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Abstract

We develop a cut-free sequent calculus for a Dynamic Epistemic Logic. The calculus is nested and rep-
resents a sub-structural action logic which acts on a propositional logic via a dynamic modality and its
left adjoint update. Both logics are positive and have agent-indexed adjoint pairs of epistemic modalities.
We prove admissibility (where appropriate) of Weakening and Contraction and Cut, as well as soundness
and completeness theorems with regard to the algebraic semantics. To model epistemic protocols, we add
assumption rules, prove that the admissibility results are preserved, and derive properties of a toy protocol
that has honest and dishonest public and private announcements.
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1 Introduction

The phrase “Dynamic Epistemic Logic” (DEL) refers to a family of logics, developed
to reason about information acquisition as a result of communication actions that
take place among agents in multi-agent protocols. An example of these is the logic
of public and private announcements of [2], which extends the public announcement
logic of, e.g., [5]. The DEL logical systems are usually presented by a Hilbert-style
proof system and a relational semantics, whose central notion is an update product
between the state and action Kripke models. There has been a lot of activity in the
field, extending the domain and applicability of the logics, e.g. to belief revision,
and developing semantic automated tools; for references and a comprehensive pre-
sentation of the literature see [11]. The field has, however, enjoyed lesser activity
on the proof-theoretic side. This paper aims to take some steps towards filling this
gap.

1 Support by EPSRC (grant EP/F042728/1) is gratefully acknowledged.
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An algebraic version of DEL has been developed in [1,7], where the update oper-
ator is the action of a quantale of communication actions on a module of facts and
epistemic propositions, both of which are endowed with endo-maps for epistemic
modalities. To illustrate the power of the setting in reasoning about dynamic epis-
temic properties, the algebra only deals with the positive fragment of the logic and
modalities of modal logic K. Absence of negation is made up for with adjunction.
The uniform technique of unfolding adjunctions simplify, to a great extent, proofs
of epistemic properties, e.g. in the muddy children puzzle.

A sound and complete sequent calculus was included in [1,7], but with the big
flaw that its cut rules were not eliminable. The richness of the logic, which consists
of propositional and action connectives, the interaction between these, as well as
with the epistemic modalities, made the problem of cut-alimination a challenge. In
previous work [8,10] we developed a cut-free calculus for the propositional fragment
of the logic. In this paper we build on that and develop a cut-free calculus for the
full logic. Our calculus is a nested one, in the style of [4] (and see also p. 122 of
[6]), and has two parts: an action part for linear operations on actions (sequential
and parallel composition and non-deterministic choice) and a propositional part
for operations on propositions (conjunction and disjunction). Moreover, the action
logic acts on the propositional logic via the update operator whose right adjoint is
the dynamic modality (weakest precondition of program logics such as Hoare). Both
logics have adjoint epistemic modalities that interact with the update operator, in
the style of the action-knowledge axiom of DEL. We prove that three kinds of cut
rules are admissible: an action cut in the action logic, a propositional cut in the
propositional logic, as well as a mixed action-propositional cut in the propositional
logic.

To be able to use the calculus to prove properties of epistemic protocols, we need
to encode the assumptions thereof. These include possibilities of agents regarding
the propositions and actions, stability of atomic propositions (i.e. “facts”) under
updates, and applicability of actions (i.e. their preconditions). We show that adding
these rules preserves our admissibility results, then encode and prove properties of
a coin-toss protocol with honest and dishonest public and private announcements.

2 Sequent Calculus for Actions

2.1 Sequent Calculus

We refer to this logic as action logic. The set Q of terms q of the logic is generated
over a set A of agents A and a set B of basic actions σ by the following grammar:

q ::= ⊥ | > | 1 | σ | q ∧ q | q ∨ q | q • q | 2A q | �Aq

The binary connectives ∧ and ∨ are lattice operations of meet and join and > and
⊥ are their units; • is a monoid multiplication and 1 is its unit, the modalities 2A

and �A are endo-operators on the lattice monoid.
Action items Q and action contexts Θ are generated by the following syntax:

Q ::= q | ΘA Θ ::= Q list
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where ΘA will be interpreted as �A(
⊙

Θ), for
⊙

Θ the composition of the inter-
pretations of elements in Θ.

Thus, action contexts are finite lists of action items, where action items are ei-
ther terms or agent-annotated action contexts. The use of lists rather than sets or
multisets reflects the non-commutativity (and non-idempotence) of the composition
operation on actions. Lists may be empty. The concatenation of two lists is indi-
cated by a comma, as in Θ,Θ′ or (treating an action item Q as a one element list)
as in Θ, Q or Q,Θ. Thus, Θ, Q,Θ′ indicates a typical list of which Q is a member.

If one of the items inside a context is replaced by a “hole” [ ], we have a context-
with-a-hole. More precisely, we have the notions of context-with-a-hole Σ and item-
with-a-hole R, defined using mutual recursion as follows:

Σ ::= Θ, R, Θ′ R ::= [ ] | ΣA

and so a context-with-a-hole is a context (i.e. a list of items) together with an
item-with-a-hole, i.e. either a hole or an agent-annotated context-with-a-hole. To
emphasise that a context-with-a-hole is not a context, we use Σ for the former and
Θ for the latter; similarly for items-with-a-hole R and items Q.

Given a context-with-a-hole Σ and a context Θ, the result Σ[Θ] of applying
the first to the second, i.e. replacing the hole [ ] in Σ by Θ, is a context, defined
recursively (together with the application of an item-with-a-hole to a context, to
form a context) as follows:

(Θ′, R, Θ′′)[Θ] = Θ′, R[Θ],Θ′′ ([ ])[Θ] = Θ (ΣA)[Θ] = (Σ[Θ])A

The last of these looks more like an item; but that just forms a one element context.
Given contexts-with-a-hole Σ′,Σ, and an item-with-a-hole R, the combinations

Σ′•Σ and R•Σ are defined to be contexts with holes, as follows, by mutual recursion
on the structures of Σ′ and R:

(Θ, R, Θ′) • Σ = Θ, (R • Σ),Θ′ ([ ]) • Σ = Σ (Σ′′A) • Σ = (Σ′′ • Σ)A

The last of these looks more like an item-with-a-hole; but that just forms a one
element context-with-a-hole.

Lemma 2.1 Given contexts-with-a-hole Σ′,Σ, an item-with-a-hole R and a context
Θ, the following hold:

(Σ′ • Σ)[Θ] = Σ′[Σ[Θ]] (R • Σ)[Θ] = R[Σ[Θ]]

Sequents consist of a context Θ (on the left), a turnstile and a term q (on
the right). On the left, it is convenient to omit the list constructors, e.g. we write
1, σ,⊥ ` σ′ rather than 〈1, σ,⊥〉 ` σ′. The empty list is written 〈 〉 or even omitted..

We have the following initial sequents (in which σ is restricted to being an atom):

` 1 1R
σ ` σ

Id Σ[⊥] ` q
⊥L Θ ` > >R

3
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The rules for the lattice operations, composition and the modalities are:

Σ[ ] ` q

Σ[1] ` q
1L

Σ[qi] ` q

Σ[q1 ∧ q2] ` q
∧Li

Θ ` q1 Θ ` q2

Θ ` q1 ∧ q2
∧R

Σ[q1] ` q Σ[q2] ` q

Σ[q1 ∨ q2] ` q
∨L

Θ ` q1

Θ ` q1 ∨ q2
∨R1

Θ ` q2

Θ ` q1 ∨ q2
∨R2

Σ[q1, q2] ` q

Σ[q1 • q2] ` q
•L

Θ1 ` q1 Θ2 ` q2

Θ1,Θ2 ` q1 • q2
•R

Σ[qA] ` q′

Σ[�Aq] ` q′
�AL

Θ ` q

ΘA ` �Aq
�AR

Σ[q] ` q′

Σ[(2Aq)A] ` q′
2AL

ΘA ` q

Θ ` 2A q
2AR

Σ[ΘA,Θ′A] ` q

Σ[(Θ,Θ′)A] ` q
Dist

Σ[〈 〉] ` q

Σ[〈 〉A] ` q
Unit

Various notational abbreviations are in use here, such as Σ[ ] meaning Σ[〈 〉],
Σ[q] meaning Σ[〈q〉], Σ[q1, q2] meaning Σ[〈q1, q2〉] and qA meaning 〈q〉A. Where the
empty list is an antecedent, it is omitted.

The two indicated occurrences of σ in the Id rule are principal. Each right rule
has its conclusion’s succedent as its principal formula; in addition, the �AR rule
has ΘA as a principal item. Each left rule has a principal item; these are as usual.

As an example of a derivation, we show that a sequence of �As preserves com-
position and conjunction in the following direction

q ` q
Id

qB ` �Bq
�BR

(qB)A ` �A�Bq
�AR

q′ ` q′
Id

q′B ` �Bq′
�BR

(q′B)A ` �A�Bq′
�AR

(qB)A, (q′B)A ` �A�Bq • �A�Bq′
•R

(qB , q′B)A ` �A�Bq • �A�Bq′
Dist

((q, q′)B)A ` �A�Bq • �A�Bq′
Dist

((q • q′)B)A ` �A�Bq • �A�Bq′
•L

(((q • q′) ∧ q′′)B)A ` �A�Bq • �A�Bq′
∧L

q′′ ` q′′
Id

q′′B ` �Bq′′
�BR

(q′′B)A ` �A�Bq′′
�AR

(((q • q′) ∧ q′′)B)A ` �A�Bq′′
∧L

(((q • q′) ∧ q′′)B)A ` (�A�Bq • �A�Bq′) ∧ �A�Bq′′
∧R

�B((q • q′) ∧ q′′)A ` (�A�Bq • �A�Bq′) ∧ �A�Bq′′
�BL

�A�B((q • q′) ∧ q′′) ` (�A�Bq • �A�Bq′) ∧ �A�Bq′′
�AL

4
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As a standard check on the rules, we show the following:

Lemma 2.2 For every term q, the sequent q ` q is derivable.

Proof. By induction on the size of q. In case q is an atom, or ⊥, or >, the sequent
q ` q is already initial. For q = 1, the sequent 1 ` 1 follows from the initial
sequent ` 1 by one step of 1L. For compound q, consider the cases. Meet, join and
composition are routine. Suppose q is �Aq′; by inductive hypothesis, we can derive
q′ ` q′, and by �AR we can derive q′A ` �Aq′, whence �Aq′ ` �Aq′ by �AL.

Now suppose q is 2Aq′. By inductive hypothesis, we can derive q′ ` q′, and by
2AL we get (2Aq′)A ` q′; from this we obtain q ` q by 2AR. 2

The size of a term is just the (weighted) number of operator occurrences, count-
ing each operator �A and 2A as having weight 2; the size of an item ΘA is the size
of Θ plus 1, and the size of a context is the sum of the sizes of its items. The size
of a sequent Θ ` q is just the sum of the sizes of Θ and q. Note that each premiss
of a rule instance has lower size than the conclusion, except for the rule D, whose
presence leads to non-termination of a naive implementation of the calculus.

Lemma 2.3 The �AL and 2AR rules are invertible, i.e. the following are admis-
sible:

Σ[�Aq] ` q′

Σ[qA] ` q′
�AInv

Θ ` 2Aq

ΘA ` q
2AInv

Proof. Induction on the height of the derivation of the premiss. 2

Lemma 2.4 The •L, ∨L and ∧R rules are invertible.

Proof. Induction on the height of the derivation of the premiss. 2

Lemma 2.5 The rule >L− is admissible:

Σ[>] ` q

Σ[Θ] ` q
>L−

Proof. Induction on the depth of the derivation of the premiss and case analysis.2

Theorem 2.6 The Cut rule is admissible

Θ ` q Σ′[q] ` q′

Σ′[Θ] ` q′
Cut

Proof. Strong induction on the rank of the cut, where the rank is given by the pair
(size of cut formula q, sum of heights of derivations of premisses).

(i) The first premiss is an instance of Id.

σ ` σ
Id Σ′[σ] ` q′

Σ′[σ] ` q′
Cut

transforms to
Σ′[σ] ` q′

5
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(ii) The first premiss is an instance of ⊥L.

Σ[⊥] ` q
⊥L Σ′[q] ` q′

Σ′[Σ[⊥]] ` q′
Cut

transforms to (using Lemma 2.1 to identify Σ′[Σ[⊥]] and (Σ′ • Σ)[⊥]) to

Σ′[Σ[⊥]] ` q′
⊥L

(iii) The first premiss is an instance of >R.

Θ ` > >R Σ′[>] ` q′

Σ′[Θ] ` q′
Cut

transforms to the following using Lemma 2.5

Σ′[>] ` q′

Σ′[Θ] ` q′
>L−

(iv) The first premiss is an instance of 1L. Straightforward

(v) The first premiss is an instance of ∧L. Straightforward

(vi) The first premiss is an instance of ∨L. Straightforward

(vii) The first premiss is an instance of •L. Straightforward

(viii) The first premiss is an instance of �AL.

Σ[qA] ` q′

Σ[�Aq] ` q′
�AL

Σ′[q′] ` q′′

Σ′[Σ[�Aq]] ` q′′
Cut

transforms (using Lemma 2.1 to identify Σ′[Σ[�Aq]]] and (Σ′ • Σ)[�Aq]]) to

Σ[qA] ` q′ Σ′[q′] ` q′′

Σ′[Σ[qA]] ` q′′
Cut

Σ′[Σ[�Aq]] ` q′′
�AL

(ix) The first premiss is an instance of 2AL.

Σ[q] ` q′

Σ[(2Aq)A] ` q′
2AL

Σ′[q′] ` q′′

Σ′[Σ[(2Aq)A]] ` q′′
Cut

transforms to
Σ[q] ` q′ Σ′[q′] ` q′′

Σ′[Σ[q] ` q′′
Cut

Σ′[Σ[(2Aq)A]] ` q′′
2AL

6
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(x) The first premiss is an instance of ∧R.

Θ ` q1 Θ ` q2

Θ ` q1 ∧ q2
∧R Σ[q1 ∧ q2] ` q′

Σ[Θ] ` q′
Cut

is dealt with in two ways, according as whether or not the cut formula is
principal in the second premiss. Details are routine.

(xi) The first premiss is an instance of ∨R.

Θ ` qi

Θ ` q1 ∨ q2
∨Ri Σ[q1 ∨ q2] ` q′

Σ[Θ] ` q′
Cut

is dealt with in two ways, according as whether or not the cut formula is
principal in the second premiss. Details are routine.

(xii) The first premiss is an instance of •R.

Θ ` q Θ′ ` q′

Θ,Θ′ ` q • q′
•R

Σ[q • q′] ` q′′

Σ[Θ,Θ′] ` q′′
Cut

transforms to

Θ′ ` q′
Θ ` q

Σ[q • q′] ` q′′

Σ[q, q′] ` q′′
Inv • L

Σ[Θ, q′] ` q′′
Cut

Σ[Θ,Θ′] ` q′′
Cut

(xiii) The first premiss is an instance of Dist.

Σ[ΘA,Θ′A] ` q

Σ[(Θ,Θ′)A] ` q
Dist

Σ′[q] ` q′

Σ′[Σ[(Θ,Θ′)A]] ` q′
Cut

transforms to
Σ[ΘA,Θ′A] ` q Σ′[q] ` q′

Σ′[Σ[ΘA,Θ′A]] ` q′
Cut

Σ′[Σ[(Θ,Θ′)A]] ` q′
Dist

(xiv) The first premiss is an instance of Unit.

Σ[ ] ` q

Σ[〈 〉A] ` q
Unit

Σ′[q] ` q′

Σ′[Σ[〈 〉A]] ` q′
Cut

transforms to
Σ[ ] ` q Σ′[q] ` q′

Σ′[Σ[ ]] ` q′
Cut

Σ′[Σ[〈 〉A]] ` q′
Unit
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(xv) The first premiss is an instance of �AR.

Θ ` q

ΘA ` �Aq
�AR

Σ′[�Aq] ` q′

Σ′[ΘA] ` q′
Cut

transforms to

Θ ` q

Σ′[�Aq] ` q′

Σ′[qA] ` q′
Inv�AL

Σ′[ΘA] ` q′
Cut

(xvi) The first premiss is an instance of 2AR. This now depends on the form of the
second premiss.
(a) Id (This case cannot occur, since the principal term of Id is always an

atom.)
(b) ⊥L, non-principal.

ΘA ` q

Θ ` 2Aq
2AR

Σ[2Aq][⊥] ` q′
⊥L

Σ[Θ][⊥] ` q′
Cut

transforms to

Σ[Θ][⊥] ` q′
⊥L

(c) >R, principal.
ΘA ` q

Θ ` 2Aq
2AR

Σ[2Aq] ` > >R

Σ[Θ] ` > Cut

transforms to

Σ[Θ] ` > >R

(d) 1L, non-principal

ΘA ` q

Θ ` 2Aq
2AR

Σ[2Aq][ ] ` q′

Σ[2Aq][1] ` q′
1l

Σ[Θ][1] ` q′
Cut

transforms to
Θ ` 2Aq Σ[2Aq][ ] ` q′

Σ[Θ][ ] ` q′
Cut

Σ[Θ][1] ` q′
1L

(e) ∧L, non-principal

ΘA ` q

Θ ` 2Aq
2AR

Σ[2Am][qi] ` q′

Σ[2Am][q1 ∧ q2] ` q′
∧Li

Σ[Θ][q1 ∧ q2] ` q′
Cut

8
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transforms to
Θ ` 2Aq Σ[2Aq][qi] ` q′

Σ[Θ][q1, q2] ` q′
Cut

Σ[Θ][q1 ∧ q2] ` q′
∧L

(f) ∨L, non-principal

ΘA ` q

Θ ` 2Aq
2AR

Σ[2Aq][q1] ` q′ Σ[2Aq][q2] ` q′

Σ[2Aq][q1 ∨ q2] ` q′
∨L

Σ[Θ][q1 ∨ q2] ` q′
Cut

transforms to

Θ ` 2Aq Σ[2Aq][q1] ` q′

Σ[Θ][q1] ` q′
Cut

Θ ` 2Aq Σ[2Aq][q2] ` q′

Σ[Θ][q2] ` q′
Cut

Σ[Θ][q1 ∨ q2] ` q′
∨L

(g) •L, non-principal

ΘA ` q

Θ ` 2Aq
2AR

Σ[2Aq][q1, q2] ` q′

Σ[2Aq][q1 • q2] ` q′
•L

Σ[Θ][q1 • q2] ` q′
Cut

transforms to
Θ ` 2Aq Σ[2Aq][q1, q2] ` q′

Σ[Θ][q1, q2] ` q′
Cut

Σ[Θ][q1 • q2] ` q′
•L

(h) �BL, non-principal

ΘA ` q

Θ ` 2Aq
2AR

Σ[2Aq][q′′B] ` q′

Σ[2Aq][�Bq′′] ` q′
�BL

Σ[Θ][�Bq′′] ` q′
Cut

transforms to
Θ ` 2Aq Σ[2Aq][q′′B] ` q′

Σ[Θ][q′′B] ` q′
Cut

Σ[Θ][�Bq′′] ` q′
�BL

(i) 2BL, non-principal

ΘA ` q

Θ ` 2Aq
2AR

Σ[2Aq][q′′] ` q′

Σ[2Aq][(2Bq′′)B] ` q′
2BL

Σ[Θ][(2Bq′′)B] ` q′
Cut

transforms to
Θ ` 2Aq Σ[2Aq][q′′] ` q′

Σ[Θ][q′′] ` q′
Cut

Σ[Θ][(2Bq′′)B] ` q′
2BL
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(j) 2AL, principal

ΘA ` q

Θ ` 2Aq
2AR

Σ′[q] ` q′

Σ′[(2Aq)A] ` q′
2AL

Σ′[ΘA] ` q′
Cut

transforms to
ΘA ` q Σ′[q] ` q′

Σ′[ΘA] ` q′
Cut

(k) ∧R, principal

ΘA ` q

Θ ` 2Aq
2AR

Σ[2Aq] ` q1 Σ[2Aq] ` q2

Σ[2Aq] ` q1 ∧ q2
∧R

Σ[Θ] ` q1 ∧ q2
Cut

transforms to

Θ ` 2Aq Σ[2Aq] ` q1

Σ[Θ] ` q1
Cut

Θ ` 2Aq Σ[2Aq] ` q2

Σ[Θ] ` q2
Cut

Σ[Θ] ` q1 ∧ q2
∧R

(l) ∨R Similar.
(m) •R, non-principal. The cut formula 2Aq can occur in the first part Θ′

or second part Θ′′ of the list Θ′,Θ′′. Without loss of generality assume it
occurs in the first part, then

ΘA ` q

Θ ` 2Aq
2AR

Σ[2Aq] ` q1 Θ′′ ` q2

Σ[2Aq],Θ′′ ` q1 • q2
•R

Σ[Θ],Θ′′ ` q1 • q2
Cut

transforms to

Θ ` 2Aq Σ[2Aq] ` q1

Σ[Θ] ` q1
Cut Θ′′ ` q2

Σ[Θ],Θ′′ ` q1 • q2
•R

(n) �BR, principal.

ΘA ` q

Θ ` 2Aq
2AR

Σ[2Aq] ` q′

Σ[2Aq]B ` �Bq′
�BR

Σ[Θ]B ` �Bq′
Cut

transforms to
Θ ` 2Aq Σ[2Aq] ` q′

Σ[Θ] ` q′
Cut

Σ[Θ]B ` �Bq′
�BR

10
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(o) 2BR, principal.

ΘA ` q

Θ ` 2Aq
2AR

Σ[2Aq]B ` q′

Σ[2Aq] ` 2Bq′
2BR

Σ[Θ] ` 2Bq′
Cut

transforms to
Θ ` 2Aq Σ[2Aq]B ` q′

Σ[Θ]B ` q′
Cut

Σ[Θ] ` 2Bq′
2Bq′

(p) Dist, non-principal. The cut formula 2Aq can occur in the context-
with-a-hole Σ[ ], or either in first part Θ′ or the second part Θ′′ of the list
(Θ′,Θ′′)A. If it occurs in Σ[ ], then

ΘA ` q

Θ ` 2Aq
2AR

Σ[2Aq][Θ′B,Θ′′B] ` q′

Σ[2Aq][(Θ′,Θ′′)B] ` q′
Dist

Σ[Θ][(Θ′,Θ′′)B] ` q′
Cut

transforms to

Θ ` 2Aq Σ[2Aq][Θ′B,Θ′′B] ` q′

Σ[Θ][Θ′B,Θ′′B] ` q′
Cut

Σ[Θ][(Θ′,Θ′′)B] ` q′
Dist

If it occurs in Θ′ then

ΘA ` q

Θ ` 2Aq
2AR

Σ[Σ′[2Aq]B,Θ′′B] ` q′

Σ[(Σ′[2Aq],Θ′′)B] ` q′
Dist

Σ[(Σ′[Θ],Θ′′)B] ` q′
Cut

transforms to

Θ ` 2Aq Σ[Σ′[2Aq]B,Θ′′B] ` q′

Σ[Σ′[Θ]B,Θ′′B] ` q′
Cut

Σ[(Σ′[Θ],Θ′′)B] ` q′
Dist

The case in which the cut formula occurs in Θ′′ is similar.
(q) Unit, non-principal.

ΘA ` q

Θ ` 2Aq
2AR

Σ[2Aq][ ] ` A

Σ[2Aq][〈 〉A] ` A
Unit

Σ[Θ][〈 〉A] ` q′
Cut

transforms to
Θ ` 2Aq Σ[2Aq][ ] ` q′

Σ[Θ][ ] ` q′
Cut

Σ[Θ][〈 〉A] ` q′
Unit

2
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3 Sequent Calculus for Propositions

Given sets A of agents A and B of basic actions σ, we have as above an action logic
with a set Q of terms q. Now let At be a set of (propositional) atoms p; the set M

of formulae m of our propositional logic is generated by the following grammar:

m ::= ⊥ | > | p | m ∧m | m ∨m | 2A m | �Am | m · q | [q]m

Here the last two binary connectives are mixed action-proposition connectives: the
operator [q] is the dynamic modality operator and · q is (as we shall see) its left
adjoint, called update, just as �A is the left adjoint of 2A. We refer to this logic as
algebraic dynamic epistemic logic (AlgDEL).

As in the action logic, we have propositional items I and propositional contexts
Γ, generated by the following grammar:

I ::= m | ΓA | ΓΘ Γ ::= I multiset

where ΓA will be interpreted as �A(
∧

Γ), for
∧

Γ the conjunction of the interpre-
tations of elements in Γ, and ΓΘ as (

∧
Γ) ·

⊙
Θ, for

⊙
Θ the composition of the

interpretations of elements in Θ.
Note that, in contrast to the syntax for action contexts, the propositional contexts

are (finite) multi-sets of items, making the role of the Contraction rule explicit. The
union of two multi-sets is indicated by a comma, as in Γ,Γ′ or (treating an item I

as a one element multiset) as in Γ, I. A propositional item can be either a formula
or an agent-annotated contexts, as in [8,9,10]; but it can also be a propositional
context Γ annotated by an action context Θ.

To express the rules correctly, we need, as in Section 2, some notion of propo-
sitional context (or item) with a hole. There are now two kinds of hole, one for
propositions and one for actions, both represented by [ ]; we use the notations ∆
for a propositional context-with-a-p-hole, J for a propositional item-with-a-p-hole,
Λ for a propositional context-with-an-a-hole and K for a propositional item-with-an
a-hole, defined, using mutual recursion, as follows:

∆ ::= Γ, J J ::= [ ] | ∆A | ∆Θ Λ ::= Γ,K K ::= ΓΣ | ΛΘ

in which we recall from Section 2 that Σ indicates an action context-with-an-a-hole.
We can now define various applications of something with an appropriate hole

to a p-context Γ or an a-context Θ, constructing p-contexts:

(Γ′, J)[Γ] = Γ′, J [Γ] ([ ])[Γ] = Γ (∆A)[Γ] = ∆[Γ]A

(Γ′,K)[Θ] = Γ′,K[Θ] (Γ′Σ)[Θ] = Γ′Σ[Θ] (ΛΘ′
)[Θ] = Λ[Θ]Θ

′

Given p-contexts-with-a-p-hole ∆′,∆, and a p-item-with-a-p-hole J , the combina-
tions ∆′ • ∆ and J • ∆ are defined as follows by mutual recursion on ∆′ and J ,
giving in each case a p-context-with-a-p-hole:

(Γ, J)•∆ = Γ, (J•∆) ([ ])•∆ = ∆ (∆′′A)•∆ = (∆′′•∆)A (∆′′Θ)•∆ = (∆′′•∆)Θ

12
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and, likewise, given a p-context-with-an-a-hole Λ, a p-item-with-an-a-hole K, and
an a-context-with-an-a-hole Σ, the combinations Λ • Σ and K • Σ are defined by
mutual recursion on Λ and K, giving in each case a p-context-with-an-a-hole:

(Γ,K) • Σ = Γ, (K • Σ) (ΓΣ′
) • Σ = ΓΣ′•Σ (ΛΘ) • Σ = (Λ • Σ)Θ

Lemma 3.1 Given propositional contexts-with-a-p-hole ∆′,∆, a propositional item-
with-a-p-hole J and a propositional context Γ, the following hold:

(∆′ •∆)[Γ] = ∆′[∆[Γ]] (J •∆)[Γ] = J [∆[Γ]]

Lemma 3.2 Given a propositional context-with-an-a-hole Λ, an action context-
with-a-hole Σ, a propositional item-with-an-a-hole K and an action context Θ, the
following hold:

(Λ • Σ)[Θ] = Λ[Σ[Θ]] (K • Σ)[Θ] = K[Σ[Θ]]

We have the following initial sequents (in which p is restricted to being an atom):

Γ, p ` p
Id ∆[⊥] ` m

⊥L Γ ` > >R

The rules for the lattice operations and the modal operators are:

∆[m1,m2] ` m

∆[m1 ∧m2] ` m
∧L

Γ ` m1 Γ ` m2

Γ ` m1 ∧m2
∧R

∆[m1] ` m ∆[m2] ` m

∆[m1 ∨m2] ` m
∨L

Γ ` m1

Γ ` m1 ∨m2
∨R1

Γ ` m2

Γ ` m1 ∨m2
∨R2

∆[mA] ` m′

∆[�A(m)] ` m′ �AL
Γ ` m

Γ′,ΓA ` �A(m)
�AR

∆[(2Am,Γ)A,m] ` m′

∆[(2Am,Γ)A] ` m′ 2AL ΓA ` m
Γ ` 2A m

2AR

The rules for the dynamic operations are:

13
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∆[mq] ` m′

∆[m · q] ` m′ ·L
Γ ` m′ Θ ` q′

ΓΘ ` m′ · q′
·R

∆[([q]m,Γ)q,m] ` m′

∆[([q]m,Γ)q] ` m′ DyL Γq ` m
Γ′,Γ ` [q]m

DyR

∆[((ΓΘ)As)Θ
′As

] ` m

∆[(ΓΘ,Θ′
)As] ` m

DyDist
∆[ΓΘ,Θ′

] ` m

∆[(ΓΘ)Θ
′
] ` m

ReArr

As in the action logic, the two indicated occurrences of p in the Id rule are
principal and each right rule has its conclusion’s succedent as its principal formula.
But in addition, �AR (similarly DyR) rule has ΓA as a principal item and Γ′ (which
is there to ensure admissibility of Weakening) as its parameter. Each left rule has
a principal item; these are as usual, except that the 2AL (similarly DyL) rule has
the formula 2Am principal as well as the principal item (2Am,Γ)A. Also, note
that the 2AL (similarly DyL) rule duplicates the principal item in the conclusion
into the premiss (which is to make Contraction admissible); in examples, we may
omit this duplicated item for simplicity. The As in the DyDist rule denotes a list
of agents. The parentheses are to clarify the scope of the annotations and will be
dropped when there is no ambiguity.

We also include all the four initial sequents and all the fifteen rules of the action
logic, as well as the variants of the L rules (including ⊥L, Dist and Unit) of the
action logic obtained by replacing any Σ by Λ and the succedent action q by a
formula m. Thus, for example, �AL is included in the form

Σ[qA] ` m

Σ[�Aq] ` m
�AL

and we leave it to the context to disambiguate whether such a rule is from the logic
for propositions or that for actions.

As an example of a derivation we show that a sequence of �As preserves an
information update by a composition of actions as follows (in which we use a superfix
BA to indicate first an annotation by B and then by A):

m ` m
Id

q ` q
Id

mq ` m · q ·R

(mq)B ` �B(m · q)
�BR

(mq)BA ` �A�B(m · q)
�AR

q′ ` q′
Id

q′B ` �Bq′
�BR

q′BA ` �A�Bq′
�AR

((mq)BA)q′BA ` �A�B(m · q) · �A�Bq′
·R

(mq,q′
)BA ` �A�B(m · q) · �A�Bq′

DyDist

(mq•q′
)BA ` �A�B(m · q) · �A�Bq′

•L

(m · (q • q′))BA ` �A�B(m · q) · �A�Bq′
·L

�B(m · (q • q′))A ` �A�B(m · q) · �A�Bq′
�BL

�A�B(m · (q • q′)) ` �A�B(m · q) · �A�Bq′
�AL

But we can also have the following (also sound) form:
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m ` m
Id

mB ` �Bm
�BR

mBA ` �A�Bm
�AR

q • q′ ` q • q′
Id

(q • q′)B ` �B(q • q′)
�BR

(q • q′)BA ` �A�B(q • q′)
�AR

((mBA)(q•q′)BA ` �A�Bm · �A�B(q • q′)
·R

(m(q•q′))BA ` �A�Bm · �A�B(q • q′)
DyDist

(m · (q • q′))BA ` �A�Bm · �A�B(q • q′)
·L

�B(m · (q • q′))A ` �A�Bm · �A�B(q • q′)
�BL

�A�B(m · (q • q′)) ` �A�Bm · �A�B(q • q′)
�AL

Here the rule DyDist is applied to the list 〈q • q′〉, treated as the concatenation of
the empty list 〈 〉 and the list 〈q • q′〉.

Lemma 3.3 For every formula m and every context Γ, the sequent Γ,m ` m is
derivable.

Lemma 3.4 The following Weakening and Contraction rules are admissible:

∆[Γ] ` m

∆[Γ,Γ′] ` m
Wk

∆[>] ` m

∆[Γ] ` m
>L−

∆[Γ,Γ] ` m

∆[Γ] ` m
Contr

Lemma 3.5 The ∧L, ∨L, ∧R, ·L, DyR, �AL, and 2AR rules are invertible.

Theorem 3.6 The following Cut rules are admissible:

Γ ` m ∆[m] ` m′

∆[Γ] ` m′ PrCut
Θ ` q Λ[q] ` m

Λ[Θ] ` m
DyCut

Proof. Strong induction on the rank of the cut, where the rank is given by the
pair: (size of cut formula m, sum of heights of derivations of premisses). This will
need some changes to replace Deltas by Lambdas

We classify the cases into two major groups: the first one for the dynamic cut
DyCut and the second one for the propositional cut PrCut.
(I) Reductions for admissibility of DyCut.

(i) Cuts where the second premiss is an instance of the rules of AlgDEL. This
case breaks down to two groups, when the cut formula is principal and when
it is not.
(a) The cuts in the principal cases can only be done with dynamic rules in the

second premiss. All of these propagate up by cutting with the assumption
of the rule.
• ·R

Θ ` q

Γ ` m′ q ` q′

Γq ` m′ · q′ ·R

ΓΘ ` m′ · q′
DyCut

which transforms to the following, using the admissible Cut of action
logic:

Γ ` m′
Θ ` q q ` q′

Θ ` q′
Cut

ΓΘ ` m′ · q′
·R
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• DyL

Θ ` q

Λ([q]m,Γ)q,m] ` m′

Λ[([q]m,Γ)q] ` m′ DyL

Λ[([•Θ]m,Γ)Θ] ` m′ DyCut

Here we have to replace the instance of Θ in the dynamic modality with
•Θ, which is the composition of all the items in Θ. This cut transforms
to

Θ ` q Λ[([q]m,Γ)q,m] ` m′

Λ[([•Θ]m,Γ)Θ,m] ` m′ DyCut

Λ[([•Θ]m,Γ)Θ] ` m′ DyL

• DyDist, there are two cases e.g. the cut formula can be the first context
Θ or the second one Θ′. Consider the first one

Θ ` q

Λ[(ΓqAs
)Θ

′As
] ` m

Λ[(Γq,Θ′
)As] ` m

DyDist

Λ[(ΓΘ,Θ′
)As] ` m

DyCut

which transforms to

Θ ` q Λ[(ΓqAs
)Θ

′As
] ` m

Λ[(ΓΘAs
)Θ

′As
] ` m

DyCut

Λ[(ΓΘ,Θ′
)As] ` m

DyDist

The second case is reduced identically.
• ReArr is similar to DyDist.

(b) The cuts in the non-principal cases propagate up by cutting with the as-
sumption of the rule. These are all routine. Here is an example when the
second premiss is an instance of a propositional rule

Θ ` q

Λ[q][(2Am,Γ)A,m] ` m′

Λ[q][(2Am,Γ)A] ` m′ 2AR

Λ[Θ][(2Am,Γ)A] ` m′ DyCut

which transforms to

Θ ` q Λ[q][(2Am,Γ)A,m] ` m′

Λ[Θ][(2Am,Γ)A,m] ` m′ DyCut

Λ[Θ][(2Am,Γ)A] ` m′ 2AR

Here is an example where the second premiss is an instance of a dynamic
rule

Θ ` q

Λ[q][m′q′ ] ` m′′

Λ[q][m′ · q′] ` m′′ ·L

Λ[Θ][m′ · q′] ` m′′ DyCut
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which transforms to

Θ ` q Λ[q][m′q′ ] ` m′′

Λ[Θ][m′q′ ] ` m′′
DyCut

Λ[Θ][m′ · q′] ` m′′ ·L

(ii) Cuts where the first premiss is an instance of rules of action logic. These break
down to four groups:
(a) Principal cuts where the first premiss is an instance of 1L, Unit and Dist;

in these cases the cut propagates up by cutting with the assumptions of
these rules, as follows:
1L

Σ[ ] ` q

Σ[1] ` q
1L Λ[q] ` m

Λ[Σ[1]] ` m
DyCut

transforms to
Σ[ ] ` q Λ[q] ` m

Λ[Σ[ ]] ` m
DyCut

Λ[Σ[1]] ` m
1L

Dist
Σ[ΘA,Θ′A] ` q

Σ[(Θ,Θ′)A] ` q
Dist

Λ[q] ` m

Λ[Σ[(Θ,Θ′)A]] ` m
DyCut

transforms to
Σ[ΘA,Θ′A] ` q Λ[q] ` m

Λ[Σ[ΘA,Θ′A]] ` m
DyCut

Λ[Σ[(Θ,Θ′)A]] ` m
Dist

Unit
Σ[〈 〉] ` q

Σ[〈 〉A] ` q
Unit

Λ[q] ` m

Λ[Σ[〈 〉A]] ` m
DyCut

transforms to
Σ[〈 〉] ` q ∆[q] ` m

Λ[Σ[〈 〉]] ` m
DyCut

Λ[Σ[〈 〉A]] ` m
Unit

(b) Principal cuts where the first premiss is an instance of a left rule; these
propagate up by cutting with the assumption of the rules, as follows:
• ∨L, and ∧L are routine.
• •L

Σ[q1, q2] ` q

Σ[q1 • q2] ` q
•L Λ[q] ` m

Λ[Σ[q1 • q2]] ` m
DyCut

transforms to
Σ[q1, q2] ` q ∆[q] ` m

Λ[Σ[q1, q2]] ` m
DyCut

Λ[Σ[q1 • q2]] ` m
•L
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• �AL
Σ[qA] ` q′

Σ[�Aq] ` q′
�AL

Λ[q′] ` m

Λ[Σ[�Aq]] ` m
DyCut

transforms to
Σ[qA] ` q′ Λ[q′] ` m

Λ[Σ[qA]] ` m
DyCut

Λ[Σ[�Aq]] ` m
�AL

• 2AL
Σ[q] ` q′

Σ[(2Aq)A] ` q
2AL

Λ[q′] ` m

Λ[Σ[(2Aq)A]] ` q′
DyCut

transforms to
Σ[q] ` q′ Λ[q′] ` m

Λ[Σ[q] ` q′
DyCut

Λ[Σ[(2Aq)A]] ` q′
2AL

(c) Non-principal cuts with right rules whose left rule is invertible, i.e. �AR, •R,∨R;
here the size of the cut formula decreases, as follows:
• ∨R is routine.
• •R

Θ1 ` q1 Θ2 ` q2

Θ1 •Θ2 ` q1 • q2
•R Λ[q1 • q2] ` m

Λ[Θ1 •Θ2] ` m
DyCut

transforms to

Θ2 ` q2

Θ1 ` q1

∆[q1 • q2] ` m

Λ[q1, q2] ` m
Inv • L

Λ[Θ1, q2] ` m
DyCut

Λ[Θ1,Θ2] ` m
DyCut

Λ[Θ1 •Θ2] ` m
•L

• �AR
Θ ` q

ΘA ` �Aq
�AR

Λ[�Aq] ` m

Λ[ΘA] ` m
DyCut

transforms to

Θ ` q

Λ[�Aq] ` m

∆[qA] ` m
Inv�A

Λ[ΘA] ` m
DyCut

(d) First premiss is an instance of 2AR and ∧R, whose left rules are not
invertible; these need case analysis on the form of the second premiss.
Cases for ∧R are routine, so we deal with cases for 2AR. These form two
groups: when the cut formula is principal and when it is not. In both cases
the cuts propagate up by cutting with the assumption of the rule. The
principal cuts are more interesting, so we only we present these here.
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• ·R
ΘA ` q

Θ ` 2Aq
2AR

Γ ` m′ 2Aq ` q′

Γ2Aq ` m′ · q′ ·R

ΓΘ ` m′ · q′
DyCut

transforms to

Γ ` m′
Θ ` 2Aq 2Aq ` q′

Θ ` q′
Cut

ΓΘ ` m′ · q′
·R

• DyL

ΘA ` q

Θ ` 2Aq
2AR

Λ[([2Aq]m,Γ)2Aq,m] ` m′

Λ[([2Aq]m,Γ)2Aq] ` m′ DyL

Λ[([•Θ]m,Γ)Θ] ` m′ DyCut

transforms to

Θ ` 2Aq Λ[([2Aq]m,Γ)2Aq,m] ` m′

Λ[([•Θ]m,Γ)Θ,m] ` m′ DyCut

Λ[([•Θ]m,Γ)Θ] ` m′ DyL

• DyDist, there are two cases: either Θ′ contains the cut term, or Θ′′ does
(where Θ′,Θ′′ is the sequence of action items mentioned in the principal
item of the rule). Consider the first case:

ΘA ` q

Θ ` 2Aq
2AR

Λ[((ΓΣ[2Aq]As
)Θ

′′
)As] ` m

Λ[(ΓΣ[2Aq],Θ′′
)As] ` m

DyDist

Λ[(ΓΣ[Θ],Θ′′
)As] ` m

DyCut

which transforms to

Θ ` 2Aq Λ[(Γ2AqAs
)Θ

′′As
] ` m

Λ[(ΓΘAs
)Θ

′′As
] ` m

DyCut

Λ[(ΓΘ,Θ′′
)As] ` m

DyDist

The second case is similar.
• ReArr, there two cases: either Θ is the cut formula or Θ′ is. Consider

the first case:

ΘA ` q

Θ ` 2Aq
2AR

Λ[Γ2Aq,Θ′
] ` m

Λ[(Γ2Aq)Θ
′
] ` m

ReArr

Λ[(ΓΘ)Θ
′
] ` m

DyCut

transforms to
Θ ` 2Aq Λ[Γ2Aq,Θ′

] ` m

Λ[ΓΘ,Θ′
] ` m

DyCut

Λ[(ΓΘ)Θ
′
] ` m

ReArr
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(II) Reductions for admissibility of PrCut. The AlgDEL calculus is obtained
by adding dynamic rules to the proposition-only calculus of [9]; so the cases here
are those of [9] together with the following:

(i) Principal cuts where the first premiss is an instance of dynamic rules.
(a) ·R

Γ ` m′ Θ ` q′

ΓΘ ` m′ · q′
·R

Σ[m′ · q′] ` m′′

Σ[ΓΘ] ` m′′ PrCut

transforms to

Θ ` q′
Γ ` m′

Σ[m′ · q′] ` m′′

Σ[m′q] ` m′′ Inv · L

Σ[Γq] ` m′′ PrCut

Σ[ΓΘ] ` m′′ DyCut

(b) ·L
∆[mq] ` m′

∆[m · q] ` m′ ·L ∆′[m′] ` m′′

∆′[∆[m · q]] ` m′′ PrCut

transforms to
∆[mq] ` m′ ∆′[m′] ` m′′

∆′[∆[mq]] ` m′′ PrCut

∆′[∆[m · q]] ` m′′ ·L

(c) DyDist

∆[(ΓΘAs
)Θ

′As
] ` m

∆[(ΓΘ,Θ′
)As] ` m

DyDist
∆′[m] ` m′

∆′[∆[Γ(Θ,Θ′)As
]] ` m′ PrCut

transforms to

∆[(ΓΘAs
)Θ

′As
] ` m ∆′[m] ` m′

∆′[∆[(ΓΘAs
)Θ

′As
]] ` m

PrCut

∆′[∆[(ΓΘ,Θ′
)As]] ` m′

DyDist

(d) ReArr

∆[ΓΘ,Θ′
] ` m

∆[ΓΘΘ′
] ` m

ReArr
∆′[m] ` m′

∆′[∆[(ΓΘ)Θ
′
]] ` m′ PrCut

transforms to
∆[ΓΘ,Θ′

] ` m ∆′[m] ` m′

∆′[∆[ΓΘ,Θ′
]] ` m′ PrCut

∆′[∆[ΓΘΘ′
]] ` m′

ReArr

(ii) The first premiss is an instance of 2AR rules and second premiss an instance
of one of the dynamic rules.
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(a) ·R
ΓA ` m

Γ ` 2Am
2AR

∆[2Am] ` m′ Θ ` q

∆[2Am]Θ ` m′ · q′
·R

∆[Γ]Θ ` m′ · q′
PrCut

transforms to

Γ ` 2Am ∆[2Am] ` m′

∆[Γ] ` m′ PrCut
Θ ` q′

∆[Γ]Θ ` m′ · q′
·R

(b) DyR

ΓA ` m
Γ ` 2Am

2AR
∆[2Am]q

′ ` m′

∆[2Am] ` [q′]m′ DyR

∆[Γ] ` [q′]m′ PrCut

transforms to
Γ ` 2Am ∆[2Am]q

′ ` m′

∆[Γ]q
′ ` m′ PrCut

∆[Γ] ` [q′]m′ DyR

(c) DyL

Γ ` 2Am ∆[2Am][([q′]m′,Γ′)q′ ,m′] ` m′′

∆[Γ][([q′]m′,Γ′)q′ ,m′] ` m′′ PrCut

∆[Γ][([q′]m′,Γ′)q′ ] ` m′′
DyL

(d) DyDist, there are two cases, when the cut formula 2Am is in ∆ and when
it is in Γ′, the reduction for the first case is as follows, the reduction for
the second case is similar.

ΓA ` m
Γ ` 2Am

2AR
∆[2Am][(Γ′Θ

As
)Θ

′As
] ` m′

∆[2Am][(Γ′Θ,Θ′
)As] ` m′

DyDist

∆[Γ][(Γ′Θ,Θ′
)As] ` m′ PrCut

transforms to

Γ ` 2Am ∆[2Am][(Γ′Θ
As

)Θ
′As ` m′

∆[Γ][(Γ′Θ
As

)Θ
′As ` m′ PrCut

∆[Γ][(Γ′Θ,Θ′
)As] ` m′

DyDist

(e) ReArr, there are two cases, when the cut formula 2Am is in ∆ and when
it is in Γ′, the reduction for the first case is as follows, the reduction for
the second case is similar.

ΓA ` m
Γ ` 2Am

2AR
∆[2Am][Γ′Θ,Θ′

] ` m

∆[2Am][Γ′Θ
Θ′

] ` m
ReArr

∆[Γ][Γ′Θ
Θ′

] ` m′
PrCut
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transforms to

Γ ` 2Am ∆[2Am][Γ′Θ,Θ′
] ` m′

∆[Γ][Γ′Θ,Θ′
] ` m′ PrCut

∆[Γ][Γ′Θ
Θ′

] ` m′
ReArr

(iii) The first premiss is an instance of DyR rules and second premiss is an instance
of all the rule. The cases here are almost identical to the cases in the previous
item when 2AR was the first premiss. We present two of them here.
(a) The second premiss is an instance of DyL

Γq ` m
Γ ` [q]m

DyR
∆′[([q]m,Γ′)q,m] ` m′

∆′[([q]m,Γ′)q] ` m′ DyL

∆′[(Γ,Γ′)q] ` m′ PrCut

transforms to

Γq ` m

Γ ` [q]m ∆′[([q]m,Γ′)q,m] ` m′

∆′[(Γ,Γ′)q,m] ` m′ PrCut

∆′[(Γ,Γ′)q,Γq] ` m′ PrCut

∆′[(Γ,Γ′)q, (Γ,Γ′)q] ` m′ Wk

∆′[(Γ,Γ′)q] ` m
Contr

(b) The second premiss is an instance of DyDist. There are two cases, we
consider the one in which the cut formula [q]m is in ∆.

Γq ` m
Γ ` [q]m

DyR
∆[[q]m][(Γ′Θ

As
)Θ

′As
] ` m′

∆[[q]m][(Γ′Θ,Θ′
)As] ` m′

DyDist

∆[Γ][(Γ′Θ,Θ′
)As] ` m′ PrCut

transforms to

Γ ` [q]m ∆[[q]m][(Γ′Θ
As

)Θ
′As

] ` m′

∆[Γ][(Γ′Θ
As

)Θ
′As

] ` m′ PrCut

∆[Γ][(Γ′Θ,Θ′
)As] ` m′

DyDist

We finish by giving two of the reductions for the proposition-only case from [9],
to illustrate the argument. Note the use of �AInv in the first. The second is one
of many cases where the first premiss is an instance of 2AR.

(i) The first premiss is an instance of �AR.

Γ ` m

Γ′,ΓA ` �A(m)
�AR

∆′[�A(m)] ` m′

∆′[Γ′,ΓA] ` m′ Cut
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transforms to

Γ ` m

∆′[�A(m)] ` m′

∆′[mA] ` m′ �AInv

∆′[ΓA] ` m′ Cut

∆′[Γ′,ΓA] ` m′ Wk

(ii) The first premiss is an instance of 2AR and the second an instance of 2AL,
principal

ΓA ` m
Γ ` 2Am

2AR
∆′[(2Am,Γ′)A,m] ` m′

∆′[(2Am,Γ′)A] ` m′ 2AL

∆′[(Γ,Γ′)A] ` m′ Cut

transforms to

ΓA ` m

Γ ` 2Am ∆′[(2Am,Γ′)A,m] ` m′

∆′[(Γ,Γ′)A,m] ` m′ Cut

∆′[(Γ,Γ′)A,ΓA] ` m′ Cut

∆′[(Γ,Γ′)A, (Γ,Γ′)A] ` m′ Wk

∆′[(Γ,Γ′)A] ` m
Contr

2

4 Algebraic Semantics

4.1 Actions

Definition 4.1 Let A be a set, with elements called agents, as before. A lattice
monoid with adjoint modalities LMAM over A is both a bounded lattice (Q,∨,∧,>,⊥)
and a unital monoid (Q, 1, •,≤) where • preserves joins, with two A-indexed families
{�A}A∈A : Q → Q and {2A}A∈A : Q → Q of order-preserving maps, each �A being
left adjoint to 2A. Thus, apart from the lattice axioms, the following hold, for all
q, q′, q′′ ∈ Q:

q • (q′ ∨ q′′) = (q • q′) ∨ (q • q′′) and (q′ ∨ q′′) • q = (q′ • q) ∨ (q′′ • q) (1)
q • 1 = q and 1 • q = q (2)

q ≤ q′ implies �Aq ≤ �Aq′ (3)
q ≤ q′ implies 2Aq ≤ 2Aq′ (4)

�Aq ≤ q′ iff q ≤ 2Aq′ (5)

Proposition 4.2 In any LMAM the following hold, for all q, q′ ∈ Q:
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�A(q ∨ q′) = �Aq ∨ �Aq′ (6)
2A(q ∧ q′) = 2Aq ∧2Aq′ (7)
�A(q ∧ q′) ≤ �Aq ∧ �Aq′ (8)

2Aq ∨2Aq′ ≤ 2A(q ∨ q′) (9)
�A⊥ = ⊥ 2A> = > (10)
q • (q′ ∧ q′′) ≤ (q • q′) ∧ (q • q′′) (11)
(q′ ∧ q′′) • q ≤ (q′ • q) ∧ (q′′ • q) (12)

�A2Aq ≤ q (13)
q ≤ 2A�Aq (14)

Definition 4.3 An LMAM Q is multiplicative whenever �A satisfies the following, for
all q, q′ ∈ Q:

�A(q • q′) ≤ �Aq • �Aq′ (15)
�A1 ≤ 1 (16)

Proposition 4.4 In any multiplicative LMAM Q the following hold, for all q, q′ ∈ Q:

2Aq •2Aq′ ≤ 2A(q • q′) (17)
1 ≤ 2A1 (18)

Let Q be a multiplicative LMAM over A. An interpretation of the action logic
(over A, and with set B of basic actions) in Q is a map [[−]] : B → Q. The meaning
of action terms is obtained by induction on the structure of the terms:

[[q1 ∨ q2]] = [[q1]] ∨ [[q2]], [[q1 ∧ q2]] = [[q1]] ∧ [[q2]], [[q1 • q2]] = [[q1]] • [[q2]],
[[�Aq]] = �A[[q]], [[2Aq]] = 2A[[q]],

[[>]] = >, [[⊥]] = ⊥, [[1]] = 1 .

The meanings of items and of contexts are obtained by mutual induction on their
structure:

[[q]] = as above

[[ΘA]] = �A[[Θ]]
[[I1, · · · , In]] = [[I1]] • · · · • [[In]]

[[〈 〉]] = 1

Note that, since • is associative (but not necessarily commutative), the meaning
of a context Θ depends on its presentation as a list of items in a particular order.

A sequent Θ ` q is true in an interpretation [[−]] in Q iff [[Θ]] ≤ [[q]]; it is true in
Q iff true in all interpretations in Q, and it is valid iff true in every multiplicative
LMAM.

Lemma 4.5 Let Θ,Θ′ be contexts with [[Θ]] ≤ [[Θ′]] and Σ a context-with-a-hole.
Then

[[Σ[Θ]]] ≤ [[Σ[Θ′]]].

Proof. Routine induction on the structure of Σ (using also a similar result for
items-with-a-hole). 2
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Theorem 4.6 (Soundness) Any derivable sequent is valid, i.e. Θ ` q implies
[[Θ]] ≤ [[q]] is true in any interpretation [[−]] of B in any multiplicative LMAM (over
A).

Proof. We show that the initial sequents of the sequent calculus are valid and that
the rules are truth-preserving.

• Axioms. These are routine.
• The right rules.
· ∧R, ∨R and •R are routine.
· �AR. We have to show

[[Θ]] ≤ [[q]] implies [[ΘA]] ≤ [[�Aq]]

Assume [[Θ]] ≤ [[q]], by monotonicity of �A it follows that �A[[Θ]] ≤ �A[[q]], by
definition of [[−]] this is equivalent to [[ΘA]] ≤ [[�Aq]].

· 2AR. We have to show

[[ΘA]] ≤ [[q]] implies [[Θ]] ≤ [[2Aq]]

Assume [[ΘA]] ≤ [[q]], by definition of [[−]] this is equivalent to �A[[Θ]] ≤ [[q]], by
property (5) of definition 4.1 this is equivalent to [[Θ]] ≤ 2A[[q]], equivalent to
[[Θ]] ≤ [[2Aq]] by definition of [[−]].

• The left rules. These are done by induction on the structure of Σ
· ∧L, ∨L and •L are routine.
· �AL. It is enough to show

[[Σ[�Aq]]] ≤ [[Σ[qA]]]

By definition of [[−]], we have [[�Aq]] = [[qA]], by lemma 4.5 we obtain [[Σ[�Aq]]] ≤
[[Σ[qA]]].

· 2AL. It is enough to show

[[Σ[(2Aq)A]]] ≤ [[Σ[q]]]

By definition of [[−]], we have [[(2Aq)A]] = [[�A2Aq]], from this and (13) in
proposition 4.2 it follows that [[(2Aq)A]] ≤ [[q]], hence by lemma 4.5 we obtain
[[Σ[(2Aq)A]]] ≤ [[Σ[q]]].

· Dist. It is enough to show

[[Σ[(Θ,Θ′)A]]] ≤ [[Σ[ΘA,Θ′A]]]

By definition of [[−]] and (15) in definition 4.3 we have

[[(Θ,Θ′)A]] = �A[[Θ,Θ′]] = �A([[Θ]] • [[Θ′]]) ≤ �A[[Θ]] • �A[[Θ′]]

By definition of [[−]], for the right hand side we have

�A[[Θ]] • �A[[Θ′]] = [[ΘA]] • [[Θ′A]] = [[ΘA,Θ′A]]
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Hence, we obtain [[(Θ,Θ′)A]] ≤ [[ΘA,Θ′A]]. From this by lemma 4.5 it follows
that [[Σ[(Θ,Θ′)A]]] ≤ [[Σ[ΘA,Θ′A]]].

· Unit. It is enough to show

[[Σ[〈 〉A]]] ≤ [[Σ[ ]]]

which is equivalent to the following by definition of [[ ]]

�A1 ≤ 1

This is true by (16) of definition 4.3.
2

Theorem 4.7 (Completeness) Any valid sequent is derivable, i.e. if [[Θ]] ≤ [[q]]
for every multiplicative LMAM and every interpretation [[−]] therein, then Θ ` q.

Proof. We follow the Lindenbaum-Tarski proof method of completeness (building
the counter-model). We show the following

(i) The logical equivalence ∼= defined as `a over the formulae of the logic is an
equivalence relation, i.e. it is reflexive, transitive (by the admissibility of Cut),
and symmetric.

(ii) The order relation ≤ defined as ` on the above equivalence classes is a partial
order, i.e. reflexive, transitive and anti-symmetric.

(iii) The operations ∧,∨, •,�A, and 2A on the above equivalence classes (defined
in a routine fashion) are well-defined. To avoid confusion with the brackets of
the sequents, i.e. Σ[Θ′], we occasionally drop the brackets of the equivalence
classes and for example write �Aq for [�Aq].
(a) For �A[q] := [�Aq] we show

[q] ∼= [q′] =⇒ [�Aq] ∼= [�Aq′]

The proof tree of one direction is as follows, the other direction is identical

q ` q′

qA ` �Aq′
�AR

�Aq ` �Aq′
�AL

(b) For 2A[q] := [2Aq] we show

[q] ∼= [q′] =⇒ [2Aq] ∼= [2Aq′]

The proof tree of one direction is as follows, the other direction is identical

q ` q′

(2Aq)A ` q′
2AL

2Aq ` 2Aq′
2AR

(c) Similarly for [q1] ∧ [q2] := [q1 ∧ q2], [q1] ∨ [q2] := [q1 ∨ q2] and [q1] • [q2] :=
[q1 • q2].
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(iv) The equivalence classes and their corresponding operations form a multiplica-
tive lattice monoid. To show this, we prove properties of definition 4.1 in our
logic.
(a) Proof trees for properties of meet and joint are routine.
(b) The proof tree for one direction of the first half of (1) is as follows (instances

of Id refer to lemma 3.3). Proof trees for the other direction and the other
half are similar.

q ` q
Id

q′ ` q′
Id

q, q′ ` q • q′
•R

q, q′ ` (q • q′) ∨ (q • q′′)
∨R

q ` q
Id

q′′ ` q′′
Id

q, q′′ ` q • q′′
•R

q, q′′ ` (q • q′) ∨ (q • q′′)
∨R

q, (q′ ∨ q′′) ` (q • q′) ∨ (q • q′′)
∨L

q • (q′ ∨ q′′) ` (q • q′) ∨ (q • q′′)
•L

(c) Proof trees for the first half of (2) are as follows, second half is proved
similarly.

q ` q
Id

q, 1 ` q
1L

q • 1 ` q
•L

` 1 1R
q ` q

Id

q ` q • 1 •R

(d) Proof trees for (3) and (4), i.e. order preservation of �A and 2A are as
follows

q ` q′

qA ` �Aq′
�AR

�Aq ` �Aq′
�AL

q ` q′

(2Aq)A ` q′
2AL

2Aq ` 2Aq′
2AR

(e) Proof trees for (5), i.e. the adjunction between �A and 2A are as follows

q ` 2Aq′

qA ` q′
2AInv

�Aq ` q′
�AL

�Aq ` q′

qA ` q′
�AInv

q ` 2Aq′
2AR

(f) The proof tree for (15) is as follows

q ` q
Id

qA ` �Aq
�AR

q′ ` q′
Id

q′A ` �Aq′
�AR

qA, q′A ` �Aq • �Aq′
•R

(q, q′)A ` �Aq • �Aq′
D

(q • q′)A ` �Aq • �Aq′
•L

�A(q • q′) ` �Aq • �Aq′
�AL

(g) The proof tree for (16) is as follows

` 1 1R

〈 〉A ` 1
Unit

1A ` 1
1L

�A1 ` 1 �AL

2

27



Dyckhoff and Sadrzadeh

4.2 Propositions

Definition 4.8 Let A be a set, with elements called agents. A DLAM over A is a
bounded distributive lattice (L,∧,∨,>,⊥) with twoA-indexed families {�A}A∈A : L →
L and {2A}A∈A : L → L of order-preserving maps, with each �A left adjoint to 2A,
i.e. �A(l) ≤ l′ iff l ≤ 2A(l′).

Definition 4.9 A multiplicative LMAM Q acts on a DLAM L (with the same sets of
agents) whenever we have two pointwise order-preserving maps · : L × Q → L

and [ ] : Q× L → L, with − · q left adjoint to [q]−, i.e. l · q ≤ l′ iff l ≤ [q]l′, and
moreover the following hold for all l ∈ L, q, q1, q2 ∈ Q and A in A:

l · (q1 • q2) = (l · q1) · q2 (19)
l · 1 = l (20)

�A(l · q) ≤ �Al · �Aq (21)

Proposition 4.10 Whenever a multiplicative LMAM Q acts on a DLAM L, the fol-
lowing hold, for all l, li in L and q, qi in Q:

(l1 ∨ l2) · q = (l1 · q) ∨ (l2 · q) (22)
[q] (l1 ∧ l2) = [q] l1 ∧ [q] l2 (23)
⊥ · q = ⊥ [q]> = > (24)

([q]l) · q ≤ l (25)
l ≤ [q](l · q) (26)

[q1 • q2] l = [q1] [q2] l (27)
[1] l = l (28)

Let Q be an LMAM acting on a DLAM L and [[−]]Q an interpretation of the set
of terms of the action logic (over a set B of basic actions) in Q, as defined in the
previous subsection. An interpretation of the set M of formulae of the propositional
logic (over a set At of atoms) in L is given by a map [[−]] : At → L; extension to an
interpretation of formulae is obtained by induction on the structure of the formulae:

[[m1 ∨m2]] = [[m1]] ∨ [[m2]], [[m1 ∧m2]] = [[m1]] ∧ [[m2]],
[[�A(m)]] = �A([[m]]), [[2Am]] = 2A[[m]],

[[>]] = >, [[⊥]] = ⊥,

[[m · q]] = [[m]] · [[q]]Q, [[[q]m]] = [[[q]]Q][[m]] .

Given the meaning of action items and contexts as defined in the previous subsec-
tion, the meanings of propositional items and contexts are obtained as elements of
L by mutual induction on their structure as follows:

[[m]] = as above

[[ΓA]] = �A([[Γ]])

[[ΓΘ]] = [[Γ]] · [[Θ]]Q

[[I1, · · · , In]] = [[I1]] ∧ · · · ∧ [[In]]
[[∅]] =>
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Theorem 4.11 (Soundness) Any derivable sequent is valid, i.e. Γ ` m implies
[[Γ]] ≤ [[m]] is true in any interpretation [[−]] in any DLAM L acted upon by any LMAM
Q (for given sets A of agents, B of basic actions and At of atoms).

Proof. The technique is the same as that used in the previous subsection; a
summary of proofs of soundness of dynamic rules are as follows, full proofs of
propositional-only rules has been presented in previous work [9].

• ·L immediately follows from the definition of [[mq]].
• ·R, follows from order-preservation of · and definition of [[ΓΘ]].
• DyL, follows from property 25 in proposition 4.10 and definition of meet.
• DyR, follows from definition of adjunction from definition 4.8 and that of meet.
• DyDist, follows from property 21 of definition 4.9.
• ReArr, follows from property 19 of definition 4.9.

2

Theorem 4.12 (Completeness) Any valid sequent is derivable, i.e. if [[Γ]] ≤ [[m]]
for every DLAM L acted upon by any LMAM Q and every interpretation [[−]] therein,
then Γ ` m.

Proof. We show that the Lindenbaum-Tarski (LT) algebra of the syntax of the
AlgDEL logic forms a DLAM on which the LT algebra of the syntax of Action logic
acts. That the LT algebra of propositional-only part of AlgDEL forms a DLAM has
been shown in [9], it is routine to define well-defined dynamic operations of m · q
and [q]m on equivalence classes over the logical consequence relation. It remains to
show that these satisfy the axioms of definition 4.9. The proof trees for meet and
join are routine. Note that the rules for · and its right adjoint are exactly the same
as those for �A and 2A, so order-preservation and adjunction follow identically. the
proof trees for property 19 are:

m ` m
Id

q ` q
Id

mq ` m · q ·R
q′ ` q′

Id

((mq))q′ ` (m · q) · q′
·R

(mq,q′) ` (m · q) · q′
DyDist

mq•q′ ` (m · q) · q′
•L

m · (q • q′) ` (m · q) · q′ ·L

m ` m
Id

q ` q
Id

q′ ` q′
Id

q, q′ ` q • q′
•R

mq,q′ ` m · (q • q′)
·R

(mq)q′ ` m · (q • q′)
ReArr

(m · q)q′ ` m · (q • q′)
·L

(m · q) · q′ ` m · (q • q′)
·L

The proof trees for property 20 are:

m ` m
Id

m1 ` m
1L

m · 1 ` m
·L m ` m

Id ` 1 1R

m ` m · 1 ·R
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The proof tree for property 21 is

m ` m
Id

mA ` �Am
�AR

q ` q
Id

qA ` �Aq
�AR

(mq)A ` �Am · �Aq
DyDist

(m · q)A ` �Am · �Aq
·L

�A(m · q) ` �Am · �Aq
�AL

2

We conclude this section by relating to previous work [1,7]. The algebraic se-
mantics developed there was referred to as an Epistemic System. The pair of an
LMAM Q and the DLAM M on which it acts (M,Q) is a pre-Epistemic system. These
are finite versions of Epistemic Systems, and, as spelled out in detail in [7], their
completion yields an Epistemic System in which they faithfully embed.

5 Interpretation and Assumptions

The interpretation of propositional and action connectives are the usual ones: ∧,∨
for conjunction and disjunction on propositions and non-deterministic choice and
parallel composition for actions, 1 stands for the skip action in which nothing hap-
pens. The dynamic connectives [q]m and m · q stand for the weakest precondition
and strongest postcondition, the former is often read as “after action q proposition
m holds”. As for the epistemic modalities, we follow previous work [1,7] and read
�A as the appearance to agent A of a proposition (or an action), and 2A as the
belief of agent A about a proposition (or an action).

Each epistemic protocol has assumptions about atomic actions and facts (i.e.
atomic propositions) involved in the protocol and the uncertainty of agents about
these. For each atomic action σ, there is a kernel proposition k to which the action
cannot apply, i.e. k · σ will lead to ⊥ 2 . The atomic actions that we consider are
epistemic, in that they do not change facts of the world. So an atomic action σ

has no effect on a proposition p, i.e. if p is true before the action, it will stay true
after it, in other words p · σ ` p. Finally, each agent A has some uncertainty about
each atomic proposition p (and action σ); these, following the approach of [2], are
all the propositions (or actions) that appear to A as true (or as happening in case
of actions) when in reality p is true (or σ is happening). So we have one or more
assumptions of the form “appearance to agent A of fact p is proposition n” and
“appearance to agent A of action σ is the term w”. In the case of actions, these
would for instance, enable us to encode honest and dishonest public and private
announcements. To model these extra information, we add the following rules to
our calculus

∆[⊥] ` m

∆[k · σ] ` m
Ker

∆[p] ` m

∆[pσ] ` m
Fact

∆[nw] ` m

∆[(pA)σA
] ` m

AppA

2 These model co-preconditions, where in DEL [2] a precondition is the proposition to which the action
can apply.
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Lemma 5.1 Addition of the assumption rules preserves admissibility of Contrac-
tion and Weakening and the invertibility of rules.

Theorem 5.2 Addition of the assumption rules preserves admissibility of the propo-
sitional and dynamic Cut rules.

Proof. For the propositional cut, we check three cases for each assumption rule,
when the rule is principal and when it is one of the many cases of 2AR and DyR

rules. The second premiss of the dynamic cut can only be an instance of Fact or
AppA; the former cut permutes with Fact, and for the latter we do a case analysis
on the action premiss.

(i) Ker principal
∆[⊥] ` m

∆[k · σ] ` m
Ker ∆′[m] ` m′

∆′[∆[k · σ]] ` m′ PrCut

transforms to
∆[⊥] ` m ∆′[m] ` m′

∆′[∆[⊥]] ` m′ PrCut

∆′[∆[k · σ]] ` m′ Ker

(ii) Fact principal
∆[p] ` m

∆[pσ] ` m
Fact ∆′[m] ` m′

∆′[∆[pσ]] ` m′ PrCut

transforms to
∆[p] ` m ∆′[m] ` m′

∆′[∆[p]] ` m′ PrCut

∆′[∆[pσ]] ` m′ Fact

(iii) AppA is principal

∆[nw] ` m

∆[(pA)σA
] ` m

AppA
∆′[m] ` m′

∆′[∆[(pA)σA
]] ` m′ PrCut

transforms to
∆[nw] ` m ∆′[m] ` m′

∆′[∆[nw]] ` m′ PrCut

∆′[∆[pA]σ
A
] ` m′

AppA

(iv) First premiss is an instance of 2AR, second is one of Ker

ΓA ` m
Γ ` 2Am

2AR
∆[2Am][⊥] ` m′

∆[2Am][k · σ] ` m′ Ker

∆[Γ][k · σ] ` m′ PrCut
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transforms to
Γ ` 2Am ∆[2Am][⊥] ` m′

∆[Γ][⊥] ` m′ PrCut

∆[Γ][k · σ] ` m′ Ker

(v) First premiss is an instance of 2AR, second is one of Fact

ΓA ` m
Γ ` 2Am

2AR
∆[2Am][p] ` m′

∆[2Am][pσ] ` m′ Fact

∆[Γ][pσ] ` m′ PrCut

transforms to
Γ ` 2Am ∆[2Am][p] ` m′

∆[Γ][p] ` m′ PrCut

∆[Γ][pσ] ` m′ Fact

(vi)

(vii) First premiss is an instance of 2AR, second is one of App

ΓA ` m
Γ ` 2Am

2AR
∆[2Am][nw] ` m′

∆[2Am][(pA)σA
] ` m′

AppA

∆[Γ][(pA)σA
] ` m′ PrCut

transforms to
Γ ` 2Am ∆[2Am][nw] ` m′

∆[Γ][nw] ` m′ PrCut

∆[Γ][(pA)σA
] ` m′

AppA

(viii) Cases for when the first premiss is an instance of DyR and the second one is
one of Ker, Fact, App are identical.

Cases for the dynamic cut are left as an exercise. 2

6 Applications

Consider a simple coin-toss protocol, when, in front of agents B and C, agent A

tosses a coin and covers it in his palm, then takes a look and makes an honest public
announcement that it is heads up. We have A = {A,B, C}, At = {H,T}, for Heads
and Tails, the kernel of the honest public announcement, denoted by H!, is T and
it appears as it is to all the agents, whereas initially both H and T appear as H ∨T

to the agents. So, as assumption rules, for p ∈ At, X ∈ A we have

∆[⊥] ` m

∆[T ·H!] ` m
Ker

∆[p] ` m

∆[pH!] ` m
Fact

∆[(H ∨ T )H!] ` m

∆[(pX)H!X ] ` m
AppX

32



Dyckhoff and Sadrzadeh

As an example of a derivation, we show that if the coin is heads up then after this
announcement B believes that the coin is heads and also that C believes this too.

H ` H
Id

HH! ` H
Fact

⊥ ` H
⊥L

T H! ` H
Ker

(H ∨ T )H! ` H
∨L

(HB)H!B ` H
AppB

(HH!)B ` H
DyDist

H ` H
Id

HH! ` H
Fact

⊥ ` H
⊥L

T H! ` H
Ker

(H ∨ T )H! ` H
∨L

(HC)H!C ` H
AppC

(HH!)C ` H
DyDist

HH! ` 2CH
2CR

⊥ ` 2CH
⊥L

T H! ` 2CH
Ker

(H ∨ T )H! ` 2AH
∨L

(HB)H!B ` 2CH
AppB

(HH!)B ` 2CH
DyDist

(HH!)B ` H ∧ 2CH
∧R

HH! ` 2B(H ∧ 2CH)
2BR

H ` [H!]2B(H ∧ 2CH)
DyR

If, instead of an honest public announcement, A had publicly lied that the coin
was tails and B and C did not expect this and still thought that this was an
honest announcement, then by the exact same derivation steps and a different set
of appearance and kernel assumption rules, we could have proved the same thing.
Denoting the public lying by T †, the assumptions for this version of the protocol
are as follows:

∆[⊥] ` m

∆[H · T †] ` m
Ker

(H ∨ T )T ! ` m

∆[(pX)T †X
] ` m

AppX∈{B,C}
(H ∨ T )T † ` m

∆[(pX)T †A
] ` m

AppA

Similarly, if A had made an honest private announcement to B, an action denoted
by H!B, and it appeared to C that nothing, i.e. the unit action 1, had happened,
we would have the following assumption rules for appearances:

∆[(H ∨ T )H!B ] ` m

∆[(HB)(H!B)B
] ` m

AppB
∆[(H ∨ T )1] ` m

∆[(HC)(H!B)C
] ` m

AppC

If C suspected this announcement by thinking either that nothing happened or that
A announced “heads” to B, the appearance assumption for C would change to

∆[(H ∨ T )1∨H!B ] ` m

∆[(HC)(H!B)C
] ` m

AppC

7 Summary and future work

Thus, the algebraic ideas about dynamic epistemic logic from [1,7] may be re-
presented in terms of a cut-free but complete sequent calculus, albeit one with
a complex but powerful notation and rules admitting substantial non-determinism
in root-first proof search. Nevertheless, and in contrast (we believe) to the alge-
braic approach of [1,7], this sequent calculus should be the basis of implementation
allowing automated reasoning about suitable encodings of situations and protocols
involving both epistemic operators and actions. Suitable refinements of the calculus,
addressing issues such as termination and backtracking, have yet to be developed.
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