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Abstract

We refine our algebraic axiomatization in [8,9] of epistemic actions and epistemic update (notions defined
in [5,6] using Kripke-style semantics), to incorporate a mechanism for dynamic belief revision in a multi-
agent setting. We encode revision as a particular form of epistemic update, as a result of which we can
revise with epistemic propositions as well as facts, we can also revise theories about actions as well as about
states of the worlds, and we can do multi-agent belief revision. We show how our setting can be applied
to a cheating version of the muddy children puzzle where by using this logic, after the cheating happens,
honest children will not get contradictory beliefs.
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1 Introduction

We refine our algebraic axiomatization in [8,9] of epistemic actions and epistemic
update (notions defined in [5,6] using a relational, Kripke-style semantics), to in-
corporate a mechanism for dynamic belief revision in a multi-agent setting. Our
approach has a number of novel features, when compared with traditional belief
revision systems such as AGM [2]. Firstly, while traditional belief revision was deal-
ing only the revision of theories comprised of ”facts”, we can also revise theories
comprised of epistemic/doxastic propositions. Thus, some of traditional AGM pos-
tulates have to be modified in order to deal with non-stable epistemic propositions,
such as the ones generated by the so-called Moore sentences 3 . Secondly, ours is

1 Email: mehrs@comlab.ox.ac.uk
2 Email: baltag@comlab.ox.ac.uk
3 E.g. the agent (”you”) is informed that the ”The cat is on the mat, but you don’t know it”.
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a dynamic belief revision, i.e. a particular form of update: an action q happens,
changing the original theory m to a revised theory m ∗ q. Thirdly, this dynamic
character is enhanced by the fact that we allow revision of actions, and not just of
”static” theories. That is, we allow the agent to have theories about the current ac-
tion, and these may also be revised by further actions. Fourthly, we do multi-agent
belief revision, as opposed to traditional approaches that only revise the beliefs of
one agent. Our approach, though related in aim, is different in flavor from the work
of [14] on Kripke-style belief revision and from the more recent work of [3,15] on
dynamic belief revision. These approaches are semantic and ”quantitative”, that
is they are based on having ”degrees of belief” as the quantitative basis of belief
revision. Our approach, on the contrary, is purely qualitative and axiomatic, and is
thus closer in spirit to the traditional AGM approach. Indeed, our aim is simply to
find the ”correct” axiomatization of the dynamic and multi-agent version of AGM.

This paper is organized as follows: in the first section we introduce mathematical
definitions of the concepts used in our algebra: our main mathematical object being
the notion of a dynamic revision system, which is based on the epistemic systems
as algebraic models of Dynamic Epistemic Logic; we also discuss the connection
between our dynamic revision operator, which generalizes the update product, and
the traditional AGM revision. Next section deals with introduction of agents and
their views, to be able to do multi-agent belief revision, and enrichment of the
structure with positive and negative test and with leaning actions, to deal with
applications. Finally in the last section, we apply our multi-agent learning systems,
that is multi-agent dynamic revision systems with learning, to encode and solve a
cheating version of the muddy children puzzle and show how by using our logic,
after the cheating, the honest children learn that they are deceived ; so they revise
their beliefs accordingly and will not have contradictory beliefs.

2 Dynamic Revision Systems

We introduce here a dynamic analogue of the classical AGM axioms of belief revision.
For the moment, we neglect the agents doing the revision, concentrating (as in the
AGM approach) on a purely impersonal notion of rational belief revision. In the
next section, we will re-introduce the agents (and their views of the world) into the
picture. Our setting is based on the notion of system, which is a structure composed
of a pair quantale-module (M,Q) linked by an action

−⊗− : M ×Q→M ,

subject to some conditions. Systems are very general algebraic settings for modelling
dynamical phenomena. Quantales have been used to study different phenomena
such as concurrent processes in [1] and physical properties of Quantum Mechanics
in [10]. They have also been studied as models of Dynamic Logic for example in [12].
For a detailed mathematical study of quantales and their properties, we refer the
reader to [13].

Definition 2.1 A system (M,Q,⊗) consists of:
(1) a complete sup-lattice M = (M,

∨
), with

∨
as the supremum operator;

(2) a quantale Q = (Q,
∨
, •, 1), i.e. a complete sup-lattice (Q,

∨
) endowed with an
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additional monoidal structure (Q, •, 1);
(3) a right-module structure on M, i.e. an action − ⊗ − : M × Q → M on the
quantale, which is sup-preserving in both arguments and satisfies:

m⊗ (q • q′) = (m⊗ q)⊗ q′ for m ∈M and q, q′ ∈ Q .

We call the elements of the module M , theories or propositions or also situa-
tions. These situations are not neccessarily deterministic, as our theories might not
be complete. There exists exactly one inconsistent theory, namely ⊥ :=

∨
∅. Sim-

ilarly, there exists exactly one trivial (tautological) theory, namely > :=
∨
M . In

a possible-world model, elements of M can be modelled as sets of possible worlds,
representing some theory (or belief) 4 about the real world: it is believed 5 that
the real world belongs to this set. However, one can also represent theories, as it
is standard in belief revision, in an intensional way, that is, as sets of sentences of
some language closed under logical consequence 6 .

The lattice order m ≤ m′ on the module M represents the consequence relation,
that is the logical entailment T ` T ′ between theories. In terms of theories as
sets of possible worlds, this is simply set inclusion ⊆. But in terms of deductively
closed theories as sets of sentences, it is reversed inclusion T ⊇ T ′. So in particular
our join m ∨m′ corresponds to union in terms of sets of possible worlds, i.e. it is
logical disjunction of propositions, but notice that it also corresponds to intersection
T ∩ T ′ of sets of sentences. Dually, our meet m ∧m′ is the logical conjunction of
propositions, i.e. the intersection of the two sets of worlds, but it also corresponds
to the deductive closure of the union Cl(T ∪ T ′) of the sets of sentences of the two
theories.

We call the elements of the quantale Q epistemic actions, or experiments, or
also announcements. They are information-changing actions, which do not change
the objective facts of the world, but only uncover, discover, or communicate them.
One can think of elements of quantale as scientific experiments, or even better
as actions of communicating the results of an experiment. More generally, they
may cover any communication of, for example facts or hypothesis about the world,
or even about what is (not) known about the world, etc. Since these actions are
not necessarily deterministic, they might also be thought of as ”theories about the
current action”. That is there might be uncertainty about what exactly has been
discovered or announced. The lattice order q ≤ q′ on the quantale Q is the order
of non-determinism: q′ contains less information about the current action (and
thus is more non-determined) than q. The quantale multiplication q • q′ represents
sequential composition of actions: first do q, then do q′. The unit 1 of multiplication
stands for the skip or the ”do-nothing” action.

Observe the lack of a Boolean structure: there is no negation in M , or in Q. One
can of course define some pseudo-complement, as is usually done in complete lattices,
but this will not necessarily behave as a Boolean negation. This lack is the result of
a conscious choice: we think this algebraic setting is simpler, more transparent and

4 This theory may be of course held by some (arbitrary) agent. This agent is left implicit here, but in the
next section we will introduce it explicitly.
5 See the previous footnote.
6 Algebraically, theories in this sense correspond to filters in a complete lattice, or Boolean algebra.
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more general than the one that one would obtain by adding negation 7 . Moreover,
it is applicable to cases of partial information. In particular, when thinking of M
as consisting of ”theories”, there is no meaningful notion of ”negation of a theory”;
similarly, there is no action that can be called ”the negation” of action q. However,
as we show bellow, one can define in some sense a ”propositional negation” of an
action.

The operation ⊗ is called update product and it encodes the way in which an
action changes a situation or theory. That is, if a theory m correctly describes the
current situation and q is a correct description of the current action, then the theory
m⊗ q will correctly describe the situation after the action.

Kernel. An inconsistent situation: m ⊗ q = ⊥ simply means that the action q

is impossible in (the situation described by) m. The condition of impossibility of a
given action can be encoded as a proposition in M , by defining the kernel of action
q as:

ker(q) =
∨
{m ∈M | m⊗ q = ⊥} .

This is the weakest theory/situation that makes this action impossible. The kernel
can be thought of as a ”strong negation of an action”: ker(q) is the proposition
asserting the impossibility of action q. 8

Image Maps. Any action q ∈ Q ”acts” on M via the update product ⊗, and
”acts” on Q itself via multiplication •. As a consequence, we can define two notions
of image of an action:

ImM (q) = {m⊗ q : m ∈M}
ImQ(q) = {q′ • q : q′ ∈ Q}

Atoms. In a lattice M , the set of atoms is defined as

Atm(M) = {a ∈M : ∀m ∈M, (m 6= ⊥,m ≤ a) ⇒ m = a} .

If existing, the atoms of the module M are called ”states”, and can be thought of
as complete (fully determined) situations, i.e. complete descriptions of the world.
In terms of sets of states (or possible worlds), they simply are the states (or rather
the singleton-sets consisting of only one state). In terms of theories, they are the
complete consistent (i.e. maximally consistent) theories. 9 Similarly, the atoms of
the quantale Q represent deterministic actions (or, alternatively, complete theories
about actions).

Atomicity. A lattice M is atomistic if every element is the supremum of all the
atoms bellow it, i.e. for all m ∈M we have

m =
∨
{s ∈ Atm(M) : s ≤ m}

A system is called atomistic if both the module M and the quantale Q are atomistic
lattices and if any update product or multiplication of atoms is either an atom or

7 However, it would be easy to extend our setting to intuitionistic or Boolean settings, by requiring the
module to be a Heyting or a Boolean Algebra.
8 In the ”concrete” Kripke-model-based setting of [5,6], the role of the kernel was played by its complement,
the precondition pre(q) of an action, definining its conditions of possibility.
9 Algebraically, these can be the ultrafilters in a Boolean algebra.
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inconsistent, i.e.:

s ∈ Atm(M) and σ, σ′ ∈ Atm(Q) ⇒
(s⊗ σ ∈ Atm(M) ∪ {⊥} and σ • σ′ ∈ Atm(Q) ∪ {⊥})

This condition expresses a natural property of determinism: a deterministic action
acts as a partial function on states, i.e. it transforms any (fully determined) state
into a (at most one, fully determined) state (or else, it fails); and the sequential
composition of two deterministic actions (if not failing) is itself a deterministic
action.

Extensionality. A system is called extensional if actions are uniquely determined
by their behavior on situations, i.e.:

if ∀m ∈M, m⊗ q = m⊗ q′ then q = q′ .

As a consequence of this, we have that:

if ker(q) = > then q = ⊥ .

This is because if the kernel of an action q is > then the action cannot be applied
to any proposition. That is if ker(q) = > then for all m ∈ M we have m⊗ q = ⊥.
But epistemic update is bottom-preserving in the sense that ⊥ = m ⊗ ⊥. So we
have m⊗ q = m⊗⊥ and if the system is extensional we get q = ⊥.

Facts. Since we think of our actions as ”purely epistemic” (i.e. actions of discovery,
belief-change or communication), they do not affect the ”objective” features of the
world. In other words, they do not change the ”facts” of the world. We can turn
things around, by definining ”facts” to be the propositions that are invariant under
any actions, i.e. the ones that are ”stable” under any update. In other words, the
set of ”facts” is defined as the ”stabilizer” of all actions:

Stab(Q) = {m ∈M : ∀q ∈ Q, m⊗ q ≤ m} .

Note that in our system any proposition that is invariant under actions is called a
fact. For example since update preserves all joins including the empty join ∨∅ = ⊥,
we have ⊥ ⊗ q = ⊥, which says bottom is invariant under any action and thus a
fact. But it is a fact in which we are not interested, since it is wrong!

Dynamic Modalities. Since the update product preserves joins on both of its
arguments, it has a (Galois) right adjoint, defined as

[q]m′ :=
∨
{m ∈M : m⊗ q ≤ m′} .

This adjoint [q]m is the standard dynamic (action) modality of Propositional Dy-
namic Logic or PDL [12]. It reads as ‘after action q proposition m holds’ and
denotes the weakest precondition of an action. That is, the weakest proposition
that should be true before q, so that proposition m becomes true after q. The
adjunction −⊗ q a [q]− implies the equivalence:

m⊗ q ≤ m′ iff m ≤ [q]m′

Residuals. Since the multiplication −•− : Q×Q→ Q preserves joins in both ar-
guments, it has two right adjoints, called left and right residuals. The right residual
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is the right adjoints of − • q′ : Q→ Q and is denoted by

q/q′ :=
∨
{q′′ ∈ Q : q′′ • q′ ≤ q} .

The left residual is the right adjoint of q′ • − : Q×Q→ Q, is denoted by q′\q and
is defined symmetrically.

We now enrich the notion of system with a way to revise old theories both about
the world and about actions in the view of new experiments:

Definition 2.2 A dynamic revision operator on a system (M,Q,⊗) is a pair ∗ =
(∗M , ∗Q) of maps

− ∗M − : M ×Q→M, − ∗Q − : Q×Q→ Q

satisfying a list of conditions (to be given). In practice, we skip the superscripts
whenever possible. The required conditions are the following:

(i) m ∗ q ∈ ImM (q) and q ∗ q′ ∈ ImQ(q′)

(ii) m⊗ q ≤ m ∗ q and q • q′ ≤ q ∗ q′

(iii) if m⊗ q 6= ⊥ then m ∗ q ≤ m⊗ q, and if q • q′ 6= ⊥ then q ∗ q′ ≤ q • q′

(iv) if m ∗ q = ⊥ then q = ⊥ ; similarly: if q ∗ q′ = ⊥ then q′ = ⊥
(v) m ∗ (q ∗ q′) = (m ∗ q) ∗ q′ and q ∗ (q′ ∗ q′′) = (q ∗ q′) ∗ q′′

A system enriched with this revision operator is:

Definition 2.3 A dynamic revision system is an extensional, atomistic system en-
dowed with a dynamic revision operator.

Explanation of Conditions. In this section we explain how the above conditions
are dynamic equivalents of the classical AGM clauses. We start with the intuition
about m ∗ q:

If m is the current (possibly incorrect) theory about the world, then m∗q represents
the (”rationally”) revised theory after the experiment q is performed.

We call this ”dynamic” revision, since m ∗ q is the actual theory about the state of
the world after the action q: it is not a revised theory about the original state of
the world before the action 10 . Similarly, the intuition about q ∗ q′ is

If q is a (possibly incorrect) theory about what action is going on, then q ∗ q′
represents the revised theory (about what is going on) after the experiment q′ is
performed.

First part of condition (i) says that the revised theory m ∗ q has to be consistent
with the experiment q, that is

m ∗ q ∈ ImM (q) means ∃m′ ∈M ′,m ∗ q = m′ ⊗ q .

This says that the new theory can be thought of as the result of updating some
previously existing situation m′ with the actual experiment q. The situation m′

expresses some tentative theory about the original state of the world. This tentative

10 In contrast, classical ”static” belief revision deals with revised theories about the original state of the
world.
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theory is consistent with the result of the new experiment q, that is m′ ⊗ q 6=
⊥. In other words, this expresses a possible “static belief revision” of m (with
the information provided by q). This is expressed in the following proposition,
equivalent to first part of condition (i):

Proposition 2.4 For the tentative theory m′ that is consistent with experiment q
and for which we have m ∗ q = m′ ⊗ q, the following is true:

m′ ≤ [q](m ∗ q)

The proof follows directly by applying the adjunction −⊗ q a [q]− to the equality
m′⊗q = m∗q. The proposition says that m′ is the weakest tentative belief consistent
with q. As a result, the tentative belief that an agent might have about the prior
situation (the situation before q) after action q, will be ([q](m∗ q))⊗ q. This can be
seen as a tentative retroactive justification of the particular dynamic belief revision
m ∗ q, in terms of a static belief revision m′.

The second part of condition (i) is interpreted similarly to the first part. It says
that the revised theory has to be consistent with the experiment, that is

q ∗ q′ ∈ ImQ(q′) means ∃q′′ ∈ Q, q ∗ q′ = q′′ • q′ .

A similar version of the above proposition can be stated for the second part.
Conditions (ii) and (iii) together, say that in the case the original theory is consis-

tent with the experiment q, that is when m⊗q 6= ⊥, the theory is simply ”updated”
with the action q using the update product:

if m⊗ q 6= ⊥ then m ∗ q = m⊗ q

Otherwise, the theory m has been refuted by the experiment q, and it has to be
revised. Similarly, in the case the original action theory is consistent with the
experiment, the two action theories are simply composed sequentially in q • q′: the
new theory says that action q followed by action q′ has been going on:

if q • q′ 6= ⊥ then q ∗ q′ = q • q′

Condition (iv) corresponds to the AGM clause of “success of revision”; it says
that revision with some consistent new information q such that q 6= ⊥, is always
successful, in the sense that the revised theory is consistent m ∗ q 6= ⊥.

Finally, condition (v) imposes two types of transitivity of revision 11 . It is a
dynamic version of the classic AGM condition about revision with a conjunction
φ ∧ ψ. Since we have two types of revisions (one for propositions and one for
actions), we need to relate the two. In particular, the first clause of the fifth axiom
is about the consistency of revision of actions with revision of propositions. It says
that if we revise a proposition m with an action q that has itself been revised by
another action q′, we get the same revision as when we first revise m with q and
then with q′. It can also be seen as a way of defining revision of actions q ∗ q′ in
terms of revision of propositions.

11Technically speaking, we will not need this last condition, since all its instances that are relevant to us
will follow from the axioms on belief revision endomorphisms in the next section.
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3 Multi-Agent Dynamic Belief Revision

We want to introduce in the picture agents and their views about the world and
about actions.

Definition 3.1 A dynamic-revision endomorphism 12 on a dynamic revision sys-
tem (M,Q,⊗, ∗) is a pair f = (fM , fQ) of maps

fM : M →M, fQ : Q→ Q ,

satisfying some extra-conditions (to be given below). As before, we skip the super-
scripts whenever possible. The conditions are:

(i) Both fM and fQ are sup-preserving maps, and fQ(1) = 1

(ii) For atoms s ∈ Atm(M), σ ∈ Atm(Q) such that s⊗ σ 6= ⊥, we have

f(s⊗ σ) = f(s) ∗ f(σ)

(iii) For atoms σ, σ′ ∈ Atm(Q) such that σ • σ′ 6= ⊥, we have

f(σ • σ′) = f(σ) ∗ f(σ′)

Intuitively, we think of f(m) as the theory that an arbitrary agent has about
the situation described by m: when the real situation is given m, the agent believes
that this situation is given by (his theory) f(m). Similarly, we think of f(q) as the
theory that the (unspecified) agent has about the action q.

Definition 3.2 A dynamic-revision endomorphism f is said to be doxastic (orD45)
if it satisfies the following additional conditions:

D. (“Consistency of beliefs”): ker(f) = ⊥
45. (“Introspection”): f ◦ f = f

A doxastic dynamic-revision endomorphism is also called an appearance map.

The intuition is that the theory f(m) that the arbitrary agent has about the
situationm, gives the ”appearance” of this situation to the agent (or the ”view” that
the agent on this situation). Axiom D says that, in any consistent situation m 6= ⊥,
the agent has consistent theory f(m) 6= ⊥. Axiom 45 says that the apearance mp
is idempotent, i.e. the agent is introspective: the theory f(f(m)) that he has about
(the situation represented by) his own theory f(m) coincides with his theory, that
is f(f(m)) = f(m).
Note: The notion of epistemic endomorphism in [8,9] was not required to satisfy
the D45 conditions. Moreover, in that context, condition D was not satisfied by the
examples, since (in specific examples) it was contradicted by the nature of update
product: agents may indeed come to inconsistent believes when using the update
product of [5,6] to update their beliefs! The reason, again, was the absence of a
mechanism for belief revision.

12Note that this notion differs essentially from the notion of epistemic endomorphism in [8,9]: in the
conditions corresponding to the last two conditions above, the epistemic endomorphisms had update product
⊗, and respectively composition •, instead of dynamic revision ∗.
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Definition 3.3 A multi-agent dynamic belief revision system

(M,Q,⊗, ∗, {fA}A∈A)

is a dynamic revision system (M,Q,⊗, ∗) endowed with a family of appearance maps
(=doxastic dynamic-revision system endomorphisms), indexed by a set of “agents”
A ∈ A.

The element fA(m) ∈ M is called the appearance of (situation) m to agent A,
or the theory of A about m. Different agents may have different views of the same
situation, or different interpretations of the same theory. Similarly, fA(q) is the
appearance of action q to agent A. In other words, fA(q) represents what agent
A thinks is going on when in reality action q is going on. For instance different
appearance maps fA(q) might represent different interpretations or different views
of the experiment q. An experiment might be public or private, its results might
be communicated only to some of the agents, or some outsiders might be deluded
by their dogmatic beliefs into rejecting, misunderstanding or misinterpreting the
experiment.

The essential difference between this notion and the notion of epistemic system
in [8,9] comes from the clauses for the appearance of an updated situation, and of
a composition of actions, which is

fA(s⊗ σ) = fA(s) ∗ fA(σ)

This means that the theory agent A has about the world after the experiment σ,
is obtained by dynamically revising A’s old theory about the world fA(s) with A’s
theory fA(σ) about the experiment. That is, in case the experiment appears to
contradict the old theory, the contradiction is solved by the agent in favor of the
experiment (using the dynamic revision operator). Similarly, the identity

fA(σ • σ′) = fA(σ) ∗ fA(σ′)

means that the theory A has about the composed action σ • σ′ is obtained by
dynamically revising A’s theory about the first action with A’s theory about the
second action.

Belief. The belief modality 2A can be defined as the right-adjoint of the appearance
map: fA(−) a 2A−. Indeed, since the appearance maps are join-preserving maps,
they have meet-preserving Galois right adjoints which are defined as:

2Am
′ =

∨
{m ∈M : fA(m) ≤ m′} .

Formally that is to say

fA(m) ≤ m′ iff m ≤ 2Am
′ .

We read 2Am as “agent A believes theory m ”. A similar notion 2Aq can be
defined for actions. One can easily see that the belief modality has the properties
of a normal modality, and moreover (due to the D45 conditions above), it satisfies
”Introspection” (2Am = 2A2Am) and ”Consistency of beliefs” (2A> = >).

Multi-Agent Learning Systems. To deal with applications, it is useful to enrich
our structure a bit, allowing it to deal with positive and negative tests, and with
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learning actions (and as a consequence, with public/private announcements and
refutations).

Definition 3.4 A multi-agent learning system is a multi-agent dynamic belief re-
vision system

(M,Q,⊗, ∗, {fA}A∈A) ,

endowed with maps

−? : M ×M → Q and LB : Q→ Q ,

for each set B ⊆ A of agents. These maps are required to satisfy certain conditions,
to be given below. As a notation, we put m?n :=?(m,n). We read it as

m?n is the experiment of ”testing” m and (simultaneously) refuting n.

This is an objective non-epistemic, PDL-like test: theory m is ”tested”, while theory
n is ”refuted”, but without any of the relevant agents being announced (of the result
of the test/refutation).

The action LB q is read as learning of action q by group B . More precisely, it can
be described as: “while an action q is happening, the agents in group B privately
get together and learn (in common, by mutual update) that q is happening”. This
learning action is so private that none of outsiders C ∈ A \ B suspect that it is
happening. The required conditions are:

• If s ∈ Atm(M) then s⊗ (m?n) =

 s if s ≤ m and s 6≤ n

⊥ otherwise

• fA(m?n) = 1

• ker(LB q) = ker(q)

• fA(LB q) =

LB q for A ∈ B

1 for A /∈ B

The first clause says that a state survives a test/refutation m?n iff it satisfies the
tested property but it doesn’t satisfy the refuted property; in which case the state
is left unchanged by the state. The second clause says that the appearance of a
pure test/refutation action to all agents is 1, i.e. the action skip in which “nothing
happens”. This expresses the fact that such a PDL-like test is non-epistemic: agents
do not learn anything from it. The third clause says that learning an action q is
(im)possible iff the learned action q is (im)possible. Finally, the fourth clause says
that the learning action appears as ”learning” to all the agents involved in it, and
it appears as skip to all the outsiders.

Public/Private Announcements/Refutations. In a multi-agent learning sys-
tem, we can define a mutual announcement-and-refutation to a group B of agents,
by putting:

m!Bn := LB(m?n) .

10
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Notice that this is a ”combined” action, in which something (m) is mutually an-
nounced, while something else (n) is mutually refuted. More ”pure” special cases
of this are mutual announcements and mutual refutations:

m!B := m!B⊥ and !Bm := >!Bm.

Even more special cases are public announcements and public refutations:

m! := m!A and !m :=!Am.

Also private announcements and private refutations to one agent

m!A := m!{A} and !Am :=!{A}m.

Examples: Secret, Secure Communication and Secret Interception. The
passing of a secret (truthful) message m from A to B (over a secure channel) is
represented by the action m!A,B. If the channel is not really secure and in fact the
message is secretely intercepted (and read, but allowed to go further) by an agent
C, then the action is represented by

LC(m!A,B) .

Using the definition of the learning action, we can calculate the kernels of the
actions defined above. For example we can prove that the refuted proposition of
a public refutation constitutes its kernel. That is, a public refutation cannot be
applied on the states where the refuted proposition holds. In other words:

Lemma 3.5 For a public refutation !m and an atom s ∈ Atm(M) we have

s⊗!m = ⊥ iff s ≤ m.

On the other hand, for a public announcement, every proposition but the an-
nounced one is in the kernel. That is a public announcement action can only be
applied on the states where the announced proposition holds. In other words:

Lemma 3.6 For a public announcement m! and an atom s ∈ Atm(M) we have

s⊗m! 6= ⊥ iff s ≤ m.

Proofs are easy and follow directly from the definition of the kernel of the learning
action and how public announcements and refutation actions are defined in terms
of the learning action.

4 ”Cheating Muddy Children” with Dynamic Belief
Revision.

In this section we apply our setting to the muddy children puzzle, for a full discussion
of its original form we refer the reader to [11]. The puzzle has been solved using
the update product in kripke structures in [5,6] and using the update product in
the algebraic setting of epistemic systems in [8,9]. Here, we first go through the
algebraic analysis of the original puzzle, however, since our interest is in a cheating
version of the puzzle, which has been originally presented in [4] and also discussed
in [8], we encode and solve the cheating version in the algebra. We show where
the epistemic update approach of [4,8] fails and how our current version with the
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revision operator solves the problem; this being the contribution of the dynamic
belief revision of this paper to the cheating version of the muddy children puzzle:
honest children learn that they are deceived and thus will not have contradictory
beliefs after the cheating.

The Original Puzzle. For the purpose of this paper, we deal with with four
children three of them dirty. Suppose children 1, 2, and 3 are the dirty ones and
child 4 is clean. We assume given a learning system and encode the puzzle in it as
follows. The children are in the set of agents:

{1, 2, 3, 4} ⊆ A ,
the module M includes some atomic situations (”states”) sB for B ⊆ A. Each
sB represents the situation in which the dirty children are precisely the ones in the
group B. For instance the following state represents the real state, that is the state
in which the first three children have dirty foreheads:

s1,2,3 ∈ Atm(M)

We also have some stable propositions in Stab(Q) ⊆ M , some saying ‘child i is
dirty’, and some ‘child i is clean’:

Di, Di ∈ Stab(Q) for i = 1, 2, 3, 4 .

These are “facts” that cannot be changed by epistemic actions, so that is why we
assume them to belong to Stab(Q). Each state satisfies its corresponding facts, i.e.
we put

sB ≤ Di iff i ∈ B ,
and

sB ≤ Di otherwise .

In any state sB, each child sees the faces of other children but not his own, so
he doesn’t know if he’s dirty or not. This is encoded in the appearance maps, by
putting

fi(sB) = sB∪{i} ∨ sB\{i} ,
for example in the real state s1,2,3 where child one is dirty, he thinks either he is or
he is not dirty: the real state appears to him as f1(s1,2,3) = s1,2,3 ∨ s2,3.

Father’s first announcement that “At least some one is dirty” can be represented
as a public announcement:

q0 := (∨4
i=1Di)!

which is assumed to be an atomic element of our quantaleQ. By the above definition
of public announcements, we have

fi(q0) = q0 for all 1 ≤ i ≤ 4

This says that every child hears this announcement. Every round in which all
children answer “I don’t know that I am dirty” is represented by a public refutation,
which is also an atomic element of the quantale:

q :=!(∨4
i=12iDi)

with the refuted proposition as its kernel. With these assumptions, we have formal-
ized the original statement of the puzzle, that after two rounds of no answers each
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dirty child knows that he is dirty, and prove it in [8,9]. But here we are interested
in a cheating version of the puzzle, which we are going to deal with below.

The Cheating Version. The muddy children puzzle has several cheating ver-
sions in which different cheating and lying actions happen between the children,
for example for a lying version has been solved in [8]. In this paper we deal with
the scenario discussed in [4]: this scenario is the same as the original version until
before the second round of answers. That is, father makes his announcement and
children answer no in the first round of answers, but after the first round, children 2
and 3 cheat by secretly communicating to each other that they are dirty. The state
of the system after the announcement and the first round of no answers is:

s′ = s1,2,3 ⊗ q0 ⊗ q ,

the cheating is encoded as a secret message passing:

π := (D2 ∧D3)!{2,3} .

Notice that, as discussed before, this action appears to children 1 and 4 as skip:
f1(π) = f4(π) = 1. The new state of the system after this cheating is

s′′ := s′ ⊗ π .

Now the cheating children know they are dirty! Thus, in the second round of
answers, while children 1 and 4 proceed as usual (that is they refute that they know
they are dirty

!(21D1 ∨24D4) ,

the cheating children announce that they know they are dirty

(22D2 ∧23D3)!

So this second round of answers is a combination of yes and no anwers, i.e. a public
refutation by children 1 and 4 and a public announcement by children 2 and 3 at
the same time. This can be encoded as a mutual announcement-and-refutation to
a group action

q′ = (22D2 ∧23D3)!21D1 ∨24D4 .

After q′, child 1 will wrongly conclude that she is clean! In our system, this state-
ment is expressed by the following inequality:

Proposition 4.1
s1,2,3 ≤ [q0 • q • π • q′]21D1 .

Proof (Sketch) We first use the adjunction between update and dynamic modality
to take [q0 • q • π • q′] to the left hand side:

s1,2,3 ⊗ (q0 • q • π • q′) ≤ 21D1 .

Similarly, use the knoweldge-appearance adjunction to take the 21 to the left hand
side:

f1

(
s1,2,3 ⊗ (q0 • q • π • q′)

)
≤ D1 .

Since the sequential composition and update of atoms is an atom, we have

(q0 • q • π • q′) ∈ Atm(Q)
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and also

(s1,2,3 ⊗ (q0 • q • π • q′)) ∈ Atm(M) .

Conditions two and three of the dynamic revision endomorphism (definition 3.1)
tell us that for atoms s ∈ Atm(M) and σ, σ′ ∈ Atm(Q) we have:

f(s⊗ σ) = f(s) ∗ f(σ) and f(σ • σ′) = f(σ) ∗ f(σ′) .

So we can distribute our f1 on the tensor and replace the updates and sequential
compositions with our revisions operator to get:

f1

(
s1,2,3 ⊗ (q0 • q • π • q′)

)
= f1(s1,2,3) ∗ f1(q0) ∗ f1(q) ∗ f1(π) ∗ f1(q′) ,

and it would be enough to show

f1(s1,2,3) ∗ f1(q0) ∗ f1(q) ∗ f1(π) ∗ f1(q′) ≤ D1 .

We replace the f1 maps with their values (introduced above as assumptions) and
we have to show

(s1,2,3 ∨ s2,3) ∗ q0 ∗ q ∗ 1 ∗ q′ ≤ D1 .

According to the lemma 3.6 for the public announcement of the father q0 = (∨4
i=1Di)!

we have

s2,3 ⊗ q0 6= ⊥

this is because by assumption s2,3 ≤ D2 and D2 /∈ ker(q0), so we get

s2,3 ⊗ q0 6= ⊥ and consequently (s1,2,3 ⊗ q0) ∨ (s2,3 ⊗ q0) 6= ⊥

which is equal to

(s1,2,3 ∨ s2,3)⊗ q0 6= ⊥ .

Now by axioms 2 and 3 of definition 2.2:

(s1,2,3 ∨ s2,3) ∗ q0 = (s1,2,3 ∨ s2,3)⊗ q0 ,

and by the same line of argument for actions q and q′ we get

(s1,2,3 ∨ s2,3) ∗ q0 ∗ q ∗ q′ = (s1,2,3 ∨ s2,3)⊗ q0 ⊗ q ⊗ q′

and it would be enough to show

(s1,2,3 ∨ s2,3)⊗ q0 ⊗ q ⊗ q′ ≤ D1 .

Since update distributes over joins, we now have to prove two cases:

s1,2,3 ⊗ q0 ⊗ q ⊗ q′ ≤ D1 and s2,3 ⊗ q0 ⊗ q ⊗ q′ ≤ D1 .

The second disjunct is true since by assumptions we have s2,3 ≤ D1 and D1 is a
fact. The first disjunct is proven by induction on the number of dirty children k.
For the proof of induction we refer the reader to the detailed proofs of [8,9]. The
difference is that there we showed

s2,3 ⊗ q0 ⊗ q ⊗ q = ⊥

because until the third round everybody answered no, but here we have to show

s1,2,3 ⊗ q0 ⊗ q ⊗ q′ = ⊥

because in the second round children 2 and 3 answer yes. This induction is done in
the similar lines, that is by showing (s1,2,3 ⊗ q0 ⊗ q) ∈ ker(q′). 2
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We take this proof to be a “success” of the epistemic system formalism: we
think it accurately predicts the (most likely) behavior of child 1; moreover, child 1’s
belief, though wrong, is justified by the appearance of the actions to her.

The Role of Belief Revision: discovering that you have been deceived.
Observe that at this stage of the cheating muddy children, there is a problem
with child 4: he sees that there are at least three dirty children, so children 2
and 3 cannot have come to know so early that they were dirty. We can see that
there is a contradiction between the announcement q′ and child 4’s beliefs before
this announcement. The state of the system before q′ is s′′ = s′ ⊗ π where s′ =
s1,2,3⊗ q0⊗ q. But the appearance of s′′ to child 4 is the same as the appearance of
s′ to him:

f4(s′′) = f4(s′ ⊗ π) = f4(s′) ∗ f4(π) = f4(s′) ∗ 1 = f4(s′)⊗ 1 = f4(s′) ,

So s′′ is indistinguishable to child 4 from the previous state s′, in which the dirty
children did not know they were dirty. Hence, child 4 believes that e.g. child 2 does
not know that he is dirty: f4(s′′) = f4(s′) 6≤ 22D2. But this is contradicted by the
announcement q′, by which child 2 says he knows he is dirty. In other words, the
appearance of the state s′′ to child 4 is incompatible with action q′ happening next:

f4(s′′)⊗ q′ = ⊥ .

Thus, after hearing the announcement q′, child 4 must engage in belief revision,
otherwise he will be lead to have inconsistent beliefs. This is precisely where the
epistemic updates of [4,8] fail: according to the these settings we would have

f4(s′′ ⊗ q′) = f4(s′′)⊗ f4(q′) = f4(s′′)⊗ q′ = ⊥ ,

and hence

s′′ ⊗ q′ ≤ 24⊥ ,

which says at the next state, child 4 will believe the impossible. However, as will
be shown in the following proposition, in our dynamic revision setting this is not
the case:

Proposition 4.2 In the dynamic belief revision setting, child 4 successfully revises
his beliefs and will not believe in the impossible:

s′′ ⊗ q′ � 24⊥

Proof. As before, we use the adjunction to take the 24 to the left hand side to get

f4(s′′ ⊗ q′) � ⊥ .

Now observe that

f4(s′′ ⊗ q′) = f4(s′′) ∗ f4(q′) = f4(s′′) ∗ q′ 6= ⊥

since q′ 6= ⊥ and we are done. 2

So child 4 has succesfuly revised his beliefs; in fact, our revision axioms imply
that he can also form a new hypothesis m′′ 6≤ ker(q′) about the previous state s′′,
hypothesis that can explain his new beliefs:

f4(s′′) ∗ q′ = m′′ ⊗ q′ .
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5 Conclusion and Future Work

We have presented an algebraic setting for dynamic belief revision in multi-agent
systems. Our main mathematical object is a Belief Revision System based on Epis-
temic Systems as algebraic models of Dynamic Epistemic Logic. We axiomatize a
notion of multi-agent dynamic revision, which generalizes the update product to
inconsistent pairs of a theory and an experiment, and which revises the theory to
accommodates the experiment. In our setting, agents can revise with complex epis-
temic propositions as well as with facts. They can also revise past actions in the
view of new experiments. We have applied our setting to a cheating version of the
muddy children puzzle, and show that by using this logic, after the cheating the hon-
est children would not face any dangerous consequences, in terms of contradiction
and confusion.

We are currently working on a complete sequent calculus for this logic, adapting
the work in [8,9] to the present setting. Also, for simplicity we have chosen here
to follow the AGM approach in postulating a uniform revision rule: ”the rational”
revision operator. But there exists of course the possibility of having “personalised
revision” operators: by introducing labelled revision operators ∗A for each agent,
we can allow different agents to use different revision rules, subject only to minimal
rationality constraints. We are planning to investigate this possibility in future
work.
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