New Foundations for the Geometry of Interaction®

Samson Abramsky Radha Jagadeesan
Dept. of Computing Dept. of Computing
Imperial College Imperial College
London London.

December 10, 1992

*This research was supported by grants from UK SERC and ESPRIT Basic Research Action 3003 “CLICS”

Contents

1 Introduction

2 Basic Intuitions

3 Geometry of Interaction Models
3.1 Preliminaries e

3.2 GI-models e e e

4 (Gl-interpretations
4.1 Typefreemodels e e e
4.2 Interpreting CLL, in type-free models o oo

4.3 Examples of Computations L o

5 GI as Dataflow

6 Soundness of the interpretation
6.1 Overview of results oL
6.2 Linear Realizability Algebras

6.3 Geometry of Interaction asan LRA oo

7 The structure of Cut-free proofs
7.1 Shape semantics L e
7.2 Correspondence with Cut-elimination,

7.3 Connection with Coherence spaces

References

16
16
18

21

25

26

26

27
39

52

54

58
59

63

1 Introduction

A basic dichotomy runs through much of programming theory, assuming a number of guises: de-
notational/operational, declarative/procedural, logical/computational. Mathematical structure is
seen as residing chiefly in the first term of each dichotomy, computational dynamics and its asso-
ciated intuitions in the second. A number of recent developments, perhaps most notably Girard’s
Linear Logic [Gir87] and “Geometry of Interaction” [Gir89b], aim to find a new middle ground
between these dichotomies. The Geometry of Interaction programme is to give a semantics of

computation, specifically of Cut—elimination in Linear Logic, with the following key features:

e The semantics is syntax—free and uses denotational tools, yet it captures the essential features

of the computational dynamics.

o The process of Cut—elimination is modelled by the flow of information tokens around a net-

work, rather than by graph-rewriting.

e There is a normal form analogous to the Kleene normal form in recursion theory: the entire

process of cut—elimination is described by the iterations of a single operator.

Girard has implemented this programme in a sequence of papers [Gir89b, Gir89a, Gir88a, using
the formalism of C*—algebras. While the ideas are highly original and striking, and the technical

execution must be considered a tour de force, some desiderata remain.

1. Can one give a more systematic account, making clear what structure is really needed to carry
out the interpretation, and showing how it arises more or less inevitably from some simple,

basic ideas?

2. The interpretation does not succeed in interpreting the whole of Linear Logic, and the main
result establishing the soundness of the interpretation is subject to certain restrictions; the

interpretation is actually unsound in general.

3. The connection with any concrete implementation is left unclear.

In this paper, we present a new formal embodiment of Girard’s programme, with the following

salient features.

1. Our formalisation is based on elementary Domain Theory rather than C*-algebras. It ex-
poses precisely what structure is required of the ambient category in order to carry out the
interpretation. Furthermore, we show how the interpretation arises from the construction of
a categorical model of Linear Logic; this provides the basis for a rational reconstruction which

makes the structure of the interpretation much easier to understand.

2. The key definitions in our interpretation differ from Girard’s. Most notably, we replace
the “execution formula” by a least fixpoint, essentially a generalisation of Kahn’s semantics
for feedback in dataflow networks [Kah77, KM77]. This, coupled with the use of the other
distinctive construct of Domain theory, the lifting monad, enables us to interpret the whole

of Linear Logic, and to prove soundness in full generality.

3. Our general notion of interpretation has simple examples, providing a suitable basis for con-
crete implementations. In fact, we sketch a computational interpretation of the Geometry of
Interaction in terms of dataflow networks. Recall that computation in dataflow networks is
asynchronous, i.e. “no global time”, and proceeds by purely local “firing rules” that manip-

ulate tokens.

The further structure of this paper is as follows. In Section 2, we review the syntax of Linear
Logic, and present the basic, and quite simple intuitions underlying the interpretation. In Section 3,
we use these ideas to construct models of Linear Logic. In Section 4 we define the Geometry of
Interaction interpretations, and how that they arise from the model constructed previously in a
natural fashion. In Section 5, we give a computational interpretation of these model in terms of
dataflow. The soundness of the interpretation, including the semantic analogue of Cut—elimination,
is proved in Section 6. In Section 7, a Characterisation theorem is proved giving a more explicit
description of the interpretation. This provides the basis both for a stronger soundness result and

for establishing a connection with a denotational semantics based on coherence spaces.

2 Basic Intuitions

For general background on Linear Logic, we refer the reader to the original paper by Girard [Gir87].

Here, we shall briefly recall the syntax of CLL,, second order propositional Classical Linear Logic.

The formulae of CLL, are in negation normal form; they are built from propositional variables

a and their linear negations at by the following connectives:

Multiplicatives ARB AR’B
Multiplicative Units [1
Additives A&B A9B
Additive Units T 0
Exponentials 1A TA
Quantifiers Va.A da.A

Linear negation is extended to general formulae as an operation defined by the following equa-

tions.

(AB): = A'sB*t

It = 1
(A&B): = AtgB*

(1A = 74t
(Va.A)t = Ja.A*
AJ_J_ - A

with linear implication treated as a derived connective defined by
A—oB = A'2B

The objects to be derived in CLL, are right-sided sequents FI', where I is a list of formulas.

The original version of the Geometry of Interaction was developed by Girard for the multiplica-
tive fragment [Gir88b]. This is still the best setting in which to explain the basic ideas on which

the interpretation is based.

Consider then the multiplicative fragment of CLL,, with the restriction that the Axiom is only
used for propositional atoms, Fal,a. Now, if we look at the cut-free proofs, say of a®a—oa®a,
i.e. of the sequent Fa'2at,a®a, there are in fact just two, corresponding to the identity and

twist maps.

cﬁ%aL a®o cﬁ%aL a®o

Id Twist

As we see from these examples, cut-free proof nets in this fragment have the structure of a set
of trees, one for each formula in the conclusion, with the leaves connected up in pairs by the axiom
links. Moreover, the structure of the trees is determined uniquely by the formulae in the sequent
(this is where the restriction on axioms is applied). Hence, a complete invariant to distinguish the
different cut-free proofs of a given sequent is given by the information as to how the leaves are

joined up.

| | |

Id Twist

We can model this information by a permutation on the set of leaves, obtained as the product

of the transpositions corresponding to the axiom links. Thus,

corresponds to the permutation

a b ¢ d
(c d a b)
Note that these transpositions are disjoint. So, a cut-free proof is represented by an involution, i.e.
a self-inverse permutation. This representation of cut-free proofs can be thought of as modelling
the “information flow” between the leaves in a dynamic fashion—think of tokens travelling in both
directions across the axiom links—as opposed to modelling the linkage statically by a graph. Note

that we are using functions to represent this information flow, but without input-output bias, since

the flow is bidirectional and symmetric.

Returning to our example, consider performing cut-elimination on twist o twist: The proof

net for twist o twist before cut elimination is:

—
atzpt SRa Bteat
The proof net for twist o twist after one step of reduction is:
— 1
at Bt « Bt ot «a
azp a®@p

Generally, in this fragment, we can apply this “decomposition rule” repeatedly for tensor cut
against par until all cuts are between axiom links. We can say that the whole purpose of these
transformations is to match up the corresponding axiom links correctly; the “real” information flow

is then accomplished by the axiom reductions:

[]]

at o =

=)
=)
Y
=)
=)

or more generally,

[]]]

&J' a &J' [&J' Q@ &J' a

The idea, as with cut-free proofs, is to model these transformations dynamically, by the flow of

information tokens, rather than by graph rewriting.

An interpretation of the multiplicative fragment can be given using just permutations on finite
sets, as described in [Gir88b]. Extending this to the whole of Linear Logic is much harder and
requires more sophisticated tools. In particular, the shape of the trees, and hence how the leaves
are to be matched up, is no longer determined by the types, and must instead be computed
dynamically; the different shapes that can arise correspond to the different computation paths of
the program. An important consequence of this is that the objects corresponding to proofs will
have to be “partial permutations”, which both pick out the subdomains of trees corresponding
to the possible computation paths, and for each such tree induce a permutation on the leaves

corresponding to the flow of information along that path.

We conclude this section with some remarks on the use of functions in the interpretation. For
intuitionistic sequents I' FA, whether in Intuitionistic or Intuitionistic Linear Logic, we have the

usual functional interpretation.

I A

L °} t o Sl
o o}

AXIOM CUT

vﬁ

For sequents in Classical Linear Logic, the first author has proposed a process interpreta-
tion [Abr91b], where T is an interface specification describing how the process P can be connected
to its environment; the links are no longer directed since they correspond to a symmetric notion
of communication. Axiom is interpreted by a communication buffer; and Cut by “communicating

parallel composition + restriction”.

]

AXIOM CUT

In the Geometry of Interaction interpretation, we shall reconcile the functional and process
views. The computational object corresponding to a sequent I' will be a function for which every
formula in I' appears twice: once as (the type of) an input, once as (the type of) an output. The
idea is that this function models the (bidirectional, symmetric) flow of information within the proof

of the sequent.

'y YAY

AXIOM CuT

Note that Cut involves feedback; this is precisely where the computational dynamics is located.
We model this, following Kahn’s semantics for dataflow [Kah77, KM77], with a least fixpoint. If
f:D"xD —= D*"xDand g: Dx D" — D x D™ where D is a domain and f and g are
continuous functions, we can define Cut(f,g): D" x D™ — D" x D™ as follows: Cut(f,g) (Z,7) is

the projection onto &,y of the least solution of the equations:

(@,2) = [f(Z,y)
(v.9) = g(z,9)

The usual sequence of iterations to the least fixpoint is the representation of the dynamics provided

by our interpretation. It takes the place of Girard’s execution formula.

3 Geometry of Interaction Models

We shall assume some familiarity with elementary Domain theory and Category theory.

3.1 Preliminaries
Idempotents

Let C be a category. An idempotent in C is an endomorphism e : A — A with e = e. Idempotents
have been used in semantics [Sco76] to specify datatypes as “subdomains” of some “universal do-
main”. We recall the construction of Split(C) [FS91] [also known as the “Karoubi envelope”],
which formally splits the idempotents in C into retraction-coretraction pairs. The objects of
Split(C) are pairs (A,e), where e : A — A is an idempotent in C . A morphism is a triple
(e, f,€):(Aje) = (A',€'), where f: A — A’ satisfiese’o f = f = foe. Composition and identities
are then given by (e”,g,€¢') o (e, f,e') = (e, go f,e) and 14 .y = (e, 14,¢€).

An automorphism in Split(C) is then given by (e, f,e) : (A,e) — (A, e) with inverse (e, g,€):
(A,e) — (A, e) satisfying

gof = e = [fog
gofog = g
Jogof = f

In particular, the first equation tells us that e is recoverable from f,g.

On the intuition that a partial automorphism on an object A of C should be an automorphism
acting on a subdomain of A specified by an idempotent, we define a partial automorphism f, with

inverse g, to be morphisms f,g: A — A satisfying

gof = [fog
gofog = g
fogof =

The reader will enjoy proving that g is uniquely determined by f. A partial involution is then a
self-inverse partial automorphism. Taking f = g in the definition above, this reduces to the single

equation
=7

We note a simple way of constructing (partial) involutions. Suppose f: A — B is an isomorphism,

symm

then f —AxB Bx AT AxBisa partial involution.

Domain theory

We review some basic definitions that we shall use. A poset P is w-complete if every w-chain
in P has a least upper bound in P. A function between w-complete posets is continuous if it

preserves least upper bounds of w-chains. We write Predom for the category of “predomains”,

i.e. w-complete posets and continuous maps, and Dom for the full subcategory of domains, i.e.

w-complete posets with least elements.

The category Predom is distributive [Wal89], i.e. it has finite products and coproducts, cre-
ated by cartesian product and disjoint union of the underlying sets respectively and a natural
isomorphism

diStA,B,C: AX(B—|—C)—>AXB+AXC

There is also a strong monad [Mog91] of lifting, ((-)L,up, #,t) where P, is the domain obtained by

adjoining a bottom element to P; up, : P — P, and pp : P,y — P, are illustrated by:
—_—
/
up H
and t4p 1 A x By — (A X B), is the tensorial strength [Mog91].
Domains arise precisely as the algebras of this monad. Given a domain D, we write its structure
map as ap : D; — D. Since 0, = 1, we get a map

122 p, 22 p

for each domain, and hence 1L 4p: A — 1 — D for each predomain A.
We also recall that domains are closed under products (in Predom). For each endomorphism
J D — D in Dom, the least fixpoint of f is given by

Y =] 7w

kew

next, we need to consider for each domain D, the functor T : Dom — Dom defined by Tp(F) =
(D4+14+(ExE)),. For each D, the initial T, algebra exists and is denoted by (7D, foldp) , with
foldp : (D+ 14 (7D xTD)), — TD being an isomorphism. The inverse of foldp is written as

unfoldy.

A GZ-category is a subcategory of Predom closed under all of the above constructions. Some

examples:

o Any of the usual full subcategories of Predom (Dom) considered in denotational semantics,

e.g. Scott domains, SFP, continuous cpo’s.

o Any of the usual categories of domains and stable functions, e.g. dI domains, L-domains.

However, coherence spaces are not an example, since they are not closed under lifting.

e The category of sequential functions on concrete domains [KP78]. In particular, note that

G71-categories are not required to be cartesian closed.

10

3.2 (GZ-models

We will now describe the construction of a model GZ(C) of Classical Linear Logic from any GZ-
category C. This construction contains all the essential ingredients of the Geometry of Interaction
interpretation in a more synthetic form, and provides a good point of entry to the interpretation,

which will be described in the next Section.

Firstly, we shall briefly recall the definition of CLL models; for more details see [See89]. Let
C be a symmetric monoidal closed category with tensor @, unit I , internal hom —o. An object
1 is dualizing if for all A, the morphism A — (A—o L)—o L, obtained by currying the evaluation
map, is an isomorphism. A x-autonomous calegory is a symmetric monoidal closed category with
a dualizing object. A CLL-modelis a x-autonomous category with finite products and coproducts,

and a comonad (!, ¢, ¢) together with natural isomorphisms

'A®!'B (A x B)
I ~ 11

12

The models we shall construct will in fact satisfy a slightly weaker form of these axioms; the
situation is analogous to giving a model of AJ calculus rather than A@n. Specifically, we only have
laz products and coproducts, and the isomorphism described above are replaced by embedding-
projection pairs. This description uses the fact that GZ-categories are poset-enriched, using the

pointwise (or in the appropriate cases, the stable) ordering on homsets.

We shall now describe GZ(C). Verification that these constructions work as advertised is omit-
ted, since these arguments are very similar to establishing the soundness of the GZ-interpretation,
which is proved in detail in Section 6.

Objects: Domains in C
Morphisms: f: A~ BeGI(C)is f: Ax B— Ax BeC.
Identities: I,: A~ A€ GI(C)isi:AxA— AxAcC,

Composition: If f: A~ B, g : B~ C € GI(C), then go f : A~ C is the projection onto

(a’,b") of the least solution of the equations:

Proposition 1 GZ(C) is a category.

11

Involution
We define a duality (-)* : GZ(C)”? — GZ(C) by

At = 4
ff = BxA¥ AxB L AxB¥™ BxA

where f : A~ B. Clearly, this is a functor and (-)** = Id.

Multiplicatives

Define

def

ARB = Ax B

def

I =1
To complete the definition of tensor as a functor, we define given f: A~ B, g: A" ~ B/,
Jog=(AxA)x(BxB) LA (AxB)x (A’ x B) ZL (Ax BYx (A’ x B') == (Ax A')x (Bx B')

where o({a,b),(a',0")) = ((a,d’), (b, b)).

The monoidal structure of product on C is transported to the tensor product on GZ(C) via the
embedding f — f of isomorphisms; note that f—\l = fL = (f)_l. Thus, we define

Assoc: (A®B)®C ~ A®(B®C)
Symm : A®B ~ BRA
Unit : AR ~ A

——
by Assoc = assoc, Symm = Symm, Unit = unit, where

assoc: (AQB)®C~A®(B®C)
sSymm : ARB~B®A
unit : ARI~A

Thus, for example,

Assoc({(z,y),2), ((u, v), w)) = ({{u, v), w), ({2, 9),2))

Compare this with the proof net:

12

atppt BR7

(atsft)syt a®(B®7)
The application map Ap : (A—B)®A ~ B is defined by
hp(((z,y),u),v) = ({(v, v),2),9)
Given f: A®B ~ C,A(f): A~ (B—o() is defined as:
Af)=Ax (BxC)*™ " (Ax B)x O -1 (Ax B) x C %5 A x (B x C)

Finally, the isomorphism (A—o L)—o L~> A is induced by (A x 1) x 1~A.

Proposition 2 With these definitions, GI (C) is a *-autonomous category.

Additives

Define

AYB ¥ (A+B),
AgB = (A+B),

Since, GZ(C) is self-dual under (-)*, it suffices to discuss products.

Fst Snd
A<— A&AB ——> B

Firstly, we define retracts

as follows.

13

l=inljup *=(A+B), 54, 22 4
[L,1]e

r=inrjup F=(A+B), — A =2 A

Now, define

symm

Fst = (A+B), x A2 Ax AT Ax AL (A4 B), x A

symm

snd = (A+B) xB"2BxB™ BxB (A+B), xB

Note that Fst, Snd are both “1-raising”, i.e. non-strict maps. For example,

Fst(inl(z),y) = (inl(y),z)
Fst(L,y) = (inl(y), 1)
Fst(inr(z),y) = (inl(y),L)

Given f:C ~ A, g:C ~ B, define (f,g):C ~ A&B by

(i) = Cx(A+ Bl (Cx(A+B), B (CxA+CxB)
[(1><l)o]£;<r)°g]J- (C % (A-|—B)L)J_ &0 x (A+ B)L

Note that (f,g) is strict in its second argument; if no information is given as to how the choice

between A and B is to resolved, no information can be produced.

<f7g>(u,J_) = 1
(f,9)(u,inl(y)) = (u,inl(y")), f(u,y) = (v',y')
(f:9)(u,inx(y)) = (v, inl(y")), g(u,y) = (v',y’)

The non-strictness of the projections is then essential in order that no “deadlocks” occur when a
projection is composed with pairing. This construction is actually a weak product in the following

sense.

Proposition 3

f = Fsto(f,g)
g = Sndo(f,g)
h C (Fstoh,Sndoh)
y#L1 = h(z,y) = (Fstoh,Sndoh)(z,y)
Thus, we “almost” get a categorical product. Analogous equations hold in the lazy A-

calculus [Abr90] and the A,-calculus [Mog86].

14

Additive units

Define 0 & 7 & (0), = 1. This is a lax zero object; for any domain A we define

Ty=Ax1- Ax1
Clearly T4C f for any f: A~ T, and trivially we have

(Vy #L) [Ta(z,y) = [(z,9)]

Exponentials
Define
1A € 74
A E T4
Again, we define retracts
d:A < TA:d* [“dereliction”]
w:l < TA:w" [“weakening”]

c:TAXTA < TA:c¢" [“contraction”]
as follows.

d = in;;up;fold, d* = unfoldy;[l, L, 1]«
w = iny;up;foldy w* = unfoldy;[L,1, 1]«

¢ = ing;up;foldy, ¢* = unfoldy;[L, L, 1]«
We define the counit ¢4 : !A ~+ A by

a=Tax AT Ax A28 Ax AL T, x4
Given f:!A~ B, define f1:14 ~ !B by:

1= TAxTBV ™" TAX (B4+1+TBxTB), % (TAx(B+1+TBxTB)),
U TAXB+T x 1+ TAx (TBx TB), "™ (TAXTB), S TAxTB

where

g = TAxB L TAxBXTAxTB

ho= TAx1“" X 1x1““ TAxTB

k = TAX(TBxTB)Z2 (TAxTA)x (TBxTB)= (TAx TB)x (TAx TB)
IS T A X TBYx (TAXx TB) % (TAx TA)x (TB x TB) % TAx TB

15

where {{a,b), (¢, d)) = ({a,c),(b,d)). For example,

eald(z),y) = (d(y),z)
Yz, 1) = (L,1)
Yz d(y)) = (2',d(y")
THw,w) = (w,w)
JHe(z,y),e(u,v)) = (e(a',y'), e(u', "))

where f(z,y) = (2/,y'), Iz, u) = (¢/,), fT{y,v) = (¢/,v). Note that f1is “demand-driven” by

its second argument.

Now, given f: A~ B, we can define !f = (foeq)t : 1A~ 1B, and 64 = (1)) : 1A ~ 1A,
Proposition 4 (!,¢,6) is a comonad.

Also, define k : [~» !1 as:

Ixw

R=1xT12% 1x 1241 %71
Finally, define ¢ : 'A®!B ~ (A& B), as follows:

L = (TAXTB)xT(A+B), ZS (TAxTB)xT(A+ B), x T(A+ B),
TN(TAXT(A+ B))x (TB x T(A+ B),)
l(FstLyx!(snat)
. (TAXT(A4+B)) x (TBxT(A+ B),)
AN (TAX TB) XT(A+B)J_ X T(A‘I‘B)J_
S (TAXxTB)x T(A+ B),

L L.

Taking o = : we get the following proposition.

KX =K

Proposition 5 The following are embedding-projection pairs:

L:TARTB < T(A&B):*

k:I <« 11:k*

4 (GI-interpretations

4.1 Type-free models

We will now present our version of the Geometry of Interaction interpretation of Classical Linear
Logic. This can be seen as arising from the model GZ(C) described in the previous section in two

steps:

16

1. Moving from a typed to a type-free model.

2. Introducing a suitable normal form, so that the entire process of Cut-elimination is captured

by a single fixpoint computation at the top level.

The first step is familiar from the semantics of the type-free A-calculus [Sco80]. In that context, a
model of the type-free A-calculus can be defined as a reflexive object in a cartesian closed category,
i.e. an object A equipped with a retraction A4 < A. We shall define a type-free GI model to be

an object D in a G7 category such that D is a domain equipped with retractions:

w:l < D:u
m:D* <4 D:m*
a:(D+D);, < D:a*
e:TD < D:e*

Examples are not hard to find. We shall describe perhaps the simplest and most obvious, which

also forms a natural basis for a concrete implementation.

Consider the (one-sorted) signature ¥ specified by
Yo = {u,w}, Y= {17r7d}7 Yy = {m7 C}
We write W (X, X) for the free X-algebra on a set of generators X. The free ordered X-
algebra [GTWWT77, Gue81] W, (X, X) can be constructed as follows: the Y-algebra structure is
that of W(X, XU{L}) (where L& X), and the order is generated by L C z, subject to the condition
that all operations are monotone. This is the “1-match” ordering: {Cu just if u can be obtained

from ¢ by replacing the L-leaves of ¢ by arbitrary terms. Finally, W{°(X, X)) is the free continuous
Y-algebra generated by X; this can be constructed as the ideal completion of W (X, X).

We take D = W°(X, X). This is obviously a domain. Define u, m,a, e as follows:

oy) ()2 =m(t,)

m{t,u) = (i, u) m(z) = { (L, 1), otherwise
a(l)=1 inl(t), z = 1(¢)
a(inl(t)) = 1(¢) a*(z) =4 inr(t),z = r(t)
a(inr(t)) = (1) 1, otherwise
e(L)=1 in (1), 2z = d(1)
e(iny(t)) = d(¢) iny(+),z=w
e(ina() = v () = { ing(e* (1), eX(w))
e(ins(t,u)) = c(t',u') z = c(t,u)

U =e(t),u = e(u) 1, otherwise

The recursion in the definition of e, e* is interpreted as a least fixpoint.

17

4.2 Interpreting CLL; in type-free models

Having specified a type-free GZ model D, the idea is to use this as a “universal domain”, using the
retractions to internalize the definitions of the Linear proof combinators, with all types denoting D.

In particular, the second order quantifiers can be interpreted trivially, in the “Curry-style” [BH90].

But this is not quite the end of the story. The final ingredient is the normal form, which pushes
all the fixpoints to the top level. This idea is also quite well known, at least as folklore in the

dataflow literature, and more generally in Domain theory.

The idea is to carry the information about the cuts used in the proof in the object assigned to
the proof. Thus, if II is a proof of a sequent FA;,...A,, in which the Cut rule has been applied
m times, to formulas By, Bi,...B,,, BL, then the object assigned to II by the interpretation will

be a function f: D?mtn — D2mn,

If I is a proof of FI', A interpreted by a function f/ : D¥+7'+1 . D2m'+7'+1 and 11" is a
proof of FA, A* interpreted by a function f” : D2 +7"+1 . D2 +2"+1 ‘then Cut(Il', ") will be
interpreted by

To(f x f"Yorl: D2m+)+n _, p2Am+1)+n

where 7(4, %, 2,7, 9,y) = (4,0, 2,y,%,9), m=m'+ m"” and n = n’ +n".

Given f: D*™t" — D?m*n define the feedback formula, FB(f,0): D* — D":

(@) = Y[Adr'o(ox1)o f(id,7)]
FB(f.0)(Z) = mo[(['(&),7)
where 7(4, %) = @, 7'(4,Z) = 4. The permutation o(z1,%s...Tom_1,%am) = (T2, &1 ... Tom, Tam—_1)

is used to represent the flow of information through the cuts. We write FB(f,o) = 7(L,f*)),
where f(®) : D» — D?™*7 is defined inductively by

f(O) = L
f(k+1) = (ox1)ofo(n'o T, 1)

The intention is that if (f, o) is the interpretation of a proof Il in CLL, (second order linear logic),
then F'B(f,o0) will be the interpretation of any cut free proof II’ which can be obtained by per-
forming cut-elimination on II. The dynamics of the cut-elimination process itself is modelled by
the sequence of iterations to the fixpoint: f(®, f() and strong normalisation will be mirrored

by a finite convergence property: f*) = f+1) = || f*) for some k € w.

We will now proceed to specify the interpretation of proofs in Classical Linear Logic. We write
f F[A],T to denote that f is the interpretation of a proof II of the sequent I" with cuts A. We use

[; g for diagram order composition.

Axiom: ———— where [= symm, with symm(z,y) = (y, z).

Ita,a

18

Exchange : Fz.(f) T
/ / / " L
Cut : f;[.Ag]’F’, NG ?4'_1[4?]]15 Fffl where f-g = o7 f x g;o, with o(4,7,2,7,7,y) =

Multiplicatives: Let o be defined by o(4, Z,z,7,7,y) = (4,7, %, 7, z,y).
[HA]T. A gH[A"] 1", B _ R o] x
Tensor ®(f,g)|—[A’,A”] IV IV/ A®B ®(f,g)—1><m,a 7f><g,0',1><m

LEALT, A, B — ke o }
Par a8(f) FALT, AsB a(f)=1xm* fi1xm
Unit UFI U:u*;u

L(f)=1xufx1;1xu

Perp 71 ff) E[AA]]:I;, T
Additives: For the additives,we need some auxiliary definitions: We define retracts
I:D < D:I”
r:D < D:r*
as follows.
F=a*[1, L]0

[= inl;up;a

r = inrjup;e 1 =a*;[L, 1] @

where L(f)=1x10* f;1x L.

: fHALT, A
Plus left: () FIALT. A58
1 . f'_[A]7F7B _ X £ ;

Plus right: R/ FIA|T. AGB where R(f)=1x71% f;1xr
DZm’+n+1 N D2m’+n+17 g D2m”+n+17 let m = m/’ +m”.

With: Given f: . p2m/4ntl

JHALT, A gHA"LT, B
%(J,g) A, AT, AGE
where
&(f.g) = DEEE DI (D 4 D)y~ (D x (D 4 D)),
[h k]l (D2m+n > D)J_ _} D2m+n+1

Ll (D % D + D™ x D),

where 7/, 7", p', p" are deflined as:

3“
e

in the definition of
h
I

D7m+n+1 l; D2m'+n+1 L D2m'+n+1 Lj D2m+n+1
D2m+n+1 7"_1; D2m”+n+1 i} DZm"+n+1 L” D2m+n+1

19

Top: TFT. T where T' =1

Exponentials: For the exponentials, we again need some auxiliary definitions: We define retracts
d:D <« D:d*
w:l < D:w*
c:TDxTD <« D:c*
as follows:
d = in;;up;fold;e d* = ¢*; unfold;[l, L, 1];;
w = iny;up;fold;je w* = €*; unfold;[L,1, L];;
¢ = ing;up;fold;e ¢* = €*; unfold;[Ll, L,1],;a
Dereliction: D(J};L‘?k]riﬂA?A where D(f)=1xd*;f;1xd
Weakening: W(ff) ll_—[[i]fl; " where W(f)=1x w*; fx ;1 xw
247
Contraction: Jé"(_f[)Al]:[&]?’ 7ﬁ where C(f)=1x ¢ f;1xe
. fH[ALMT, A
Of course: I63) I—[[A]], T 1A

Define

(f) = D < D D Xx(D+147DxTD),
LD x (D+1+ 7D x TD)),
T (D¥ % D 4 D™ X 14 D™ < TD x TD),
[g,h,k]L

AR (D2m+n % D)J_

R S)

Where U(le .. -x2m+n+17y1 o y2m+n+1) = (3717 Y- .- x2m+n+17y2m+n+1) iIl

g = DMy p L pmin oy p X4 pmin o
= Dprmn oy X gamtn g DX8 pamin
E = DY x (TDxTD)ZX (TD x TD)™ " x (TD x TD)
T T DAL TPt
EXE pEmAnAL o prmntl
X\ pamanst o prmantr

TE T pImAntl o TP 2 (T D x TD)™ % (TD x TD)

I8 prmn D
Quantifiers: The quantifiers are interpreted trivially.

20

All: v(f])c t[[ﬁ]]:%éla%l, if @ not free in I'. Define V(f) = f.
Exists Elf(ljz)[?—][’AF]fFl,[g)c/yaf]l where 3(f) = f.

Definition by elements

The definitions given above are written in an element free style, using the categorical combinators
from the underlying category of predomains. This style has a number of advantages: it is rather
concise and forms the basis for an axiomatic approach; and it admits a very natural and direct
translation into dataflow graphs. However, the reader may appreciate a more traditional definition

using variables ranging over elements. We give a few sample cases in this style and the reader

should have no problem in translating the remaining cases similarly.

Tensor: Let m*(2) = (z,y), f(4,Z,z) = (¢, &, 2'),9(F,¢,y) = (¥, §,y') in

With: This requires a case statement.

case a*(z) of

inl(z) : (@,
&(f,g)a, 0,3, 2) = inr(y): (L,

otherwise : 1

L,Z,1(z"), where f(@,
ol 7,

7 z,
7, 7(y')), where g(%, 7,

endcase

Of course: This requires a case statement and recursion.

where [(f)(8,Z,z) = (5,7, 2"), ([){t,¥,y) = <t_7,fg”,y’>, () = <§,f>,

4.3 Examples of Computations

As a prelude to the detailed verification of the soundness of the interpretation in Section 6, we will
illustrate how it works in a number of key cases. We will perform our calculations in W{(%, X)
defined earlier. The advantage of being able to trace the dynamics through specific calculations

with concrete data structures, both as regards comprehensibility and as a basis for implementations,

should be apparent.

21

y) =

> — <,L—[:/7 f/’ x/>

(7, 7,9)

Axiom contraction

1]

O:‘J' 83 O:‘J' 83

The fixpoint computation is as follows.

Iteration | Values
0 (L, L,z,9)
1 (y,z, L, 1)
2 (y,2,9.2)

So, (z,y) — (y,z). In more detail, we have
O-Of<J—7J—7'r7/y> = <y7$7J—7J—>
oo fly,z,z,y) = (y,z,y,z)
Note that a “fresh copy” of the parameters x,y is used at each iteration. This is in fact the key

difference between Girard’s execution formula and our feedback formula.

Multiplicative contraction

a®p atspt atspt

The fixpoint computation is as follows.

Iteration | Values
0 (L, Lz, y,m(u,v))
1 (m(L,L),m(L, L), L, L,m(L,L))
2 (m(u,v),m(z,y), L, L,m(L, L))
3 (

m(u,v), m(z,y),u,v,m(z,y))

So, (z,y, m(u,v)) — (u,v,m(z,y)).

22

Multiplicative units

The fixpoint computation is as follows.

So, (z,y) = (y,2).

Iteration | Values
0 (L, L,z,y)
1 (m(L,u),m(L,u), L, L)
2 (m(y,u), m(z,u), L, L)
3 (m(y,u),m(z,u),y,x)

Additives
e A u
E | |aJ_ |aJ_ | |aJ_ | |aJ_ E | al L
| aRo ago | atsat
L---at- a-- a@a)&(a@ay-==-=----=-----=---- - (aLgaL)@(aLgaL)
The fixpoint computation is as follows.
Iteration | Values

0 (L, L,z,y,u,v)

1 (I(m(L, 1)), L, L, 1,1,1)

2 (I(tm(L, L)), l(m(z,y), L, L, 1, 1)

3 (l{m(u,0)),l(m(z,y), L, L,z,y)

4 (I(m(u,v)),l(m(z,y),u,,v,z,y)

23

So, (z,y,u,v) — (u,v,z,y).

Note how synchronisation occurs in steps 1 and 2; firstly the Plus Left side of the com-
munication produces some information: the partial tree I[(m(L, L)). This is transmitted by the

permutation o to the With side, which is able to proceed on the next iteration.

Exponentials

r==-==-========-=" A

1 1

1 1

1 | | 1 | |

1 1

' L : L

! a a ! 0 0

1 | 1

\ \

! Tat !

1 1

1 1

1 1

1 1

1 1 ?OéJ'

L - ?OéJ' -- la - 4

Weakening:
The fixpoint computation is as follows.
Iteration | Values

0 (L, L,d(z),y,2)
1 (w, L,d(L1),z,y)
2 (w, w,w,z,y)

So, (d(z),y, z) — (w, z,y). This example illustrates how synchronisation affects the context
of an Ofcourse. This is a typical case where Girard’s interpretation does not fit the proof

theory.

Contraction and Dereliction: The fixpoint computation is as follows.

. i X y
1 1 | |
1 1
: | | : o at at «
1 1
: at o
1 | 1
: :
! ?at ! ?at ?at
: :
1 1
| cd(u)d(v)
L--- ?at--la -
?at

24

Iteration | Values
0 (L, L,e(d(u),d(v)),z,y)
1 {c(d(L),d(L)), L,c(d(L),d(L)), L, L)
2 (c(d(L),d(L)),c(d(u),d(v)),c(d(L),d(L), L, L)
3 (c(d(z),d(y)), c(d(u), d(v)), c(d(L),d(L),u,v)
4 (c(d(z),d(y)), c(d(u), d(v)), c(d(x), d(y), u, v)

5 @7 as Dataflow

In this section, we outline a computational interpretation of the Geometry of Interaction in terms
of the dataflow model of computation [Den74, AKP80]. We include this material to reinforce the

reader’s computational intuitions.

Dataflow graphs consist of directed graphs. The structure of these graphs does not change
during the course of computation. Computation consists of the circulation and transformation of
information tokens around the graph. The nodes are labelled by instructions. They do not have
any memory associated with them; they are history insensitive. The behaviour of a node is given by
a firing rule, which describes how nodes can “fire”, removing some tokens from the input arcs and
generating tokens on the output arcs. The firing of nodes proceeds asynchronously and in parallel.
Output tokens are generated asynchronously, and queue up at their destination nodes. There is no
need to assume that these queues work in any particular order. The interested reader is referred
to [Den74, AKP80, Kah77, KM77] for a more detailed description of dataflow networks.

Executing the Geometry of Interaction

The tokens that we will use are finite elements of W (X,). The interpretation of the axiom is
simple: there are a pair of nodes that merely transfer tokens from their input arcs to the output

arcs. Cut is interpreted by feedback as indicated earlier.

We have a pair of nodes r+, r—for every operator r in . r+ has k inputs and one output, and
r— has one input and k outputs, where k is the arity of r. This r+ node fires whenever it receives
a token on any channel. For example, on receipt of a token v, on input arc s, the node outputs the
token 7(L,...,v5,...,L). The node r— fires when it receives a token on the input. If the input is

of form r(ty,...,), for each output arc ¢, it outputs ¢; if ¢; #L.

Now, we have enough to interpret all the combinators except &,!. Implementing the G7 inter-
pretation of &,! requires some mechanisms for local synchronisation. We describe a set of three
nodes each for a*,e*. Various forms of these nodes have been used in dataflow graphs used as

intermediate representations for compilers. We first describe the set of three nodes for a*. The

25

decision node fires on receipt of an input token. If this token has the form [(¢) it sends ¢ to its left
output, and the “control” token 1 on the arc labelled coj if this token has form r(¢) it sends ¢ to

its right output, and the token 2 on the arc labelled co. For any other token, it sends 0 on co.

Loh o
1 r Y\ l

DECISION SPLIT MERGE

The split node fires on receipt of a tokens on both input lines. The horizontal line carries a
control token generated by a decision node, and selects one of the k output lines for despatching

the token received on the vertical input line. If the control line carries a 0, no token is despatched.

The firing rules of the merge node is dual to the Split node. The horizontal line carries a control
token generated by a decision node, and selects one of the k input lines. If the token is non-zero,
the node waits for a token on the selected input line, and despatches the token on the sole output

line.

The set of three nodes for e* behaves similarly with respect to the tokens of form d(¢),w, c(ty,s).
Roughly speaking, the proof boxes for &,! gets converted to a collection of decision-switch-merge

combinations in the dataflow interpretation.

6 Soundness of the interpretation

Our objective in this section is to prove the soundness of the Geometry of Interaction interpretation.

6.1 Overview of results

Firstly, some notation. We fix a GZ interpretation based on a model D. If I is a proof of a sequent
F[A], T in CLL,, we write [II] = f for the function f: D*"*" — D?m+7 aggigned to Il in the GZ

interpretation, and o; : D™ — D*™ for the corresponding “message exchange” function.

Soundness Theorem: Let Il be a proof of a sequent F[A], T' in CLL,, with [I[] = f. Then:

1. If there are no occurrences of & either explicitly in I' or in any of the witnessing formulas
used in the Frists rule to introduce occurrences of 3 in I', then if II reduces to II’ by any
sequence of contractions, with [II'] = ¢, then FB(f,0;) = FB(g,0,). In particular, if II' is
any cut-free proof obtained from II by cut-elimination, then FB(f,0;) = g.

2. f has the finite convergence property: (3k) [f*) = f*+D) = PB(f,0;)].

26

Comparing our results with Girard’s, we note that for the fragment he considers, or the larger

fragment with multiplicative units included, we do get full correspondence with cut-elimination.

In terms of the dataflow interpretation, finite convergence means that for any input, the network
is guaranteed to eventually become quiescent, with no tokens remaining in circulation. The value
computed on an output line will then be given by the join of all the tokens which have been

despatched on that output line.

The proof in fact establishes tight connections between reduction steps on proofs and iterations
to the fixpoint in the GZ interpretation. Call the the number of iterations required to reach the
fixpoint the index of convergence. If Il — II' by the commutative conversion !(f) - (k) = !(f - Y(h))
(a cut with a formula in the context of the Of Course is intended), the index of convergence of
IT will be (at most) one more than that of II. If Il — II' by any other commutative conversion,
the index of convergence of Il will equal that of II. If Il — II’ by a symmetric contraction, the
index of convergence for Il will be (at most) one or two more than that of II’: one in the case of
the multiplicatives, where both sides of the the cut can proceed without waiting for information
from the environment; two for the additives and the exponentials, where synchronisation does take
place, one side (&,!) waiting for information; its partner (¢, ?7) generating information immediately
without waiting. Two steps are also needed for axiom contraction, one for information to flow

(bidirectionally) into the buffer, one for it to flow out.

The reason for the restriction on part 1 is that the following commutative conversion is not
valid under our interpretation: &(f,g)- h = &(f - h,g - h) (we are omitting exchanges here; a cut
with a formula in the context of the With is intended). In fact, these two functions are equal for all
arguments where the component corresponding to the With is of the form 1(¢) or r(u). Intuitively,
for arguments of the right “shape”, the interpretation is well behaved. These ideas are developed

in section 7.

6.2 Linear Realizability Algebras

As a preliminary to proving soundness, we review the formalism of Linear Realizability Algebras,
introduced by the first author [Abr91b]. This provides a very convenient framework for proving

soundness and allows some general lemmas to be factored out.

Syntax

We assume an infinite set of names N ranged over by a, 3,7. Names can be thought of as ports or
channels as in various process formalisms; the closest analogy is in fact with names as used in the
m-calculus [MPWR89, Mil91]. A sort is a finite subset of A; we use X,Y, ... to range over sorts. A

renaming is a bijection between sorts.

Next, we introduce the idea of located sequents, of the form

Fai: A, ... ap: Ay

27

Proof Rule | Operation | Constraint Sort

Axiom I,s {a, 3}
Cut P, Q FN(P)NFN(Q) = {a} FN(P)UFN(Q)\ {a}
Tensor Unit | U, {a}
Perp 1, (P) a ¢ FN(P) FN(P)U {a}
a € FN(P), [€ FN(Q)
Times ®27(P,Q) | FN(P)NFN(Q) =@ FN(P) UFN(Q) \ {a, 8} U {7y}
7 ¢ FN(P) UFN(Q)
a, € FN(P)
Par 8;“’[3(13) a# B FN(P)\ {e, 8} U{7}
7 ¢ FN(P)
Plus Left L3(P) a € FN(P),y € FN(P) FN(P)\ {a} U{y}
Plus Right R2(P) a € FN(P),y ¢ FN(P) FN(P)\ {a} U{y}
Top Taa {d,a}

a € FN(P), € FN(Q)

: a,f ~
R DR I TORN TN B IR B
Dereliction Ds(P) a € FN(P),y € FN(P) FN(P)\{a} U{y}
Weakening | W, (P) v € FN(P) FN(P)U {v}
a,3 € FN(P)

Contraction | C#(P) a3 FN(P)\{a,5} U{y}
7 & FN(P)

Of course 5(P) a € FN(P),y ¢ FN(P) FN(P)\{a} U{y}

Figure 1: Syntax: Linear Realizability Algebra

where the a; are distinct names, and the A; are formulas of CLL,. These sequents are to understood
as unordered, i.e. as functions from {ay,...,a;}—the sort of the sequent—to the set of CLL,

formulae.

The terms are described in Figure 1. We use P, @, R to range over these terms, and write FN(P)
for the set of names occurring freely in P—its sort. With each term-forming operation we give a
linearity constraint on how it can be applied, and specify its sort. There is an evident notion of

a-conversion P =, @, and renaming is written P[3/al].
Terms are assigned to sequent proofs in CLL, as in Figure 2.
Dynamics

We now describe the “dynamics” of terms, corresponding to cut-elimination of proofs. We factor
this into two parts, in the style of [Mil90, Abr93]: a structural congruence = and a reduction

relation —.

28

. PFl a:A QFA,a: At
Identity Group T Fa AL 3 A F—OFT A
Multiplicative

i P T
Units UiFa:l T Fa LT
Multiplicatives Prl,a:4 QFA,B:B Prl,a:A,(5:B

®$’5(P,Q) FT, A,y : A®B

B2P(P)FT,v: A2B

Additive Unit

PHFI,a: A
Le(P)FL,vy: ADB
Additives Prlia:A QFL,B:B
PiT.a:B &(P,Q)FI,v: ALB
R3(P)FT,v: ADB
PHF,a: A
D(P)FI,y:7A
Exponentials LT > aP F'T o A
W, (P)FT,7:74 "(P)FIT,7: 1A
PHFL a:TA,5:7A
C’;l’ﬁ(P) FI,v: 74
Quantifiers Pllill:,l;’ ?v:’)?.A’ X not free in I' PFL,a: AlB/X]

PHFI a:dX.A

Figure 2: Realizability semantics

29

The structural congruence is the least congruence = on terms such that:

(SC1) P =, Q=P =Q
(SC2) P-.Q=Q -, P

(SC3) w(Pi,....,) =w(Pi,....,PnQ,....,P),if a € FN(FP), w & {&,}.

We give some examples to illustrate the third rule (SC3):

L(PaQ)pR=P-(QR) il §€FNQ).
2. L2(P) 5 Q = L2(P 5 Q), if B € FN(P).
3. @9°(P,Q) s R=®3°(P,Q s R),if § € FN(Q).

Note that by linearity constraints, for example LS(P) -5 Q well-formed; thus 8 € FN(LS(P)),
and hence § # a; also, § € FN(P) implies that § # 7.

The reductions are as follows:

(R1) P Lo g—P[B/a].

(R2) L, (P)-, U,—P.

(R3) B57(P) 099(Q, R)—P -0 Q -5 R.

(R4) 15(P) -, &57(Q, R) =P . Q.

(R5) R2(P)-, &3°(Q,R)—P -4 R.

(R6) D3(P) -, 12(Q)=P - Q.

(RT) W,(P) - 15(Q)=Wa(P), where FN(Q) \ {a} = d@.

(R8) C77"(P) -, 13(Q)=C3 ¥ (P -, "2(Qla’/d]) - "15.(Q[a"/a])), where FN(Q) \ {a} = 4.

(R9) 12(P) - (Q)="12(P -5 15(Q)), if § € FN(P).

y

These reductions can be applied in any context.

P—Q
clrl=cle]

and are performed modulo structural congruence.

PP=P P-Q Q=Q

—@Q

Note that we do not have the reduction rules

30

(R10) &27(P,Q) s R—&5P(P -5 R,Q -5 R) [6 € FN(P) N FN(Q)]

(R11) Ts. 5 P—T55, [B € @, FN(P) = §,0]

which would allow us to reduce cuts on formulae occurring in the context of a With. The reason
for omitting these rules is that they are not sound in many useful interpretations, including the
Geometry of Interaction. In fact for the Geometry of Interaction, this is exactly the point already
made in Section 3, that the interpretation of & in GZ(C) does not quite yield the categorical
product. In general, normal forms for terms under reduction will correspond to canonical rather
than cut-free proofs; ¢f [Abr93].

Algebraic presentation

We now introduce the notion of Linear Realizability Algebra LRA, i.e. the structure which inter-

prets this term calculus.

An LRA provides, for each sort @, a set Az, together with, for each 1 — 1 renaming [H/O_Z], a

bijection: =34 subject to the obvious functorial conditions.

For each syntactic term-forming operation, there is a corresponding family of functions, e.g.

®$’ﬁ is interpreted by a family of functions:

for each a, ﬁ,a,ﬁ,’y satisfying the linearity constraints as in the formation rule for ®;"ﬁ(P,Q),
where @, a = FN(P) and 3,8 = FN(Q). Moreover, this family satisfies naturality conditions which

ensures that it behaves smoothly with respect to renaming.

For a more precise definition, it will be convenient to describe Linear Realizability Algebras as
structures in Set®, where G is the groupoid of sorts and renamings. The carrier of the set will be
a “set” in Set®, i.e. a functor A : G — Set. The operations are certain natural transformations,

described as follows.

Let B be the category with objects (X,Y,a) where X NY =0, ¢ X UY, and morphisms
(f,9):(X,Y,a)— (X,Y',a), where [: X=X’ ¢g:YSY’. Define functors F,G : B — Set by:

F(X,Y,a) = A(X,a)x A(Y,a)
G(X,Y,a) = A(X,Y)

where we write X,Y for X UY. Then, the interpretation of the composition is a natural transfor-

mations ¥ — (. More succinctly, we can write

« X,axY a— XY

31

Continuing this succinct notation, we write

log @ —a,p
®IF : X,axY,p—X,Y,y
83’/3 s X,a,0— X,y
1, : —a«a
1, : X=X, a
&3”@ s X,ax X,0— X,y
LY+ X,a— X,y
RS X,a— X,y
Txy @ =Xy
T X,a— X,y
Dy X,a— X,y
W, : X—X,v
Cﬁ’ﬁ s X, a,0— X,y

to indicate the “types” of the corresponding natural transformations, which will interpret these

operations. Note that the operations are parametrised by the names they bind and introduce.

Thus, A induces a semantic function [-] which maps for each term P of sort @ to [P] € A;.

The following further data must be provided:

e A family ~= {~,} of equivalence relations on Az for each sort &. This relation should be
thought of as “observational congruence” or “extensional equality”.
o A family || = {{,} of predicates (subsets) for each sort @. This predicate should be thought

of as “convergence”.

The data are required to satisfy the following conditions:

Hypothesis Conditions
PO | [Pl = [d] [CTP = [Clel
P1 | P=@Q [P] = [Q]
P2 | P—Q [P~ Q1] Q) = Py
P3 w a constructor Pl,..., Pl
(any operator except Cut) w(Pry. .., Pl
P4 | P, 1,5 Pl

32

Realizability

This section shows that LRA’s isolate the essence of what is required to provide a sound interpreta-
tion of cut-elimination in Linear Logic, including the essence of Strong Normalisation. In particular,
the second part of Theorem 2 proved below specialises to yield Cut-elimination for System F, via
the interpretation into CLL,, and hence is by no means a trivial result. Our proof follows much the

same lines as [Abr93].

Firstly, some notation. Given terms P, Q) € A, we define
Cut(P,Q)=P -, Q

More precisely, we choose renamed versions P’ of P, Q" of @ such that FN(P') N FN(Q') = {a},
and form P’ -, Q' (compare the definition of substitution in [Bar84]); we will generally take this

renaming for granted, and not refer to it explicitly. Now we define
P 1 Q<cCut(P,Q)|.

(This definition is easily seen to be independent of the choice of P’, Q'.) Given U C A, we can
define

Ut={PeA|VQ e U.(PLQ)}.
Now by standard facts about Galois connections [Coh81], we have:

Proposition 6

(i) The operator (-)LL is monotone, inflationary and idempotent.
(”) LTJ_J_J_ — UJ'.
(iii) YP € A,U C A.(P L U<=P L U*4).

A semantic type is a subset U C A satisfying;:

L] IQVQEU.
e Ul ieVPeU.(P).

o [/ = UJ_J_
We write U for the set of all semantic types.

Lemma 1 For all U C A:

33

(i) [Iop] € U=UL |
(it) Ul =[L,5] € U*.
(7ii) U is closed under renaming.

Proof:

(iii) For any U C A, it is immediate from definitions that U* is closed under renaming.

(i) If @ € U*, then Cut(/l, 45, Q)—Q[3/a] by (R1). Since Q[3/a] |}, Using (P2), Cut(l, 4,Q) |

(ii) Let P € U. Then Cut(P,I,3)—P. Since P |}, using (P2), Cut(P, 1,) || as required. [|
Proposition 7 If I, ; € U C A salisfies U |}, then U+ € U.

Proof: By Lemma 1 and Proposition 6(ii). [|

We will now give a realizability interpretation of the Linear types as elements of U.

L= {U)"

UsV = {@2(PQ)cA|PecU,QeV)

UaVv ({Ls(P)EA|P€UL}U{R$(P)EA|QEVJ'})J'
W= {2(P)eA|PeUtY

and for F: U — U s
V(F) = (({FU)" | U €U

By Propositions 7 and 6 and the remarks immediately preceding these definitions, they do yield

semantic types. The remaining connectives are defined by duality.

1 = 1t
UgVv = (Utsvi)*
UaVv = (Utavh'
U= (04)T

I(F) = YOUFU)Y)
These definitions induce a semantic function
[-]: TExp — TEnv — U

where TExp is the set of Linear type expressions, i.e. formulae of CLL, and TEnv = TVar — U is

the set of type environments, ranged over by 7.

Lemma 2 For all A € TExp, € TEnv: ([A]n)" = [A*]n.

34

We can now give a realizability interpretation of CLL, sequents. We write PQ; - - - (), to abbre-
viate Cut(...Cut((Cut(P,Q1)), P2)...,Qx). Define

P l=T<=Vnc TEnv, P € [I*]n.(PP)

where I' = Ay, ..., Ay, [T]n = [A], - - . [A I
Theorem 1 (Realizability) PFI'=P 1.

Proof: By induction on derivations in CLL,.

(1) Axiom:

Inghra: AL, B3: A

Fix n € TEnv, P € [A*4]n = ([AY]n)", @ € [A]n. We must show that I, sPQ . But
I, 3 PQ-=Cut(P,Q), and Cut(P,Q) |}, since P L @ by assumption. Hence by (P2), I, sPQ |.

(2) Exchange: immediate.

(3) Cut:
PFLa: A QFA,a: At
P OF.A

Fix n € TEnv, P € [['t]n, Q € [A*]n. We must show that Cut(P,Q)PQ |}. By induction hy-
pothesis, for all R € [A*]n, PPR |, and for all S € [A]n, QQS |. Hence PP ¢ ([[AL]]U)L = [A]n,
and QQ € ([[A]]U)L, so Cut(PP,QQ) ||. But Cut(PP,QQ) = Cut(P,Q)PQ, so Cut(P,Q)PQ |.

(4) Perp:

PFT
L (P)Fl a: L

Fix € TEnv, @ € [I't]n. We must show that for all Q@ € [L1]n, L.(P)QQ |, i.e. that
1,(P)Q) L {U,}**. By Proposition 6(iii), it suffices to show that o(L,(P)Q) L {U,}, i.e. that
1.(P)QU, |. But L,(P)QU,— PQ, and by induction hypothesis PQ |}, so by (P2), L.(P)QQ |.

(5) Unit:
U,ta:1
L s . 1L, . .
We must show that for all , P € [1+]n, U, P . By Proposition 6(i), (-)~~ is inflationary, so

U, € [1]n, and U, P = Cut(U,, P) |.

35

(6) Par:
PFl,a:A,B: B
BeA(P)FL,y: A8 B

Fix 5 € TEnv, Q € [I'*]n. We must show that for all Q € [(A = B)*]n, B2A(P)QQ I, i
that 227(P)Q L [(AB B)*n. Applying Proposition 6(iii) to the definition of [(A = B)*]y, we
see that it is sufficient to consider @ of the form ©27(R,S), where R € [A*]n, S € [B*]n.
But 227(P)Q®2P(R,5)—=PQRS, and by the induction hypothesis PQRS I, so by (P2),

2o ?(PYQEeP (R, S)).
(7) Times:

PFl,a: A QFA,B:B
@5 (P,Q) FI, A7 AQ B

Fix € TEnv,P € [[‘]n, Q € [At]y. We must show that for all R € [(A® B)*]n,
®$’ﬁ(P,Q)PQR l}. By induction hypothesis, for all § € [At]n, PPS |, and for all T € [B*]n,
QQT |. Hence PP € ([[Aﬂ]n)L = [A]n, and QQ € ([[BL]]U)L. Applying Proposition 6(i) (specifi-
cally, the fact that (-)*" is inflationary) to the definition of [(A & B)*]y, we see that

9 °(PP.QQ) € ([4* & BT,
and hence that Cut(®2?(PP,QQ), R). But
Cut(057(PP,QQ), R) U= @77 (P, Q)PQR,

so @27 (P,Q)PQR |.
(8) With:

PH,a: A QFI,G6:B
a,p o
&IP(P,Q)Fl,y:As B

Fix n € TEnv, P € [T*]n. We must show that for all R € [(A g B)L]]n, &s’ﬁ(P, Q)PR |l. Reasoning
as in the case for Par, it suffices to consider @ of the form either L2(5), S € [A*]n, or RI(T),
T € [B*]n. In the first case, &ﬁ’ﬁ(P,Q)PL;‘(S)LPPS, and by induction hypothesis PPS |}, so
by (P2), &s’ﬁ(P, Q)PR ||. The second case is similar.

(9) Plus Left:

PHIa: A
Lx(P)FL,y:A® B

Fix n € TEnv, Q € [I't]n. We must show that for all Q € [(A® B)L]]n, L;‘(P)QQ |l. By
induction hypothesis, for all R € [A+]n, PQR |}, so PQ ¢ ([[AL]]U)L, and

L3(PQ) € ([A* & B*In)" = [A& Bln,

36

so Cut(L2(PQ),Q)). But
cut(L5(PQ), Q) = L5(P)QQ
o 1(P)QQ I
(10) Plus Right: similar to Plus Left.

(11) Dereliction:

PHFI a: A
D2(P)FIl,y:7A

Fix n € TEnv, Q € [I*]n. We must show that for all Q € [(?A)L]]n, D;‘(P)@Q . Rea-
soning as in the case for Par, it suffices to consider @ of the form !7(R), R € [At]n. But
D;‘(P)Q!j(R)%PQR, and by the induction hypothesis PQR |}. Hence by (P2), Dﬁ(P)QQ 1.

(12) Contraction:

PHI,a:7A,3:7B
CyP(P)FT,v:74

Fix n € TEnv, Q € [I'*]n. We must show that for all Q € [(?A)L]]n, Cﬁ’ﬁ(P)@Q Il. Rea-
soning as in the case for Par, it suffices to consider @ of the form !7(R), R € [At]n. But
CoP(P)QIZ(R)=CS* (PQ '%(R[a’/d]) 1%, (R[&"/d])), where FN(R) \ {a} = d. Now

5 ¥(PQ 12 R[o7 /&) 1%, R[&" /d]) | <= PQ |, R[a’/&] 1% R[G" /&) |}
But by induction hypothesis PQ !ﬁ,R[d)’/o_Z] 1%, R[@"/d] |}, hence by (P2), C‘ﬁ’ﬁ(P)@Q 1.
(13) Weakening:

PFI
W, (P)FT,v:7A

Fix n € TEnv, Q € [I'*]n. We must show that for all Q € [(?A)L]]n, W,(P)QQ . Once
again, it suffices to consider @ of the form !5(R), R € [A*]n. But W,(P)Q !5(R)=>W3(PQ), where
FN(R)\ {a} = @. Also, Wz(PQ) || <=PQ |. By induction hypothesis PQ |}, hence by (P2),

W, (P)QQ I

(14) Of Course:
PFM,a: A
L(P)FI,y: 1A

(!A)L]]n, 's(P)QQ |}. By induction
"L s0 1D((PQ)) € ([(AM)]n)”, and

~

Fix n € TEnv, Q € [?I""]n. We must show that for all Q € [
hypothesis, for all R € [At]n, PQR |, hence PQ € ([A*]n)",
Cut(!g(PQ), Q) . We must show that this implies that ';’(P)@Q 1.

37

Firstly, we claim that it is sufficient to prove that 'j(P)QQ |} for Q of the form
H(R1), -, 5F (R). To see this, note that

5(P)QQ U
s (G(PIQIDT (@) I
(23 (5(P)Q) L85 (Q).

and that
pevea(I2(P)Q) L [Q(TH)]n
= @ (2(R)) | R € [T
if and only if
It (1(P)Q) L {@s*(12(R)) | R € [T+1n}
by Proposition 6(iii). However, by (R9), !;V(P)QQLCHJC(!;Y(PQ)’Q)’

cut(1((PQ)), Q) I =(P)QQ I
(15) All:

PIT, A »
PIT,Va.A

Fix n € TEnv, Q € [I't]n. We must show that for all Q € [[(Va.A)L]]n, PQQ |l. Reasoning as
in the case for Par, it suffices to consider Q € F(U)" for some U € U, where F = AU.[A]n[a — U].
By the eigenvariable condition [T*+]n = [T+]n[a — U], so by the induction hypothesis (with respect

to nla = U]), PQQ I
(16) Exists:

P T, A[B/a]
PIT,3a.A

Fix n € TEnv, Q € [I'*]n. We must show that for all Q € [[(EIa.A)L]]n, PQQ |. By induction
hypothesis, for all R € [[A[B/a]L]]n, PQR |l. Now

[A[B/a]"Tn = [A*]nla — [Bln] = F(U)",

where F = AU.[A*]n[a — U], U = [B]n. (It is just at this point in the proof that second-
order comprehension is used.) Hence PQ € Y(F)* = ([[(EIa.A)L]]n)L, so Cut(PQ,Q) {. But

Cut(PQ,Q) = PQQ, so PQQ . [|

As an immediate consequence of the Realizability Theorem, we get

Theorem 2 (Convergence) Let A be an LRA, and let P F1' be the realizer for a sequent proof
in CLLy. Then,

38

1. If P—Q, then [P] = [Q]. In particular, if Q is any cui-free proof obtainable from P under
LRA-reductions, then [P] ~ [Q].

2. PJ.

Proof: The proof of the first part follows from (P0), (P2) by a straightforward induction on the

length of reduction.

For the second part, by the Realizability Theorem,
PHT =P =T.

Now choose 5 € TEnv, I; 5 € [['*]7, and conclude that PI ; |}. Hence, by (P4), P |. [|

Note that the proof of the Realizability Theorem uses the hypothesis (P2) only for “outermost”

reductions. Thus, it suffices to assume (P2) only for “outermost” reductions.

6.3 Geometry of Interaction as an LRA

We can now rephrase our goal of proving the soundness of the G7 interpretation more precisely;

we want to show that the GZ interpretation— or a reformulation of it—is an LRA.
The trivial reformulation involves replacing functions
f : D2m+n N D2m+n
by
[D¥+a _ prita

where &, 3 are sorts with card(d) = n,card(ﬁ) =mand 23 =0+0 (disjoint union). In other

words, we replace vectors (z;...x;) by records [a; — @41,..., 0, — &1

It is straightforward to rewrite the definition of the G7 interpretation, as given in section 4, in

this style. An example should suffice: we describe the case of Times below: Let

Jo. pritae’ L peiealed

=11

D2E”+&”7a” _ Dzﬁ‘//_}_a 70(//
7 3 =l
g = p+p

a—+ o

N~

=7}
I

Then,

I

®g/7a/ (f,g) _ D26+&,a

H
X
3
*
)
¥
Wy
+
S
Q\
«Q\

g D2/6‘1+&Iyal % D2ﬁ”+&”7a”

YT

" pBHae! o p2ftae e

1

g.,
X
N}
o
M
@,
+
Q\
)

|

=
S|
3
%
QR

In terms of elements, ®gl"’”(f,g)([2@ — ﬁ’,Qﬁ“ =, d = A = o a]) =

([26’/ . 5/’25// . ,5*//70—2/ . ?7170—2// . 3717(1 . m(y/’y//)])’ where

J(20 = @8 —&,d —2]) = 20— 7,8 — 7,0 —y]
g([QH" . ’l_l:“, al f”,a” . l‘“]) _ [25’// . ?—)»//7 al ?7//7 o' y//]
m*(x) _ (x/’w//)

Now, we fix a G7 interpretation based on a type free model D, and define the corresponding

LRA A as follows. Firstly, for each sort @, A; is the set of all endomorphisms
[D¥+a _ pri+a

where ﬁis a sort. Renaming is interpreted in the obvious way, by composition: let [§/&] be bijective
renaming; then, f[¥/a] € As], where f: D247 . D247 s defined as

JI7/6l([28 = 4,7 — &]) = [28 — 7,7+ 7]
where f([20 — @, @ — Z]) = [20 — 7,d — 7.
There is also an evident notion of a-conversion between functions of the same sort.

[: D¥+a _, prita

S Zagil g D¥HT s D2

—.

and there is a bijective renaming [¥/3] such that
26— 7,6 — 7)) = (28 — 7,7 — 7)
for all @, &. We shall take functions modulo a-conversion; that is we identify a-convertible functions.

The definition of the LRA equations is precisely the content of the G7 interpretation, once

reformulated as explained above. Given f : D¥+a D25+&, define the message exchange function
o; 1 D* — D% by:

Uf([ﬁ? = mlyﬁ% = 3/17---75;8 = xknﬂli = yk]) = [6(1) = ylaﬁ% = xlw"vﬁg — ykv/@li = xk]

We can now define: FB(f,0;) = w(L,f®), just as before, where 7(@,7) = &, with f*) :
D& — D43 Jefined inductively by:

fO = 1
JEHD = (g x 1Yo fo (a0 [9,1)
where 7'(4,) = 4.
We now complete the definition of A by:
f=g = FB(fo0;)=FB(g,0)
E 3k S

40

where fil, & f0) = fl+1),

The remainder of this section is devoted to proving that A is an LRA. Thus, we have to prove

that the conditions of the following table (reproduced from section 6.2) are satisfied:

Hypothesis Conditions
PO | [P] =~ [@Q] [CTPI] = [C1Q]]
Pl P=qQ [P] =[Q]
P2 | P—Q [P1~1Q] | Qi = Py
P3 w a constructor Pl,..., Pl
(any operator except Cut) w(Pr,..., Pp)l
P4 | P, 1,5l Pl

The first step of the proof is checking property P1. The proof is immediate and is omitted.

Proposition 8 P = Q=[P] = [Q].

Proving PO, P3

The second step of the proof is to set up the machinery to prove PO and P3.

Given f: D+3 . D26+d . Dd . D2+3 define
0(f,9)=(o; x1)o fo(r' og,1)

Thus, f*+0 = 0(f, /*).

Lemma 3 For each constructor w, 8(w(fi,..., fr),w(g1,---,9x)) = w(O(f1,91), -, 0(fe,9%))-

Proof: Note that the definitions of each of the constructors in {U, L, T,®,2,L, R, D,W,C} has

the form:

w(friyo o So) = (A xr)o(fix...xX fy)o(lx71%)

for some retractions r and for some 1 <k <2. Let f=fix...X frand g =¢; X ... X g

Holhise oo fi) lns) = o 1)0(1X"’)O o(1xr)o(r o(1xr)ogo(lxr)1)
r)o(ax1)ofo(ro(l1xr)og,1)o(1x7r¥)
o(ox1)ofo(rog,1)o(1x7¥)

o [H(fl,gl) X 0(frgi)] o (1 x)

— w((f1791)7"" (fkygk)]

(0
(1
= (1
(1

X 1)
X 1)

41

Next, we prove the result for the constructor &.

0&(f1,), &(g1,92)) = aol
= ao([fi,fo]lLo(n" 0[g1,02]1,1)0disty oto(lxa¥)
= ao([fio(n"ogy, 1), fao(n 0gs,1)]1)odisty oto(lx a)
= &(0(/1,91),0(/2, 92))

1, fo]Lodisty oto(lxa®)o(n"oao[gy,ga] odisty oto(lxa*),1)

The proof for the constructor ! is similar and is omitted. [|
Lemma 4 For each constructor w and k > 1, [w()] = w(f™).

Proof: By induction on n. For n = 1:

—

WA = w(f), 1)
= Ow(f),w(L) [7ow(l)= 1]
= w(8(f, 1)) [lemma 3]
= (/)

For the induction step,

—

WD) = (/). [w(H]P)

k+1))

>y

Corollary 1 For all constructors w,

1. FB(W(fl, . -fk)ao-w(fl 77777 fk)) = W(FB(fl,O'fl), . FB(fk,O'fk))

2. fl‘U’i17"'7fk‘U’ik = w(f17"'7fk)‘U’ma:c(i1 ix)"

Cut preserves F'B

The aim of this subsection is to prove that

FB(f-g,0;-4)=FB(FB(f,01) - FB(9,0,),0FB;) . FB(y)

42

Lemma 5 Let f: D?'+% — D26+3 [e123 = 3. Let H = FB(f,or). Then,

H[@ w— @] = [d — b
if and only if (Elg) such that:
flB=bda—a = [~ ob),d—1
ICT = [[f&d—d = [F o(@),d]

Proof: Define I;by:

e (f)[@ = @) =[5~ 05(B), & v]
Then, it is immediate from definitions that

—.

J[B+ b,d— al=[8~ o;(b),d a

Let &, v satisfy
[~ 7,6 @ = [§ ~ o(),d V]

We prove that bCZ. This is done by induction on the iterates f(*). Denote the iterates approxi-

mating b by by. Base case is immediate. For the inductive case:

f(k+1)[d’H (_i] = (O'f X 1)Of[EH I_;k70_2'_> (_i]
C (op x 1) f[d— & dw— d]

Lemma 6 Let h= FB(f,04),k=FB(g,0,). Then,

B(f-g,04.,)=FB(h-k,o4.%)

Proof: Using lemma 5,
B(h - ko . p)d; v Gr,d, — @,] = [a; — b}, d, — b
if and only if (3bs,b,) such that:

h[C_if [d Eif,ﬁf [d bg]
kla, — d,, 8, — b;] =
hldy — dy, Bf — x,] = [_)f'_>gfyﬁf 2]
(bfvb) ('rfv) — i ! N - =
k[ag = ag7ﬂg = mf] - [ag = bg7ﬂg = mg]

[—)

agb—>bg,ﬁgb—>b]

Using lemma 5, we deduce that

hlG; v iy, B; v by] = [@) = by, By v by]

43

if and only if (3b;) such that:

J1B; = by, d; v @y, B b)) =[Gy
b;C7; <= f[B

Similarly, using lemma 5,
k[, — @, By — bf] = [d, — 59759 = by]
if and only if (3b,) such that:

g[ﬁg = ggv&g =y, By — bg] = [ﬁg

—

bggfg <~ g[ﬁ

Putting the above equivalences together,
FB(h - kyon .)@ v G5, 8, > @,] = [6; — V), d, — b
if and only if (Elgf,bf,bg,gg) such that:

FIBy = by, dy — @y, By = b,] =[5y

g[ﬁg = ggv&g by, By by =
(bys by, by, bg)E(wy, Ty, by, 0y) <
Using lemma 5 again, we note that
FB(f- 9,05 - g)[&f by, Oy (_ig] = [&f = b}a&
if and only if (Ell;f, by, by, l;g) satisfying the above conditions. Hence, the result.

Proposition 9 [Proof of P0,P3]

1. = is a congruence.

2. fill, ..., fill=w(fi, .. i), where w is a constructor.

Proof: The proof of the second part is immediate from Corollary 1(2). The proof of the first part

is by structural induction. The induction steps are proved below: Let f; = g¢1,..

FB(f1,04)=FB(g1,04,),...,FB(fs,04,) = FB(gx,0,,).

Constructors: Let w be a constructor. We use Corollary 1(1).

FB(w(fly---afk)yo-w(fl AAAAA fk)) = W(FB(flyo-fl)y-"7FB(fk7Ufk))
= w(FB(gl,O'gl),---7FB(gkvggk))

= FB(w(gla .. '7gk)7 Uw(gl ,,,,,

gk))

'7fk--

.gr. Thus,

Cut: In this case, we use Lemma 6.

FB(fl'f27Uf1'f2) = FB(f17Uf1)'FB(f27Uf2)
= FB(g17Ug1)'FB(g27ng)

= FB(gl * 92,0, - 92))

Proving (P2): Reduction Rules: (R2)-(R8)

First, we set up the machinery that factors out the details of the single proof that works for all

Ccases.

Lemma 7 Suppose [: D& _ D2+@ qnq g . D¥W+& _ D¥+3 Let there be a funclion 1
D — D such that:

1. ofor=roo,.
2. fo(rx1)=(rx1)og.

3. fOI(rx 1)o L.

Then, for all k > 0,
(rx 1) o g™ fHHIC(r x 1) 0 g+)

Proof: We first prove the following.
fo(rx1)=(rx 1)og:>{

Assume F'C(r x 1) o G. Then,

0(f, F)

1M

Jo fof
o x1)o fo(r'o(rx1)oG,1)
Jofo(rx1)o(r'oG,1)
))
)

Il
/\\ —~~ —~~ —~ — —~
Q
[y
X
—_

o(rx1)ogo(r’ oG, 1
rX1)o(o,x1)ogo(n' 0oG,1

The proof of the other implication is symmetric and is omitted.

45

We first prove that f#+)30¢(*) for all & by induction on k. From hypothesis, fO0(r x 1)o L=
(r x 1) o g(®. For the induction step, note that

JERED = (], 1)

3 (rx1)ob(g,9")
= (rx1)o g<k+1))
The proof of the other implication is symmetric and is omitted. [|

Corollary 2 With notation as in Lemma 7:

1. f~yg
2. glhp=>Tlpgs

3. if r reflects order (r(z)Cr(y)= «Cy), then fl; ;=g

Proof:

FB(f,0;) = m;(LUf")
= Um (/™)
= Umi((rx1)og™®)
= Um,(g™)
= FB(f,09)

For the second part

gy = g =gt
= f(k+z) — f(k+2i)

= sy

For the third part, if r reflects order,

Pl = g+ = g+

= g+

Corollary 3 Suppose [: D*+& _ D¥+3 gnd g D¥T+E _, D2+ ey

1. 252514'52‘}‘537 29=714+7+ 7.

2. Let ry : DA D7, ry DP: D72, ry: D% _ D7 be retractions.

46

3. r:D* DY =71 X1y X1
satisfy the following conditions:

1. ofor=roo,.
2. 0p0(1x1xry)=(1xryxl).
3. fo(lxrmx1lxl)=(rx1l)ogo(ryx1xr}x1l).

4. fold(1x1xrgx1)o L.
The, the hypothesis of Corollary 2 are salisfied with ¢ = 2.

Proof: Note that any retraction is an order monomorphism.

We now show that fo(rx1)=(rx1)og.

fo(rx1l) = fo(lXrx1lxl)o(r;x1lxrsxl)
(rx1)ogo(rix1lxrix1l)o(ryx1xryx1)
(i

rx1l)og

Next, we show that fJ(r x 1)o L.

Fo (07 x1)o fo(r'of® 1)
3 (oyx1)ofol
3 (oyx1)oLx(rsol)x L
= Ix(rp0l)x L
Next,
[= (o;x1)o fo(r'ofM 1)
3 (oyx1)ofo(lxrxlxl)o(Lxl)
3 (oyx1)o(rx1)ogo(rFx1x1Ex1)o(Lx1)
J (rxl)o(ogxl)ogo(ixl)

47

Rule r
Domain Indices Function Range Indices
1,(P)-, U - -, = -
—jP T [7P] [(L, Lyes Lye)] [TP+ 7P+ U
558(P) -, @*%(Q, R) TP +7¢ T Vr 1 Tp+7¢ TR
LWP QW }WZ ’ ap + Bp m TP
v aq + Br m TQr
[7,7,] 1o 1o L) | | T 7o vy a,]
Le(P) - &a’ﬁ(Q,R) Pt (1p, Q> Rr) Yp+ 70+ 7r
v Ty ap l p
—P e Q
L Q@] l i L YQr
. . [T+ n | (Ies Losn) | | [9+ 90+ 70 |
RV(P) y &Wyﬁ(QvR) a r ~
PR P P
| Br | T 111 QR |
o o [Fp+9q | 1 T+ 7q
DE(P) - £(Q) N) N
P,

—P -, Q | p .
W,(P) -, 15(Q) p + ¢ (1, @) Yp + Yq
—Wa(P) 7P w 7P
where FN(Q) \ {a} = a ag w 7o

C:yy’y'y:’(‘f)) y '3(@) /«7P 1 ’7P

—C (P Q- Q") T+ Tgn z 7o

where FN(Q) \ {a} = a R, . o,
o N — P ,P

@' = y(@le'/al) Yor + 70 c 7Q

Q" = 5.(Qla"/a)) ¢

48

Lemma 8 For each instance P—@Q of a reduction rule R,...Rg, with [P] = f,[Q] = g, the

conditions of Lemma 7 are satisfied with e,i defined as in above table.

Proof: We present the proofs of two sample cases, below. These cases suflice to illustrate the use

of lemma 7 and corollary 3 in the proofs.

(R3) For this case, r = 1 x m x m. It is immediate that oy o7 = r 0 g,. Furthermore, r is a

retraction. Note that

folrx1) = (rx1)o([PIx[@]) o (r" x1)o(rx1)
= (rx1)o([PIx QD)
g

= (rx1)o
Furthermore,
f& = (opx1)o fo(nlo L,1)
J (o xDo(rx1)o([P]x[Q])o(r*x1)o L
J (rx1)oL

(R4) For this case, we check the hypothesis of corollary 3. Let

r = (1P7 1Q7 J—R)
ry = D°F _I>D7p
ry = D% L pe

Note that ry,75,73,e and o;,0, satisfy the conditions relating them in the hypothesis of

corollary 3.

Jol T ([La(P)]x L)oL
= (I1xDo[Plo(1xI*)x L)oL
= ((1xr3)o[P]o(lxI*)x L)oL
J (Ix1xrzx1)o[P]oL
O (Ix1xrzgxl)odl

Finally, we prove the sole remaining hypothesis of Corollary 3.

fO(lXTQX1><1):(7‘)<1)Ogo(7=71\'><1XT7§X1)

fo(lxmryx1x1) [L5(P)] x ([[&;“’ﬁ(Q,R)]] o(ry x 1))
([L5(P)] x ([&57(Q. R)] o (1 x 75 x 1))
(Ixrzx1)o[Plo(lxryx1)x([lg,Lr]Xrax1)o[Q]o(mg x5 x 1)

(rx1)ofg]o(ry x1x7r5x1)

The proofs for cases (R5) through (R8) follow the proof described for the case (R4). [|

49

Proving P4, R1
Reduction (R1) is reproduced below.

P e Ia,ﬁﬁp[ﬂ/a]
Lemma 9 For all f,

1. f ‘o Ia,ﬁ ~ f[ﬁ/a]
2. fiB/ally= [-alapliys

Proof: Let F = -, 1,5 and G = f. We first set up notation to describe the iterates of F'B(F,op)
and F'B(G,0¢). Note that we can write

F(k)(f7.r) = (a(k)vb(k)vﬁ(k)vg(k)vy(k))
GO Fw) = (@, #,a0)

where the inductive definitions of (a®),6(*)) 7k) 4(0)) and (@), #*) 2*)) is as follows:

a® =1, b0 =1, 7 =1 a® =1
Yk = (B plk+1) — 5 (@D, ;D g (D) = £(GH0) 7, 7)
(D) glhtl) g1y — f(FR) 7, k)
We prove
(Vk) [ﬁ(k)7 f(k)7 gc(k))gﬁ(iﬁq)7 g*(k+1)7 a(k+1))gﬁ(k+1)7 f(k+1)7 w(k+1))

Note that this immediately implies that G}, = F,,,. We prove the first inequality first. The base

case is immediate. For the induction step:

(@+D gD LDy = g 7 g
f(ﬁ(k+1)7f7bk+1)

= (?7(k+2)7$(k_;2)7ak+2)

IM

Next, we prove the second inequality. We prove the result for all & by induction. The base case

(k = 0) is immediate. For the induction step,

(,Z;(k-[-l)7 ?j(k-}—l)’ a(k-l-l)) — f(,ﬁ(k)’ T

I
=%
Py Py
SIS
= =
“%31 \.&1
&8 &
g S—

(GRHD), gD g (k41

50

Note that

FB(F,op) = mp(,(a™,b®) 8 7 k)
= ukﬂF((a(k) b(k) *(k) %k) y(k))
= Lema((F, g0, y @)
= |_|k7rc;(((k)j(k)’y(k),x(k))
= FB(G,0¢)

Reduction rule (R9)

Reduction rule (R9) is reproduced below.
I9(P) -5 5(Q)—12(P -5 15(Q)), if 6 € FN(P)

Let f = [55(P) 5 15(@)], g = [5(P -5 ()]

Lemma 10 Let 75, (['5(P))(4@,vp +— z,6p — y)) = y'. Then,

(VﬁPvﬁQ) f(ﬁPvﬁfP = 'rv(SQ = yl7ﬁQ) = g(ﬁPvﬁfP = wvéQ = ylvﬁQ)

Proof: Let the iterates obtained by unwinding the recursion in the definition of [!7(-)] in ['7(P)]
and [I5(P - 7(Q))] be {h;} and {g;} respectively. Furthermore, let f; = h; -5 ['5(Q)].
From the continuity of all functions, it suffices to show that:
(Viip, Uq) fi(ip,vp = ,8q = ', Uq) = gi(ip,vp — 2,69 — ¥, ¥g)
!

where s, (h;(d@,7p — x,0p — y)) =y

Proof proceeds by induction on :. Note that hg =1 and gy =L. Required result follows since:

(Vitp, 5o) foliip,7p —L,6g —L, i) = L.

Proof for the inductive step proceeds by case analysis on e(z). If e(z) =L or e(z) = (iny(L))y,

from definitions, we have 3y’ = = and
(Viip,¥q) fis1(tp,7p = ,8q — @,7q) = giyi(ip,1p — ¥,8q — 2,0q) = &
If e(z) = (iny(z')) ., from definitions,
(Vi) fixa(tip,yp — 2,60 = ', Uq) = gin1(ip,vp — w,8q — ¥, Ug) = 7
where [P -5 !?(Q)]](ﬁp,*;’p =z, — Yy, Tg) = 2.

51

If e(z) = ing(x1, 25), note that ms,(hiy1(@,7p — ,8p +— u)) = €*(ins(y1,92)) 1, where (@) =
(@1, Us),c*(u) = (uy,uq) and for ¢ = 1,2, 75, (h;(t;,vp — z;,0p — u;)) = y;. Result follows from

induction hypothesis on h;, ¢;, f; and definitions. [|

Recall the definition of 8 from section 6.3:
6(hy,hy) = (o, X 1) 0o hy o (7' 0hy,1)

Thus, fE+1) = g(f, f®), g+ = (g, ¢®). From Lemma 10:

Corollary 4 ¢+2) = g(f, gt*+1)

Lemma 11
1. (V1 < k) [gWT fhggt+1)]

2. fryg

3o gl = ey

Proof: From corollary 2, it suffices to prove the first part. Proof proceeds by induction on k.

Simple computation using definitions verifies the base case. For the induction:

f(k+2) — 9(f7f(k+1))

C 6(f,9"t)
g +?)
The proof of the other implication is symmetric and is omitted. [|

Combining Propositions 8, 9 and Lemmas 8, 9 and 6.3, we obtain our main result.

Theorem 3 (Soundness) A is an LRA.

7 The structure of Cut-free proofs

Throughout this section, we will work exclusively with the GZ interpretation based on D =
W (X, X), where X is some infinite set. We will give striking description of the interpretation
of cut-free proofs, as certain very special kinds of partial involutions. This will clarify how our
interpretation generalises the treatment of the multiplicatives described in Section 2. It will also
be used to make a connection between the G7 interpretation and a denotational semantics based

on coherence Spaces.

52

We begin with some preliminary notions. If D is an algebraic domain, we write K (D) for the

set of compact elements of D. We write
1(b)={de D |bCd}

and Sy for the set of all permutations on {1,...,k}. Now, given a continuous function f: D — D,

we define

dom(f) = Int{d € D | f*d = d}

Here Int is the topological interior operator, defined with respect to the Scott topology. Concretely,

Int(U) = ({1 (b) [1 (b)) CU,b e K(D)}
Thus, dom(f) is the largest open subset of D™ on which f is an involution. We write £(f) : D* — D"

for the partial function on D" obtained by restricting f to dom(f).

E(f)=fIdom(f)
If f is a partial involution on D (f3 = f), then &£(f) (the “extension of f”) is the restriction of f

to the observable part of its subdomain of definition.

Now, consider ¢t € K(W{(X, X)), i.e. a finite tree. We fix some standard way of enumerating
the L-leaves of such a tree (say, left-to-right). Then, we can define an operation t[t,...,%] of
grafting trees ty,...,%; on the k L-leaves of {. We recall that, for any v € W°(X, X),

tgu < El!tl,...,tk.(’d:t[tl’...,tk]).
Now, given o € Sy, we define p; , : W°(X, X) — W(X, X) by

p (U) _ t[to(l)v tes ta(k)]? U = t[tlv . tk]
e undefined, t Lu

Note that p;, is an automorphism on its domain of definition ¢, with inverse p; ,-1; it is an

involution if o is.

These notions extend in an obvious way to ¢ € W (X, X)" so that we can define p;,. Now,
suppose we are given a family {(;,0;)}ics, where ; € K(D"), for some fixed n, for all i € I. Such
a family is pairwise disjoint if

i£j= (01 = o).

Then, we can define), ; py, ,, as the partial function on D" with domain J 11; obtained by glueing
all the pz, ,, together.

53

7.1 Shape semantics

Fix an infinite set of generators X. We say that { € W(X, X)" is linear if every “variable” =
generator from X occurring in ¢ does so exactly twice. We will interpret proofs in CLL, as sets of
linear term tuples; we call this the “shape semantics”. It can also be seen as related to the notion
of slices of a proof net introduced in [Gir87]; think of the tuple of terms as a set of trees growing
back from the conclusions of a proof net, with leaves joined up in pairs by axiom links as specified
by the occurrences of variables. OQur notion has two important differences as compared with the
slices in [Gir87]; we slice !-boxes, and we interpret cut “compositionally”, in a denotational style.

Note that we are reverting to the positional notation of section 3.
S[] = {z,z]z€ X}
SIEZ,(P)] = {logiys- - stogey | 11y .oty € S[PT}
S[U] = A{u}
S[L(P)] = {tu|leS[P]}
S[a(P,Q)] = {i@n(t,u)|i,te S[P],4,ue S[Q]}
S[a(P)] = {fim(t,w)|1t,u e S[P]}

S[T] = @

SIL(P)] = {L1) | i te S[PI}

SIR@Q)] = {Lx(t)|ite S[QD
SI&(P,Q)] = {L1(t)|iteS[PIyu{tx(t)| it e S[Q}

S[D(P)] = {t.4(1) it e S[PT}

S[W(P)] = {t,w|teS[P]}

S[c(P)] = A{iic(t,u)|it,ue S[P]}

SIMP) = {fd) |t e S[PIY U {d,w} U {c(f,a),c(t,u) | £, € SI(P)] A @, u € S[UP}
Sv(P) = S[P]

S[3P) = s[Pl

The definition of S[!(P)] is a (monotone) induction; of course the least fixpoint is intended. Note
that linearity constraints are imposed tacitly in the definition of @(P,Q); the variables occurring

in t,t and %, w must be disjoint.

We complete the definition with the semantics of Cut which uses unification. We write 5 =
U(t, 1) if t,¢' are unifiable, with most general unifying substitution 5, and S(t_j for the application

of a substitution to a tuple of terms.
SIP - QI ={8(F,@) | 3t,u. T,t € S[P], 7, u € S[Q], 5 = U(t,)}

Note that here again we are implicitly requiring the variables in £,¢ and @, u to be disjoint. To
understand why we need the full power of unification, the reader should consider axiom contractions

with non-atomic axioms; or, more essentially, second-order quantifier contractions.

54

Now, given a linear term tuple 7, we define

Pr= pﬁ,a

where 7 is obtained by replacing all variables in Z by L, and o is the fixpoint-free involution on the
2k 1-leaves of @ (where the variables occurring in { are z,.. .,) obtained by transposing each
pair of L-leaves in @ corresponding to the two occurrences of x; in £, i = 1,...,k. Consider the

following example.

Fal, a Fal,a
Fat,at, a®a
twist = Ex(A) Fal ot a®a

2 1

Fateal, a®@a

Then, we have

S[twist] = {m(z,y),m(y,z)|z,y€ X}
pm(x,y),m(y,:c) = pb,o
b = m(J‘17 J_2)7m(J_37 J—4)

(1234
- (4 3 2 1)
Poo(m(a,b),m(c,d)) = m(d,c),m(b,a)

We can now state the main result of this section. This result can be seen as giving a precise
formulation of the idea of “genericity” or “communication without understanding” discussed at the
end of [Gir89a]. A proof must analyze the structure of the data through which it communicates
with its environment up to a fixed depth determined by its type; beyond that, it merely permutes

data to achieve a certain flow of information, without any regard as to its structure.
Theorem 4 Let f be the GT interpretation of a CLL, proof P in W{°(X,®). Then
E(FB(f,00)) = Y Apr | 1€ S[PT}

Proof: We now embark on the proof of this theorem. Our first step is to reformulate the semantics
in terms of records rather than sets, just as we did for the GZ interpretation in Section 6. Thus,

for example the equation defining S[®(P, Q)] is replaced by

S[939(P,Q)] = {[d@ — &,§ — @7 — n(t,u) | [d — F,a 1] € S[PL, [F — @, 6] € S[QI}
We rely on the reader to supply the remaining details.
Lemma 12 Let P—@Q be an instance of the reductions (R1) — (R9). Then

S[r] = sl

55

Proof: First, we verify (R1). Let 2 does not occur in 7. Then, § = U(t,z) = {(z,1)}.

SIP o lus] = {5)| 3 [T.aw 1] € S[PL[ar 2,6 2] € SIQ], 5 = U(1,2))
{6 t] fteSIP])
= S[P[B/a]]

Next, we verify (R4). Let h € {1,r}. Let [, — 1(¢)] and [i,v — h(u)] satisfy the linearity
constraint. If h = r the two terms are not unifiable. If h = 1, .5 = U(1(¢),h(u)) = U(L, u).

—

S[LL(P) - &57(Q, R)] = {S(5,@) | 3t,w. [[,1(1)] € S[L5(P)], [, h(w)] € S[&57(Q, R)], 5 = U(1(1), h(u))}
= {S(,@) | I, u. [,a — t] € S[P],[d,a — u] € S[Q], S = U(t,u)}
= S[r-. Q]

The other cases are similar and are omitted. []

Now we define a predicate [on LRA terms P:
[P &5 E(FB(f0p) = Y {pe | T€ SIPIY

where f is the GZ interpretation of P.

Lemma 13 [is closed under constructors, 1ie. for each k-ary constructor w,
lPl,...,lPk:> ZW(Pl,,Pk)

Proof: Let f; be the GZ interpretation of P and let g; = F'B(f;, 04,). From Corollary 1 in Section 6,

FB(W(fu .- -fk)an(f1 AAAAA fk)) = W(FB(qufl)a .- -FB(fkank))

Thus, it suffices to prove £(w(g1,...,0:)) = S{pr | £ € S[w(Py, ..., P)]}.

Consider w € {U, L,®,5,L, R, D,W,C}. Then, thereis a r € ¥ and an associated retraction r
such that: [w(gy,...gx)] = (1 X 7)o (g1 X ... X gx)o (1 x7*). Thus,

dom[(w(g1,...gx))] = {1(@1, -, Uk, r(ug, ..., ug)) | V1 <@ < n.J(d;,u;) C dom(g;)}
Furthermore, from definition of S[-],
S[w(Pr,...P)] = {t1,. ., e, vy, .o 1) | V1 < i < mdyyt; € S(gi)}

Let £y, ..., 0k, 7(t1, ... ;) € S[w(Py,...Py)]. Note that #;,; have pairwise disjoint set of variables.
Thus, the domain of definition of the partial function py, 7, .,

.....

{idy, ooty (U, ug) | V1 <4 <mupy,, is defined on @, u,)

56

Thus the domains of definition of the partial functions £(g) and Y {p; | T € S[w(Py,..., P;)]} agree.

I Pz, fortr, e 18 defined on iy, .. ey Uy (U e ey Ug),

k
Py, fex(te,. .., tk)(uh ey Uy (U uy)) = H(1 X 1)op;z ., 0(1xrr)

i=1

where py, , (@, u;) = (4}, u;). Combining these observations:

dApr | e S[w(Pr,..., P} = D {(1xr) 1_1 (1 x 1) | ps,q, € S[PIY}

= (oI Stpr |t € STRD o (1 1)
= (Ixr)o&(gy) X ---xE(ge)o(lxrr)
= E(w(g1,---591))

We consider & next. Let g = &j’ﬁ(gl,gQ) and d = [#,7 — z]. Then,
g’d=d= v

Recall that dom(g) is defined as
dom(g) = Int{d € D | g°d = d}
Thus, dom(g) = {[Z,7 — U(y)] | [#, e — y] € dom(g,)} U {[Z,7 — U(y)] | [Z, 5 — y] € dom(g,)} and

2= L Er = UYL e =1y A Eg)lE eyl =T a Y]
Elt =7l { (@7 =r(y)], z=r(yA E(@)FBry]l=[T 0 Y]

Result now follows from induction hypothesis on g, g, and definition of S[[&;“’ﬁ(Pl, Py)].

The proof for ! is similar and is omitted. [|

Let [P]; denote the equivalence class of P under a-conversion. We can define a LRA A; as

follows:

o The interpretation of an LRA term is its {-equivalence class [P]e.

def,

o [Ple = [Qle < FB(f,00) = FB(g,0,), where f, g are the GT interpretations of P,Q

respectively.

o [Pllj<=1P
Proposition 10 A; is an LRA.

57

Proof: P1 is built into the definition; PO is an immediate corollary of the contents of Section 6.
P3 follows from Lemma 13. Next, we prove P2. Suppose P—() is an instance of any of R1-R9,
and that Ql; . Then, FB(f,0;) = FB(g,0,). So

E(FB(f,07)) = E(FB(g,0,))
= Z{p;| 1€ S[Q]} By Assumption
= Z{pﬂ = S[P]} By Lemma 12
P4 is proved similarly. [|

Proof of Theorem 4: Immediate from Proposition 10 and Theorem 2. This proof shows the power

and versatility of Theorem 2. The authors do not know any other direct argument. [|

The remainder of this section is devoted to drawing out some important consequences of The-

orem 4.

7.2 Correspondence with Cut-elimination

As we saw in Section 6, the G7 interpretation fell short of full correspondence with cut-elimination
in that the commutative conversions R10 and R11 for the additives are not valid with respect to
the congruence ~. (Recall that f ~ g<= FB(f,0;) = F'B(g,0,).) We will now use Theorem 4

to show that we can define a new LRA with the coarser congruence:

def,

[=e g E(FB(f,0;)) = E(FB(g,0y))
which does validate R10 and R11.

Firstly, a lemma.

—

Lemma 14 If Eiejpt‘,,a, = Zjejpt‘j,aj; {(t_;'vai)}iel = {(tjvaj)}jeJ-

Proof: We write i for the element obtained by replacing all variables in 7, by L. Let

S1 = {ti|pz,, is a summand in Ep;“m}
iel

Sy = At | pz, ,, is a summand in Zp;jyoj}
Jj€eJ

Let #; € S;. From hypothesis of lemma, there is a j € J such that #;C;. Furthermore, there is a
" € I such that @, Cu;. Thus, @; C4;Cu,. But @y Cu,; implies ¢ = ¢'. Hence @; = #,. This implies
that (%, 0:) = ({;,0/) [|

As an immediate corollary, we have:

Proposition 11 If P,Q are LRA terms typable in CLL,, with GT interpretations f, g respectively,
then:
[re g= S[P] = S[Q]

58

Proof: Result got by combining Theorem 4 and Lemma 14. [|
Now, we define an LRA A, as follows:

o The interpretation of an LRA term is its {-equivalence class [P].

o [Pl =¢ [Q)e BN [=¢ g, where f, g are the GZinterpretations of P, () respectively.

o [Plely = ¥
Proposition 12 A is an LRA; if P—Q is an instance of R10 and R11, then A¢[P] =¢ A:[Q]-

Proof: P1 is built into definitions. P3 follows from the results of Section 6. PO, P2 and P4 follow

from Lemma 12 and Proposition 11. [|

We can now state the main result of this section, which follows immediately from Proposition 12.

Theorem 5 Let Il be a proof of a sequent F[A], T' in CLL,, with [II] = f. Then, if Il reduces to

I by any sequence of contractions, with [1I'] = g, then
E(FB([,01)) = E(FB(g,0,))

In particular, if 1" is any cul-free proof obtained from 1l by cut-elimination, then E(FB(f,04)) =
€(g)-

7.3 Connection with Coherence spaces

Finally, we sketch how Theorem 4 can be used to connect the Geometry of Interaction with a

denotational semantics based on coherence spaces [Gir87].

To proceed, we need some additional notions. Let X%, ¥~ be isomorphic copies of the signature
¥, so that for each f in ¥ we have f* in ¥* and f~ in ¥~. We define (f*)* = f~ and (f~)* = f*.
We can extend this in an obvious way to an involution (-)* on W(X*+* U X~, X+ U X 7). Defining
1*=1, this extends to a continuous involution on W{°*(X* U X, X+ U X). We can reformulate
all our previous work in terms of this refined algebra. The idea is that each operation now carries
a “polarity” indicating which side of the duality it originates from. So, for example, we use m*
for Tensor and m~ for Par. This extra information is mere decoration as far as the Geometry of
Interaction is concerned, but carrying it around will help us to make a precise correspondence with
the denotational semantics. For example, the message exchange function o; : D*™ — D*™ is now
defined by:

Uf(thuh' . '7tm7um) = (uvatva' . '7u7:nvt:1)

We shall consider a semantics based on a “universal domain” X defined by the domain equation

X = (XoX)& (XeX)&T& L & (X&X)
& (XBX) & IX & 71X (1)

59

Analyzing it in the spirit of the first author’s “Domain theory in logical form” [Abr91a], we find
that the tokens of the web of X and the coherence relation are defined inductively as follows:
The constructors on tokens are elements of {ut,u™, mt, m= T, v+t = r= {*..}* {7...}7}. Also,

given constructors wi,ws, we have:

wy # wa, {wi,wa} # {IT, T} = wilty, ..) ™ walug, .,)

The detailed construction is presented below.

Tokens Coherence

ut,u

151 C Ul,tz C Uy = m+(t1,t2) C m+(u1,u2)

mt(t;, 1), m™ (i, ~
(1y 2)7 (15 2) ty D ug Vv tzvuz:>m_(t1,t2)/_\m+(u17u2)

(), rH (), (1), 7= (1) Lo u= w(t) < wlu), we {1t 17,0}

i1 <i<j<n {3t [(Visgot ©owy) = (T, b3t © (T,)t

L=, 1<i<j<n={t,.. ot} | (3,5t = w) = { "t la}™ ™ U,y U}

A semantic function D mapping CLL, proofs of sequents FA,..., A into points of 28, X can
be given along the much the same lines as that in [Gir87]. The main difference is that axioms
are interpreted by the identity relation on |X|, while the quantifiers are interpreted trivially. This
semantics uses the definitions of the exponentials given in [Gir87], based on sets rather than trees.

Consider the functors

g
=
[

A& I & (F(A)RF(A))
Ag L & (G(A)rG(A))

[
=
I

and the domain Y defined by

Y = (YaY)&(YeY)&T& L & (Y&Y)
& (YY) & F(Y) & G(Y) (2)

60

Again, analyzing Y the spirit of the first author’s “Domain theory in logical form” [Abr91a], we
find that the tokens of the web of Y and the coherence relation are defined inductively as follows:

The constructors on tokens are elements of ¥ U X—. Also, given constructors w;,ws, we have:

wi # wo, {wr,we} €I r L {dY et {dT e {wT e 2wty) T wa(Ur, e ty)

The detailed construction is presented below.

Tokens Coherence

ut, u”

11 C ul,t;g C Uy = *m+(t1,t2) C m+(u1,u2)

m¥(t1,t), m™ (11,1 S
(15 2)7 (1y 2) D u Vot~ uy = ’m_(t17t2) - m+(ulvu2)

(), rH (@), (0,77 (1) |t = u= Wt (1) < wh(u), w e {IF,rF, 17,07}

wt,w™,dt(t),d (1) 1 u= w(t) < w), we {dt,d,}

1= u= ct(t,u) (Vi=1,2.4; © ;) = ¢t (ly,u1) & et (la,uy)

L~ u=c (l,u) (Fi,5 €{1,2}). 4 ™ wj) = ¢ (ty,ur) © ¢ (Lo, uy)
2 Uy, 6 uy = dH (1) © et(ug,uy)

L= u V 1wy = d= (1) ™ ¢ (ug, ug)

A semantics Dy based on Y rather than X can be given, by modifying D to work on trees rather

than sets for the exponentials. Moreover, for any A, there are clearly canonical maps
F(A)—=14 G(A) =14

Since the functors used in the domain equations (1), (2) are covariant, these maps can be lifted to

a canonical map h : Y — X. More precisely, h is the unique function satisfying:

Mw(Z) = wb(@) ifwe {ut,u, It 07, r~tm*, m™}

61

N = (R@EN e {dt o)

D = {R@), fwe {d o)

T1,22)) = {Tt, ..t ur, . untt, i R(zy) = {t, .t R(2e) = {Tug, . un b
) = {7ttty un T, R(z)={"Tt, .t h(2e) = { T, U

Now, a simple structural induction on P yields:

Proposition 13 The canonical map h is a homomorphism of the semantics: for any CLLy proof
P,
h o Dy[P] = D[P]

Now we consider the refined version S* of the shape semantics based on W(XtUX~, XTUX ™).

For example, the clause for Par becomes
S*[3(P)] = {tin~(t,u) | {;t,u € S [P}

Note that 8* works with linear term tuples, where z occurs once as zt, once as z~; substitutions

must respect polarities, i.e. if we substitute ¢ for z*, we must substitute * for z~.
Proposition 14 For every proof P in CLL,y, Dy[P] is the set of ground instances of S*[P].

Proof: Proof proceeds by structural induction. We prove the inductive case for 8. The other

inductive cases are similar and are omitted
S [a(P)] = {iin™(t,u) | 1,1, u € S[P]}
Let S be the set of ground instances. Then,
S = {@,m (uy,uy) | @m (uy,uy) is a ground instance of £,m™(1,1,) € S*[2(P)]}
= {i@,m (uy,us) | @, uy,uy is a ground instance of 7,1, € S*[P]}

= {d,m (uy,us) | @, us,us € Do[P]}
= [&P]

Proposition 15 Let f be the interpretation of a CLLy proof P. The set of all ground instances of
S*[P] is exactly the set of { € W(Xt U X~,@)" such that FB(f,0;)({) = 1.

Proof: Using Theorem 4 it suffices to show that the set of all ground instances of S*[P] is exactly
the set of i € W(X+ U X~,@)" such that ¢ is in the domain of definition of Y {p; | i € S[P]}. This

is immediate from the definitions. []

62

Theorem 6 For any CLL, proof P, with GI interpretation f,

DIP] = h({i'e W(S* U Y™, 0)" | FB(f,0,)(i) = i})

Proof: Combining Propositions 13, 14 and 15. [|

It should be emphasised that the denotational semantics of P has been recovered from the

function f, without any reference to P.

References

[Abr90]

[Abr9la]

[Abr91b]

[Abr93]

[AKPSO0]

[Bar84]

[BHY0]

[Coh81]

[Den74]

[FS91]

[Gir87]

[Gir88al]

S. Abramsky. The lazy A-calculus. In D. Turner, editor, Research Topics in Functional
Programming, pages 65-117. Addison Wesley, 1990.

S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic,
51:1-77, 1991.

S. Abramsky. Proofs as processes. Unpublished Lecture, 1991.

S. Abramsky. Computational interpretations of linear logic. Theoretical Computer
Science, 1993. To appear. Revised version of Imperial College Technical Report DoC
90/20, October 1990.

Arvind, V. Kathail, and K. Pingali. A dataflow architecture with tagged tokens. In

Proceedings of International Conference on Circuits and Computers, 1980.

H. Barendregt. The Lambda Calculus: Its Syntaxz and Semantics. North-Holland,
revised edition, 1984.

H. Barendregt and K. Hemerik. Types in lambda calculi and programming languages.
In Proceedings of ESOP 90, 1990.

P. M. Cohn. Universal Algebra. D. Reidel, 1981.

J. B Dennis. First version of a data flow procedural language, volume 19 of Lecture

Notes in Compuler Science. Springer-Verlag, 1974.

P. J. Freyd and A. Scedrov. Categories, Allegories, volume 39 of North-Holland Math-

ematical Library. Flsevier Science Publishers, 1991.
J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1-102, 1987.

J.-Y. Girard. Geometry of interaction 2: Deadlock-free algorithms. In P. Martin-
Lof and G. Mints, editors, International Conference on Computer Logic, COLOG 88,
pages 76-93. Springer-Verlag, 1988. Lecture Notes in Computer Science 417.

63

[Gir88b]

[Gir89a]

[Gir89b]

[GTWW77]

[Gue81]

[Kah77]

[KM77]

[KP78]

[Mil90]

[Mil91]

[Mogs6]

[Mog91]

[MPW89]

[ScoT76]

J.-Y. Girard. Mulitplicatives. Rendiconli del seminario matematico dell’ universita e

politecnico di Torino, 1988. Special issue on Logic and Computer Science.

J.-Y. Girard. Geometry of interaction 1: Interpretation of System F. In R. Ferro et al.,
editor, Logic Colloguium 88. North Holland, 1989.

J.-Y. Girard. Towards a geometry of interaction. In J. W. Gray and A. Scedrov, editors,
Cualegories in Computer Science and Logic, volume 92 of Contemporary Mathematics,

pages 69-108. American Mathematical Society, 1989.

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebra
semantics and continuous algebras. Journal of the ACM, 24:68-95, 1977.

I. Guessarian. Algebraic Semantics, volume 99 of Lecture Notes in Computer Science.

Springer-Verlag, Berlin, 1981.

G. Kahn. The semantics of a simple language for parallel programming. In Information
Processing 74, pages 993-998. North-Holland, 1977.

G. Kahn and D. MacQueen. Coroutines and networks of parallel proceses. In Proceed-
ings of IFIP Congress. North-Holland, 1977.

G. Kahn and G. Plotkin. Domaines concrets. Technical Report 336, IRIA-Laboria,
1978.

R. Milner. Functions as processes. In Proceedings of ICALP 90, volume 443 of Lecture
Notes in Computer Science, pages 167-180. Springer- Verlag, 1990.

R. Milner. The polyadic w-calculus: A tutorial. Technical report, Laboratory for
Foundations of Computer Science, Department of Computer Science, University of
Edinburgh, 1991.

E. Moggi. Categories of partial morphisms and the A,-calculus. In D. Pitt, S. Abram-
sky, A. Poigné, and D. Rydeheard, editors, Category Theory and Computer Program-
ming, pages 242-251. Springer-Verlag, 1986. LNCS Vol. 240.

E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55-93, 1991.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Technical report,
Laboratory for Foundations of Computer Science, Department of Computer Science,
University of Edinburgh, 1989.

D. S. Scott. Data types as lattices. SIAM J. Compuling, 5:522-587, 1976.

64

[Sco80]

[Seel9]

[Wal89]

D. S. Scott. Relating theories of lambda calculus. In J. R. Hindley and J. P. Seldin, edi-
tors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism,
pages 403-450. Academic Press, 1980.

R. Seely. Linear logic, x-autonomous categories and cofree coalgebras. In J. W. Gray
and A. Scedrov, editors, Categories in Computer Science and Logic, volume 92 of

Contemporary Mathematics, pages 371-382. American Mathematical Society, 1989.

R. F. C. Walters. Datatypes in distributive categories. Bulletin of the Australian
Mathematical Sociely, 40:79-82, 1989.

65

