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Abstract

We propose a decision procedure for analysing security of quantum cryptographic protocols, combining
a classical algebraic rewrite system for knowledge with an operational semantics for quantum distributed
computing. As a test case, we use our procedure to reason about security properties of a recently developed
quantum secret sharing protocol that uses graph states. We analyze three different scenarios based on the
safety assumptions of the classical and quantum channels and discover the path of an attack in the presence
of an adversary. The epistemic analysis that leads to this and similar types of attacks is purely based on
our classical notion of knowledge.
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1 Introduction

Quantum communication is an inseparable part of quantum computing: it offers so-
lutions to the risks caused by the exponential speed-up in the power of adversaries,
which is in turn caused by quantum algorithms. While some advances have been
made in the area of formal verification of quantum communication protocols [11], no
applicable formal framework has yet been suggested for their automatic cryptanal-
ysis. This is contrary to the fact that, similar to the situation in classical security,
attacks have been discovered on proven-to-be-safe quantum protocols.

In this paper, we present a decision procedure to verify wether a protocol sat-
isfies an epistemic security property. Our procedure derives knowledge properties
of agents from the set of dynamic and epistemic traces of the protocol. The dy-
namic traces are generated from the protocol specification by operational rules of
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distributed measurement calculus (DMC) [5]. These are then expanded to the epis-
temic traces using appearances of agents about the actions of the protocol. The
appearances are derived from the safety assumptions of the communication chan-
nels according to a set of rules. Our notions of knowledge and time are classical
and have been used in the formal analysis of classical protocols, for example in the
Halpern style models of [14,7] and in the algebraic Epistemic Systems of [2,17].

Both the DMC model and the algebra have been previously used to analyze the
security of quantum key distribution (QKD) and its attacks [7,8,16]. The setting of
this paper has advantages over both these attempts. First, we rely on the already
existing rules of the semantics of DMC, as opposed to adding axioms for quantum
mechanics to the algebra as pursued in [16]. Second, we use the algebraic axiomatics
of dynamic and epistemic adjunctions to derive knowledge properties of the protocol,
as opposed to model-checking them by traversing the tree of the protocol as done
in [7,8]. Third, we set the actions of the adversary in a compositional way using
the appearance maps of the algebra, as opposed to ad-hocly adding them to the
specification of the protocol as suggested in [7,8].

We prove that our decision procedure is sound and terminating with regard to
the pair of a DMC model and the algebraic axiomatics of Epistemic Systems. We
apply our decision procedure to a new quantum secret sharing (QSS) protocol, which
is based on graph states and has been proposed recently in [12]. For this protocol,
we develop epistemic properties and prove them for three kinds of assumptions
on the quantum channels: safe, unsafe with non-suspicious agents, and unsafe with
suspicious agents. We show that in the second case, the protocol does not satisfy its
desired epistemic property and is thus not secure, moreover, we discover the path of
an intercept-exchange attack that caused this insecurity. A full analysis of the safety
assumptions of all the channels and their impact on the security properties needs
automation, which constitutes on going work. Also, we have only been working
on a one-round basis and indeed, for a full analysis of protocols one needs to run
the protocol in many runs and then use probabilities, for instance on the knowledge
modalities. This would be a natural and exciting extension of the currently proposed
framework.

In a nut shell, our framework is obtained by merging the model checking ap-
proach of [8,7] and the algebraic axiomatics of [16]. The former is based on a
distributed extension [5] for an assembly language [6] that universally models com-
putations of the one way model. Its knowledge operator is defined over Kripke
structures in the style of Fagin et al [10] by using equivalence relations on the
states. Reasoning about properties of a protocol is done on the state space of this
structure using a logic with temporal and epistemic operators. The latter is based
on the Stone-like duals of these relational systems and moreover, following [4], a
quantale structure is assumed on the actions. This setting consists of a pair of a
quantale of classical and quantum actions and its right module of bits and qubits in-
volved in a protocol. The pair is endowed with a family of join-preserving maps, one
for each agent involved in the protocol. The right adjoints to these endomorphisms
give rise to a very useful notion of knowledge, both on propositions of module and
actions of quantale.
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2 Decision Procedure

The procedure has three main steps. First, we write as program in the language
of the distributed measurement calculus (DMC) to implement the specification of
the quantum protocol and generate a set of dynamic traces for it. This is done
by executing the rules of the operational semantics. of DMC Second, we write
formulae with dynamic and epistemic modalities to expresses security properties of
the protocol. This is done in the algebraic syntax of Epistemic Systems. Finally,
we apply an algebraic rewrite system to decide wether the protocol satisfies the
properties.

Step (1) Specify and produce dynamic traces in DMC.
Programs of DMC are implemented as networks of agents. A network of agents is
denoted by N and is defined as follows

N = |ψ〉 ‖A(Q).E | B(Q′).E ′ . . . .

It consists of a set of agents acting in parallel (denoted by |) on a given entanglement
resource |ψ〉. An agent A(Q).E is specified by a name A, a set Q of qubits it
owns, and an event sequence E . The event sequence can be a computation in the
measurement calculus, a classical message reception c?x and sending c!y, or a qubit
reception qc?q and sending qc!q′. Note that, contrary to the original definitions
in [5] we now write specifications from left to right; also agents may have extra
classical parameters a, written as A(a,Q). As an example, here is one round of
Ekert’s implementation of QKD:

QKD = E12‖A(a, 1).[Ha
1 ;M1; c!a; c?b] | B(b, 2).[Hb

2;M2; c?a; c!b] .

The set of traces of a program are generated by following the rules of the small-
step semantics as specified in [5], but moreover, we work with projections, annotate
actions with agents that performed them, and name the preparation actions of
the initial entanglement resource |ψ〉 and the distribution actions of qubits. For
example, PA,α

i stands for the spin α projection of qubit i done by agent A and NC
i

is the preparation of qubit i by agent C. The preparation actions are made explicit
by juxtaposing them to the left most of the traces; for QKD the entanglement
resource E12 is created by applying NC

1 ;NC
2 ;EC

12 to a 2-qubit system q1⊗ q2, where
N is preparation in the |+〉 state and C is the agent who prepared the entanglement
resource. Distributing these qubits to agents A and B is denoted by a quantum
broadcast action qc!?C

Xqi, which stands for agent C sending qubit qi to agent X and
agent X receiving it from him. This is a shorthand for a quantum send qc!CXqi and
a quantum receive qc?X

C qi. Similarly, we also shorthand a classical send c!CXa and
receive c?X

C a to a broadcast c!?C
Xa.

According to these conventions two of the four possible traces for a successful
run of QKD become as follows

π = NC
1 ;NC

2 ;EC
1,2; qc!?

C
A q1; qc!?

C
B q2;P

A,X
1 ;PB,X

2 ; c!?A
B a; c!?

B
A b ,

π′ = NC
1 ;NC

2 ;EC
1,2; qc!?

C
A q1; qc!?

C
B q2;P

A,Z
1 ;PB,Z

2 ; c!?A
B a; c!?

B
A b .
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Step (2) Write security properties in Epistemic Systems.
The input to the rewrite system is an expression of the form

l ` r

where l is the initial state and r is an epistemic property that contains the disjunc-
tion of dynamic traces produced above. An example is the following expression

qi ` [π]2A2As
j
i

which is read as

After running the trace π of the protocol on qubit qi, agent A knows
that B knows that the value of bit i is j.

The l and r expressions are generated as follows:

• The initial state l is made of propositions m that are formed by closing
atomic classical and quantum variables sj

i and qi under ¬,∧,∨ and logical
constants ⊥,>. The variables are generated as follows

κ ::= sj
i | ql | ql ⊗ qw

• The epistemic property r is generated as follows

r ::= m | [π]m | 2A(m)

where 2A(m) is the epistemic modality and for π a dynamic trace [π]m is
the dynamic modality.

One such expression for Ekert’s QKD is

q1⊗q2 `
[
NC

1 ;NC
2 ;EC

1,2; qc!?
C
A q1; qc!?

C
B q2;P

A,X
1 ;PB,X

2 ; c!?A
B a; c!?

B
A b

]
2A2B(s01∧s02)

Proving this property together with a permutation of it for B, that is

q1⊗q2 `
[
NC

1 ;NC
2 ;EC

1,2; qc!?
C
A q1; qc!?

C
B q2;P

A,X
1 ;PB,X

2 ; c!?A
B a; c!?

B
A b

]
2B2A(s01∧s02)

will imply that A and B share a piece of data, which is the results of each other’s
measurements, that is (s01 ∧ s02). The sharing property is expressed by the nested
knowledge property, that A knows that B knows it, and vice versa 3 . That the
data is secret is proved by showing that an adversary E does not know it, that is
the following expression

q1⊗q2 `
[
NC

1 ;NC
2 ;EC

1,2; qc!?
C
A q1; qc!?

C
B q2;P

A,X
1 ;PB,X

2 ; c!?A
B a; c!?

B
A b

]
¬2E(s01∧s02)

3 It is arguable wether one has to nest the knowledge modalities infinitely many times and thus use the
common knowledge operator to express the sharing property, but for now we restrict ourselves to a two
level nesting.
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Step (3). Generate Epistemic traces and verify the property.
We proceed by analyzing uncertainty of agents about the states and actions of
protocols. These are referred to as appearance maps and are denoted by fA for
an agent A. They encode all possible actions or propositions that appear possible
to an agent, given the action that is happeneing or the proposition that is true in
reality, we refer the reader to [2,17] for discussions and examples. Here, we treat
these maps more practically and introduce a general set of rules to generate them.
These rules are presented below.

(i) The agents have no uncertainty about the steps of the protocol they are in-
volved in.

(ii) Qubits are encoded as black boxes and thus appear as they are, that is as
identity to all agents. Classical bits appear as either 0 or 1 to agents.

(iii) The owner of an action has no uncertainty about his actions, but is uncer-
tain about other agents’ actions. His appearances of these latter actions are
generated by instantiating their variables.

(iv) There is only one adversary present in each protocol. This adversary can
intercept the unsafe channels, either quantum or classical, by stopping the
messages, changing the content of the messages, creating new messages and
sending them. On a quantum channel, the change of the content of the message
is done by measuring the sent qubit and the creation of new messages by
preparing fresh qubits. On the classical channel, the change is simply affected
by reading and writing the values of the bits.

(v) On the safe channels, the adversary can either be passive or not present at
all. In the latter case, he cannot even see if messages are passing through and
what is their content. In the former case, on a classical channel, he can see
the value of the bits as well as the sender and receiver of each message, but
cannot change anything. On a quantum channel, he can only see that a qubit
is passing, but cannot see its state.

(vi) Communication actions on a safe channel are either public or private announce-
ments to a subgroup of agents. The former appears as identity to all agents,
whereas the latter is identity only to the insiders in the group, and either as
nothing or all possible choices to the outsider agents. On an unsafe channel,
the announcement actions are treated as separate send and receive actions.

(vii) Honest agents may suspect the interception actions of the adversary. If they
do so, these actions appear to them as either happened or not. If they do not,
they appear to them as the neutral action in which nothing happens.

For example, the appearances of the projection action PA,X
1 in our above example

traces are as follows

fA(PA,X
1 ) = PA,X

1 , fB(PA,X
1 ) = PA,X

1 ∨ PA,−X
1 ∨ PA,Z

1 ∨ PA,−Z
1 .

The appearances of the communication actions depend on the safety assumptions
of the channel in which they take place. For example, if the channel is safe, they are
treated as broadcasts otherwise as separate send and receive actions. We present a
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detailed example on those in the last section.

Due to space limits we cannot present the rewrite rules; they are similar to the
system presented in [15]. By applying them, one first eliminates the logical connec-
tives ∧,∨,2A, [ ] and then the classical and quantum communication actions. The
output is a set of atomic expressions, defined as follows

Definition 2.1 An expression l ` r is atomic iff l is a quantum state followed by a
sequence of atomic quantum actions and r is an atomic classical or quantum state.

For instance, for a safe quantum channel, the atomic form of the our sharing prop-
erty is

(q1 ⊗ q2)(NC
1 ;NC

2 ;EC
1,2;P

A,X
1 ;PB,X

2 ) ` s01 ∧ s02

These atomic expressions may contain new epistemic uncertainties and thus will
need to be verified against our operational semantics. For this purpose, we introduce
below the notion of a well-defined expression.

Definition 2.2 An atomic expression l ` r is well-defined iff l is derivable within
the operational semantics of DMC. It is true iff r holds in all configurations resulting
from l. An epistemic property holds for a protocol whenever all its well-defined
atomic expressions are true.

Proposition 2.3 For a protocol specification N and an expression l ` r which is
built from the dynamic traces of N , the process of deciding if the epistemic property
in r holds for N is terminating and sound with regard to the pair of an Epistemic
System and a DMC model.

Proof. These follow from image finiteness of appearances of actions and proposi-
tions, together with soundness and termination of the rewrite system of Epistemic
Systems and the DMC model [5,15].

3 Case study: quantum secret sharing

We apply our procedure to the quantum secret sharing (QSS) protocol recently
established in [12]. In secret sharing a dealer holds a secret bit which he wants to
send to n players, such that at least k players are needed to reconstruct the secret.
The problem is well-known in the classical settings and solvable for all (n, k). In the
quantum case, only the (n, n) case has been solved for the GHZ-type entanglement
[18]. The work in [12] uses instead graph states and thus is more suitable for
modelling in our measurement-based setting. Moreover, it generalizes the quantum
key distribution protocols and simplifies their proofs. We analyze and prove some of
the epistemic properties of the QKS component of the (3, 5) case, where a particular
graph state is used to establish a secret key between three players and the dealer
in one go (as opposed to via several 2-party QKD protocols). This key will then be
used to distribute a secret using the other components of the protocol.
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1

2

34

5

d

The recource required for the protocol is the graph state shown above, henceforward
called G(3, 5). It is prepared following the usual procedure for graph states, that is

G(3, 5) = (N1; . . . ;N5;N6;
∏
eij

Eij)⊗6
i=1 qi; ,

where eij is the set of edges. The protocol proceeds as follows:

Step 1. The dealer prepares G(3, 5), sends each agent a qubit qi together with an
agent identity i.

Step 2. The dealer measures his qubit in the Y or Z basis randomly and broadcasts
his measurement basis.

Step 3. Each participating player measures his qubit in the X, Y or Z basis ran-
domly, then broadcasts his identity and measurement basis.

Step 4. Depending on these messages, each agent determines if the run was suc-
cessful as follows:
• If the participating agents are neighbours, then we have ijk = i(i + 1)(i + 2);

this is the case for the following measurement combinations

MZ
6 M

Z
i M

X
j M

Z
k and MY

6 M
X
i M

Y
j M

X
k .

• If they are in a so-called T-shape, we have ijk = i(i+ 1)(i+ 3); this is the case
for the following measurement combinations

MZ
6 M

X
i M

Y
j M

Y
k and MY

6 M
Y
i M

Z
j M

Z
k .

Step 5. For a successful run, measurement outcomes are correlated as s6 = si⊕sj⊕
sk. Players use their secure classical channels to exchange measurement outcomes
and determine if s = s6, hence establishing a shared key with the dealer.

We refrain from giving the full specification of the QSS network and move
straight on to its traces, where we treat all the communication actions as broad-
casts and later on break them to separate send and receive actions, as necessary and
according to the safety assumptions of their channels. Whenever the subscript of a
broadcast action is missing, e.g. in c!?Da it means that the broadcast is a public
action that can be listened to by everyone. A typical trace for a successful run of
QSS is as follows
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π = ND
1 ; . . . ;ND

6 ;
∏

eij
ED

ij (preparation)

(qc!?D
1 q1) . . . (qc!?

D
5 q5) (private broadcast of qubits)

PD,±a
6 PAi,±b

i P
Aj ,±c
j PAk,±f

k (measurement projections)

c!?Da; c!?Aib; c!?Ajc; c!?Akc (public broadcast of measurement bases)

(c!?Ai
Aj ,Ak

si)(c!?
Aj

Ai,Ak
sj)(c!?

Ak
Ai,Aj

sk) (private broadcast of player’s mes. outcomes).

Here a ∈ {X,Y }, b, c, f ∈ {X,Y, Z} are measurement basis, qc!?D
i is the quantum

message passing from D to Ai ∈ {A1, · · · , A5} denoting the 5 players, and c!?Ai
β is

the private announcement from player Ai to the group β ⊆ {A1, · · · , A5}. We omit
the calculation of the secret key, which is determined by the following exclusive-or
formula

s = si ⊕ sj ⊕ sk

Successful traces only depend on the chosen values for a, b, c and f ; one example of
such a trace for adjoining agentsA1, A2 andA3, owning qubits 1,2 and 3 respectively,
is as follows

π = . . .

PD,+Z
6 PA1,−Z

1 PA2,−X
2 PA3,+Z

3 ;

Z!D;Z!A1 ;X!A2 ;Z!A3 ;

(c!?A1
A2,A3

1)(c!?A2
A1,A3

1)(c!?A3
A1.A2

0)

3.1 Epistemic Properties

We consider three cases: agents’ heaven, adversary’s heaven, and adversary’s hell.
In the first case the quantum channel is safe, in the second case it is not and the
honest agents do not suspect it, in the third case it is not and the honest agents do
suspect it. The other channels are assumed to be safe in all three cases. For each
case, we show how the appearances of agents of actions in the dynamic traces are
set. This is done according to the safety assumptions on the channel and our rules.
Then we present some of the related epistemic security properties of each case.

(i) Agents’ heaven
The appearance of the projections are set according to the rule (iii) of appear-
ances. Since the channels are safe, the communication actions on the quantum
channel are treated as public broadcasts and by rule (vi) and for σ an agent
they are set as follows

fσ(qc!?Dqi) = qc!?Dqi

That is, all the agents are fully aware of the broadcast action and thus have
only one possibility in their appearance, the broadcast action itself. The com-
munication actions on the classical channels are private announcements and by
rule (vi) their appearances are set as follows, for β a subset of players

8



D’Hondt and Sadrzadeh

fσ(c!?Ai
β sj

i ) =


c!?Ai

β sj
i σ ∈ β

c!?Ai
β sj

i ∨ c!?Ai
β sj

i σ /∈ β

This says that the insider agents σ ∈ β who receive the sent bit sj
i , which is

either equal to 1 or 0, are fully aware what has happened and thus have only
one possibility about the private broadcast action, that is the broadcast action
itself and thus their appearance is identity. But by rule (i) of appearances, the
outsider agents σ /∈ β are only aware that a bit has been privately broadcasted
to the subgroup β and are uncertain about the value of that bit. So they
consider it possible that either a bit with value 1 or a bit with value 0 has
been privately broadcasted to insider agents in β. Thus their appearance is
the choice of these two possibilities.

Some of the epistemic properties of interest for our trace π, allied players
Ai ∈ {A1, A2, A3}, joined with dealer σ ∈ {D,A1, A2, A3} are as follows

• The dealer knows his bit and binary sum of allied players’ bits, i.e.

2D (s06 ∧ (sb1
1 ⊕ sb2

2 ⊕ sb3
3 )) .

• Allied players moreover know the value of each single measurement, i.e.

2Ai (s06 ∧ s11 ∧ s12 ∧ s03) .

• The dealer knows that the players know his bit and the players know
that the dealer knows the sum of their bits, i.e.

2D2Ai s
0
6 and 2Ai2D(sb1

1 ⊕ sb2
2 ⊕ sb3

3 ) .

• The adversary does not know any of the above, i.e.

¬2E (s06 ∧ (sb1
1 ⊕ sb2

2 ⊕ sb3
3 )) .

• The dealer and the agents know the above, i.e.

2σ¬2E (s06 ∧ (sb1
1 ⊕ sb2

2 ⊕ sb3
3 )) .

(ii) Adversary’s heaven
In this case, the quantum channel is not safe and by rule (iv) the adversary can
intercept the channel. By rule (vi) since the channel is not safe, we must break
its broadcasts to separate send and receive actions. The appearances of these
actions to the agents involved in them (e.g. the appearance of the sent action
to the agents who received it) are not identities any more. The appearances
for the send of a qubit are set as follows, where qj is a new qubit with j ≥ 7
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fσ′(qc!Di qi) =


qc!Di qi; qc?

E
D qi;P

E,e
i ;NE,e

j ; qc!Ei qj σ′ = E

qc!Di qi o.w.

This says that neither the agents nor the dealer suspect that E intercepted
dealer’s sent qubit and thus their appearance of dealer’s sent action is (wrongly)
identity. Where as in reality, E did the following sequence of interception
events, but they only appear to him as identity.

qc!Di qi; qc?
E
D qi;P

E,e
i ;NE,e

j ; qc!Ei qj

According to this sequence of events, E received the dealer’s sent qubit qi that
was meant to be received by agent i, measured it, then prepared a correspond-
ing new qubit qj and sent it to agent i. For the corresponding receive action,
it appears to the dealer that players received the qubit that he sent to them,
fD(qc?Ai

D qi) = qc?Ai
D qi, whereas in reality they receive the qubit sent to them

by adversary, fAi(qc?
Ai
D qi) = qc?Ai

E qj . In case the eavesdropper is lucky and
chooses the right projection for all three qubits he intercepts, he is able to
derive the value of the key. In this case some of the epistemic properties of
interest are

• The adversary knows the shared key, i.e. 2Es
0
6.

• The players and the dealer wrongly think that he does not know this, i.e.

2σ¬2Es
0
6 .

Note that here the adversary has to be more lucky than in Ekert’91. This is
because he has to intercept the qubits of three allied players instead of one,
and has to choose from three measurement bases.

(iii) Adversary’s hell
This is the same as above, but the players suspect adversary’s actions, that is
according to rule (vii), it appears to them either there was no interception or
there was one and the above sequence of actions took place by the adversary.
Thus we obtain

fAi(qc!
D
i qi) = qc!Di qi ∨ (qc!Di qi; qc?

E
D qi;P

E,e
i ;NE,e

j ; qc!Ei qj)
Similarly, the dealer suspect adversary’s actions on the receipt of his sent qubit

fD(qc?Ai
D qi) = qc?Ai

D qi ∨ (qc?E
D qi;P

E,e
i ;NE,e

j ; qc!Ei qj ; qc?
Ai
E qj)

In this case, an interesting epistemic property would be the following

The dealer and the players are not sure anymore if the adversary
knows their secret bit, and thus if the bit can be treated as a secret i.e.

¬2σ¬2Es
0
6 .
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3.2 Verifying Epistemic Properties

As examples, we verify two properties: one from the agents’ heaven and one from
the adversary’s hell.

• Agents’ heaven
From this scenario, we verify the following property

⊗6
i=1qi ` [π]2D2i s

0
6

The atomic expressions are generated via the following rewritings, where αi’s
denote the juxtaposed actions of π

⊗6
i=1qi ` [π]2D2Ai s

0
6 ; ⊗6

i=1qi;π ` 2D2Ai s
0
6 ;

fAifD(⊗6
i=1qi;π) ` s06 ; fAifD(⊗6

i=1qi); fAifD(π) ` s06
; fAifD(⊗6

i=1qi); fAifD(α1); · · · ; fAifD(αn) ` s06.

By rule (ii) of appearances we have fAifD(⊗6
i=1qi) = ⊗6

i=1qi. By rule (iv) and our
assumptions on channels, we have fD(αi) = αi for αAi a quantum or broadcast
communication action. By rule (vi) for communication between players we have
fD(c!?Ai

β sj
i ) = c!?Ai

β sj
i ∨ c!?Ai

β sj
i . Similarly for the projection actions we have

fD(PD,+Z
6 ) = PD,+Z

6

and

fD(PA1,−Z
1 ) = PA1,−Z

1 ∨ PA1,+Z
1 ∨ PA1,−X

1 ∨ PA1,+X
1 ∨ PA1,−Y

1 ∨ PA1,+Y
1 .

The values for the fAi ’s are similarly set. Substituting these values in the above
expression, we first eliminate the traces in which the bases of projections do not
match the announced bases. Next we eliminate the communication actions from
these traces whose content do not match the projections. As a result, we obtain
a set of atomic expressions, of which only those satisfying s06 = sb1

1 ⊕ sb2
2 ⊕ sb3

3 are
well-defined in DMC. An example (out of four) is

⊗6
i=1qi;N

D
1 ; . . . ;ND

6 ;
∏
eij

ED
ij ;PD,+Z

6 ;PA1,+Z
1 ;PA2,−X

2 ;PA3,−Z
3 ` s06 .

This atomic expression is true, since in all its final configurations s6 is 0, and thus
our epistemic property holds for the secret sharing protocol.

• Adversary’s hell
On the contrary, in the adversary’s hell, one shows that the epistemic property
2D¬2Es

0
6 does not hold and thus s06 is not treated a secret anymore. Moreover,

we also discover paths of an intercept-change attack for each agent, for example
the one for the player A1 contains the following sequence of actions

· · · ; qc!D1 q1; qc?
E
1 q1;P

E,+Z
1 ;NE,+Z

7 ; qc!E1 q7; qc?
A1
E q7;P

A1,+Z
7 ; · · ·

11
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In this path, the adversary receives dealer’s original qubit q1 that was meant to be
received by agent 1, then measures it in basis Z by doing projection PE,+Z

1 , then
prepares a new qubit q7 according to his measurement result and sends it to agent
1. The adversary turns out to be lucky and agent 1 picks the same measurement
basis as him, that is Z and does the same projections. The classical result of this
projection will for sure be the same as adversary’s but might not the same as the
dealer’s.

4 Conclusion

In this article we proposed a new framework for formal analysis of security issues
in quantum cryptographic protocols. Our framework combines an algebraic rewrite
system with a specification language for quantum distributed computations. The
former provides machinery to work with uncertainties of agents in a protocol in a
compositional way, while the latter inherently encodes the rules of quantum me-
chanics. Our framework was put to test in the analysis of a recent quantum secret
sharing protocol based on graph states, where we proved some epistemic properties
of the protocol in the presence and absence of an active adversary and discovered
paths of an intercept-exchange attack. For a full analysis one needs to generate
many more epistemic traces and the need for automation and software implemen-
tation is gravely felt. A software implementation of the algebra [15] is already in
place to handle part of the verification. The construction of a tool that automati-
cally derives the traces and semantics of a protocol is currently underway.
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