt
ed., LNCS 283, 1988.

37

[PA93] G. Plotkin, M. Abadi. A Logic for Parametric Polymorphism, TLCA’93 Conf. Proc.,
LNCS, 1993.

[Rey74] J. C. Reynolds. Towards a Theory of Type Structure. Programming Symposium,
Proceedings, Paris 1974. LNCS 19, 1974.

[Rey83] J. C. Reynolds. Types, Abstraction and Parametric Polymorphism. Information Pro-
cessing 83, pp. 513–523, Elsevier (North-Holland), 1983.

[See87] R. A. G. Seely. Categorical semantics for higher-order polymorphic lambda calculus.
Journal of Symbolic Logic, 52(4):969–989, 1987.

[Win93] G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

38

