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1 Introduction

Side Channel Attack is an attack that enables extraction of a secret key stored
in a cryptographic device, such as Smart Card. In this attack, an attacker
monitors the power consumption of the cryptographic device and then sketches
a graph of power or energy emitted against time. From this graph, the attacker
can reconstruct the sequence of operations executed in the device because we
can easily distinguish between Addition and Doubling as executing Doubling
always emits less energy (heat) than Addition. As a consequence the attacker
can recover all the bits of the binary representation of the secret key.

For example: let’s have a look at Binary Multiplication Method and I shall
assume that the attacker can distinguish between Addition and Doubling.

Q = M
P = 0
For i = 1 to N

if(ki == 1) then P = P + Q
Q = 2Q

return P

As the attacker can derive the output trace from the graph of power con-
sumption against time, for instance: the output trace is ADDADD. Then he or
she also can recover the key which is 10100 in this case.

In order to prevent this kind of attack, various randomised exponentiation al-
gorithms have been proposed in [1],[4],[5],[6],[8],[9]. The purpose of this project
is to look at these algorithms and then to analyse whether or not they are vulner-
able to side channel attacks via input-driven Hidden Markov Model (IDHMM)
proposed in [2] and [3].

The report is organised as follows. I describe and draw IDHMM for three
algorithms that are not secure against IDHMM in part I. In part II, I discuss the
differences as well as advantages and disadvantages of two IDHMMs. Finally,
I explain why IDHMM can not be used to attack a number of randomised
algorithms in part III.
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Part I

Algorithms that are vulnerable to
Side Channel Attack by using
Hidden Markov Model

2 NAF recoding algorithm

2.1 Non Adjacent Form (NAF) recoding algorithm

The reason why we want to compute the NAF of a non-negative integer given in
binary representation is that point multiplication algorithm can be speed ed up
because the NAF representation has no adjacent non-zero digits or in another
word the binary representation is sparse.

ALGORITHM I.1: Conversion to NAF
INPUT: An integer k =

∑l−1
j=0 kj2j , kj ∈ {0, 1}.

OUTPUT: NAF k =
∑l

j=0 sj2j , sj ∈ {−1, 0, 1}.
1. c0 = 0.
2. For j = 0 to l do:
3. cj+1 = b(kj + kj+1 + cj)/2c (assume ki = 0 for i ≥ l),
4. sj = kj + cj − 2cj+1.
5. Return (slsl−1...s0).

Proof
• 1 ≥ si ≥ −1.
From Steps 3 and 4:

sj = kj + cj − 2b(kj + cj + kj+1)/2c
and
(kj + cj + kj+1)/2 ≥ b(kj + cj + kj+1)/2c ≥ b(kj + cj)/2c

therefore
sj ≥ −kj+1 ≥ −1
sj ≤ kj + cj − 2b(kj + cj)/2c ≤ 1

• If si = −1 then si+1 = 0
From Step 4: si = kj + cj − 2cj+1

Therefore both cj+1 and (kj + cj) are equal to 1.
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cj+1 = b(kj + kj+1 + cj)/2c
= b(1 + kj+1)/2c
= 1

Therefore
kj+1 = 1.

cj+2 = b(kj+1 + kj+2 + cj+1)/2c
= b(1 + kj+2 + 1)/2c
= 1

Therefore
si+1 = kj + cj − 2cj+2

si+1 = 0

• If si = 1 then si+1 = 0
From Step 4: si = kj + cj − 2cj+1

Therefore cj+1 = 0 and (kj + cj) = 1.
cj+1 = b(kj + kj+1 + cj)/2c

= 0
therefore
ki+1 = 0

cj+2 = b(kj+1 + kj+2 + cj+1)/2c
= b(kj+2)/2c
= 0

si+1 = kj+1 + cj+1 − 2cj+2

= 0

• s =
∑l

j=0 si2j = k =
∑l−1

j=0 ki2j

s =
∑l

j=0 sj2j

=
∑l

j=0(kj + cj − 2cj+1)2j

=
∑l

j=0 kj2j +
∑l

j=0 cj2j − 2
∑l

j=0 cj+12j

=
∑l

j=0 kj2j +
∑l

j=0 cj2j −
∑l

j=0 cj+12j+1

=
∑l

j=0 kj2j +
∑l

j=0 cj2j −
∑l+1

j=1 cj2j

=
∑l

j=0 kj2j + c0 − cl+12l+1

=
∑l

j=0 kj2j + 0− b(kl + kl+1 + cl)/2c
=

∑l
j=0 kj2j − b(0 + 0 + cl)/2c

=
∑l

j=0 kj2j

= k

2.2 Description of the randomised algorithm

In order to prevent DPA, a randomised NAF recoding algorithm was first pro-
posed in 2003 by Jae Cheol Ha and Sang Jae Moon [1]. The randomised algo-
rithm is built based on the ideas of NAF algorithm but the binary representation
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Input Output
ki+1 ki ci ci+1 di

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 0
1 0 1 1 -1
1 1 0 1 -1
1 1 1 1 0

Table 1: NAF recoding method

of the output is not always in the form of NAF. However the density of non zero
bit is still low (sparse).

As you can notice that we use auxiliary carry ci+1 in NAF recoding algo-
rithm and ci+1 is the (i+1)th carry with c0 and si is the ith NAF digit. So that
the concatenation:

ci+1si = ci+121 + si20 .

And if ci+1si = 01 then alternatively we can represent it as 11̄ and it is
where random factor comes in as follows.

If we have ki+1kici = 001 then from steps 3 and 4, we have ci+1si = 01. So
if a random bit ri is set to 0 then ci+1si = 01. Otherwise if the random bit ri

is set to 1 then ci+1si = 11̄.

Apart from the cases when ki+1kici = 001, ki+1kici = 010, ki+1kici =
101, ki+1kici = 110 the NAF digit is independent of random bit.

You can see more details about each case in the tables 1 and 2.

2.3 Explanation of the State Diagram of the Randomised
Algorithm

The algorithm is implemented from Right to Left or from Least Significant Bit
(LSB) to Most Significant Bit (MSB).

The state diagram is in the form of Hidden Markov Model (HDD) described
in [2] and [3]. However, there is one difference between this diagram and normal
diagram. The difference is that at the very beginning, this model always guesses
the first two least significant bits but after that it only guesses one bit at a time.
The reason is explained as follows.
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Input Output
ki+1 ki ci ri ci+1 di Remarks

0 0 0 0 0 0 NAF
0 0 0 1 0 0 NAF
0 0 1 0 0 1 NAF
0 0 1 1 1 -1 AF
0 1 0 0 0 1 NAF
0 1 0 1 1 -1 AF
0 1 1 0 1 0 NAF
0 1 1 1 1 0 NAF
1 0 0 0 0 0 NAF
1 0 0 1 0 0 NAF
1 0 1 0 1 -1 NAF
1 0 1 1 0 1 AF
1 1 0 0 1 -1 NAF
1 1 1 1 0 1 AF
1 1 1 0 1 0 NAF
1 1 1 1 1 0 NAF

Table 2: Random NAF recoding method

As you can see from the original NAF recoding algorithm. In order to find
the ith bit, we need to know the ith and (i+1)th bits of the binary representation
of the input number. As a result, at the very beginning, to be able to match
the first operation (either Doubling or Addition) we have to guess the first two
least significant bits.

However, after the first stage, we continue to match the second NAF digit
with the 2nd and 3rd input digit. But we have 2nd bit in our pocket from the pre-
vious stage already that is why we only have to guess one extra bit from now on.

To summarise what I have said so far: In order to match si (for i ≥ 1), we
need to guess ki and ki+1 but we have ki from the previous iteration (matching
si−1) therefore we only need to guess ki+1.
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Transition Key Bits Probability
q
(n)
1 → q

(n+2)
10 00 1

q
(n)
1 → q

(n+2)
11 10 1

q
(n)
1 → q

(n+2)
2 01 1

q
(n)
1 → q

(n+2)
3 11 1

q
(n)
2 → q

(n)
13 n/a 1

q
(n)
3 → q

(n)
12 n/a 1

q
(n)
4 → q

(n)
10 n/a 1

q
(n)
5 → q

(n)
11 n/a 1

q
(n)
6 → q

(n)
14 n/a 1

q
(n)
7 → q

(n)
15 n/a 1

q
(n)
8 → q

(n+1)
7 1 1/2

q
(n)
8 → q

(n+1)
5 1 1/2

q
(n)
8 → q

(n+1)
4 0 1/2

q
(n)
8 → q

(n+1)
6 0 1/2

q
(n)
9 → q

(n+1)
9 1 1

q
(n)
9 → q

(n+1)
8 0 1

q
(n)
10 → q

(n+1)
10 0 1

q
(n)
10 → q

(n+1)
11 1 1

q
(n)
11 → q

(n+1)
2 0 1

q
(n)
11 → q

(n+1)
3 1 1

q
(n)
12 → q

(n+1)
2 0 1/2

q
(n)
12 → q

(n+1)
8 0 1/2

q
(n)
12 → q

(n+1)
3 1 1/2

q
(n)
12 → q

(n+1)
9 1 1/2

q
(n)
13 → q

(n+1)
4 0 1/4

q
(n)
13 → q

(n+1)
6 0 1/4

q
(n)
13 → q

(n+1)
10 0 1/2

q
(n)
13 → q

(n+1)
5 1 1/4

q
(n)
13 → q

(n+1)
7 1 1/4

q
(n)
13 → q

(n+1)
11 1 1/2

q
(n)
14 → q

(n+1)
4 0 1/2

q
(n)
14 → q

(n+1)
6 0 1/2

q
(n)
14 → q

(n+1)
5 1 1/2

q
(n)
14 → q

(n+1)
7 1 1/2

q
(n)
15 → q

(n+1)
0 0 1

q
(n)
15 → q

(n+1)
1 1 1

Table 3: The Transition probability table for the NAF recoding algorithm using
Smart HMM.
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3 Liardet-Smart Algorithm

3.1 Signed m-ary Window Decomposition

ALGORITHM II.1:Signed m-array Window decomposition
INPUT: An integer k =

∑l
j=0 2j , kj ∈ {0, 1}, kl = 0

OUTPUT: A sequence of pairs {(bi, ei)}d−1
i=0

1. d = 0, j = 0.
2. While j ≤ l do:
3. if kj = 0 then j = j + 1
4. else do:
5. t = min{l, j + r − 1}, hd = (ktkt−1...kj)2
6. if hd > 2r−1 then do:
7. bd = hd − 2r,
8. increment the number (ktkt−1...kj)2 by 1
9. bd = hd

10. ed = j, d = d + 1, j = t + 1.
11. Return the sequence (b0, e0), (b1, e1), ..., (bd−1, ed−1).

In this algorithm [12], the size of the window is always fixed or constant. As
you might notice the window width does not affect the final result so that it can
be varied randomly as suggested in [1].

3.2 Randomised Signed m-ary Window Decomposition

ALGORITHM II.21: Randomised Signed m-array Window decomposition
INPUT: An integer k =

∑l
j=0 2j , kj ∈ {0, 1}, kl = 0

OUTPUT: A sequence of pairs {(bi, ei)}d−1
i=0

1. d = 0, j = 0.
2. While j ≤ l do:
3. if kj = 0 then j = j + 1
4. else do:
5. r =random {1, ..., R}
6. t = min{l, j + r − 1}, hd = (ktkt−1...kj)2
7. if hd > 2r−1 then do:
8. bd = hd − 2r,
9. increment the number (ktkt−1...kj)2 by 1
10. bd = hd

11. ed = j, d = d + 1, j = t + 1.
12. Return the sequence (b0, e0), (b1, e1), ..., (bd−1, ed−1).

The only difference between this algorithm and the above is that window
width is chosen randomly or in another word, the base is picked randomly from
a set of power of two. Later on in this report, I shall write about another algo-
rithm (MIST) which is only slightly different from the Smart-Liardet algorithm
in the sense that the base is not necessary a power of two but can be any number
chosen randomly.
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At the next stage, the output of the Random Signed m-ary Window Decom-
position which is a sequence of pairs (b0, e0), (b1, e1), ..., (bd−1, ed−1) will be the
input of the Point Multiplication Algorithm as follows.

ALGORITHM II.22:Point Multiplication: Signed m-array Window
INPUT: A point, P, and {(bi, ei)}d−1

i=0 such that k =
∑d−1

j=0 bi2ei

OUTPUT: Q = [k]P
Precomputation
1. P1 = P, P2 = [2]P
2. For i = 1 to 2r−2 − 1 do P2i+1 = P2i−1 + P2

3. Q = Pbd−1

Main loop
4. For i = d-2 to 0 by -1 do:
5. Q = [2ei+1−ei ]Q.
6. If bi > 0 then Q = Q + P−bi

,
7. Else Q = Q - P−bi .
8. Q = [2e0 ]Q.
9.Return Q.

One may ask why cannot we merge the two above algorithms together to
make the process more compact and faster. Well, it seems to me that we cannot
do it because of the two reasons:

• Firstly, Random Decomposition Algorithm only works from right to left
(or from LSB to MSB) and we can not reverse the process because there will
be a problem with Step 7, 8 and 9 as it does not affect the output sequence any
more when 1 is added to (ktkt−1...kj)2 if we run the algorithm from Left to Right.

• Secondly, Point Multiplication Algorithm works from Right to Left (MSB
to LSB) and it can not be reversed, either. Assume that we run the algorithm
from Left to Right and at the end of iteration i, we have:

Q =
∑j=i

j=0((−1)bj P|bj |2
ej )

It may works if the window width is always 1 but unfortunately the window
size is variable so that we shall need one more variable to hold the value of 2ei

and one more Multiplication which is P|bi|2
ei at every iteration.

3.3 Explanation of State Diagram of Smart and Liardet
Algorithm

In this case, we assume that the maximum window size is 5 (R = 5) and the
probability of all window widths are equal to one another: Pr(r = i) = 1/R for
1 ≤ i ≤ R. The Hidden Markov Model guesses the secret key bit by bit from
LSB to MST.

At the beginning, Doubling (D) is implemented repeatedly until the 1st non-
zero bit is encountered. This behaviour is represented by State 1 of the State

10



Transition Key Bits Probability
q
(n)
1 → q

(n+1)
1 0 1

q
(n)
1 → q

(n+1)
2 1 1

q
(n)
2 → q

(n)
r+2 n/a 1

q
(n)
3 → q

(n+1)
2 0 1

q
(n)
3 → q

(n+1)
3 1 1

q
(n)
i → q

(n+1)
i+1 for i = 4,...,r 0 or 1 1

q
(n)
r+1 → q

(n+1)
1 0 1

q
(n)
r+1 → q

(n+1)
3 1 1

q
(n)
r+2 → q

(n+1)
1 0 2/r

q
(n)
r+2 → q

(n+1)
2 1 1/r

q
(n)
r+2 → q

(n+1)
3 0 1/r

q
(n)
r+2 → q

(n+1)
i fori = 4, ..., r + 1 0 or 1 1/r

Table 4: The Transition probability table for Liardet-Smart algorithm using
Smart HMM.

Diagram.

As soon as the 1st non-zero bit is encountered, an Addition (A) will be
implemented and then follows it there will be one or more D depending on the
width of the window. This part is represented on State 2, 7 and 4..6.
• If the window size is 5 (R, maximum) then it jumps from State 7 to 4.
• If the window size is 4 (R-1) then it jumps from State 7 to 5.
• If the window size is 3 (R-2) then it jumps from State 7 to 6.
• The interesting case is when the window size is either 1 or 2:

if the next bit is zero then it jumps to State 1 with probability 2/r in both
cases when window size is 1 or 2.

However if the next bit is 1 then there are two possibilities. When window
width is 1 the next state is 2 (Addition) with probability 1/R otherwise as the
last bit of the window is 1 as with other cases (when window size is greater than
2) it jumps to State 3.

Finally, the order of operation of State 1 and 3 are opposite to each other.
The difference comes from the Step 7 and 9 of the Random Decomposition Al-
gorithm when the last bit of the window is 1 then the behaviour of the next
window depends on not only the next bit but also the previous window.
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4 Binary Multiplication

4.1 Binary Multiplication Algorithm

ALGORITHM III.1: The Binary Algorithm for ECC scalar multiplication
Assume that k = kNkN−1...k2k1

INPUT: k, M
OUTPUT: k * M
Q = M
P = 0
For i = 1 to N

if(ki == 1) then P = P + Q
Q = 2Q

return P

4.2 Randomised Binary Algorithm

Oswald and Aigner have proposed two randomised exponential algorithms [13]
for scalar multiplication in ECC implementation. The algorithms are based on
the randomisation of ADD-SUBTRACT chain. For example:

15P = P + 2(P + 2(P + 2P))
Alternatively 15P = 16P - P = 2(2(2(2P))) - P

More generally, a series of more than two 1’s in the binary representation of
k can be replaced by a block of 0’s and a 1̄ (where 1̄ = -1).

01a → 10a−11̄ where 1̄ represents -1

A second transformation proposed in [13] transforms an isolated 0’s inside a
block of 1’s.

01a01b → 10a10b−11̄
Proof:

01a01b = (2a − 1)2b+1 + 2b − 1
= 2a+b+1 − 2b+1 + 2b − 1
= 2a+b+1 − 2b − 1
= 10a10b−11̄

In the Binary Multiplication Algorithm, at each step, we flip a coin to de-
cide whether or not to apply the transformation. Below is the codes of two
randomised algorithms.
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ALGORITHM III.21: Randomised Addition-Subtraction Chains OA1
01a → 10a−11̄
INPUT: k,M
OUTPUT: kM
Q = M
P = 0
State = 0
For i = 1 to N

switch(State)
case 0: if(ki == 1) then P = P + Q, State = 1

Q = 2Q
case 1: if(ki == 1) then

b = ran-bit()
if(b == 0) then P = P + Q
else P = P - Q, State = 2

else State = 0
Q = 2Q

case 2: if(ki == 1) then
b = ran-bit()
if(b == 0) then Q = 2Q
else Q = 2Q, P = P+Q, State = 1

else P = P+Q, Q = 2Q, State = 0
return P

ALGORITHM III.22: Randomised Addition-Subtraction Chains OA2
01a01b → 10a10b−11̄
Assume that k = 00kN−1...k2k1k0

INPUT: k,M
OUTPUT: kM
Q = M
P = 0
State = 0
For i = 0 to N - 1

switch(State)
case 0: if(ki == 1) then P = P + Q, State = 1

Q = 2Q
case 1: if(ki == 1) then

b = ran-bit()
if(b == 0) then P = P - Q, State = 2
else P = P + Q

else State = 0
Q = 2Q

case 2: if(ki == 0) then P = P - Q, State = 3
Q = 2Q

case 3: if(ki == 1) then
Q = 2Q
if(b == 0) then P = P + Q, State = 1

else P = P + Q, Q = 2Q, State = 0
return P

13



Transition Key Bits Probability
q
(n)
1 → q

(n+1)
1 0 1

q
(n)
1 → q

(n+1)
2 1 1

q
(n)
2 → q

(n)
3 n/a 1

q
(n)
3 → q

(n+1)
2 1 1/2

q
(n)
3 → q

(n+1)
4 1 1/2

q
(n)
3 → q

(n+1)
1 0 1

q
(n)
4 → q

(n)
5 n/a 1

q
(n)
5 → q

(n+1)
5 1 1/2

q
(n)
5 → q

(n+1)
6 1 1/2

q
(n)
5 → q

(n+1)
8 0 1

q
(n)
6 → q

(n)
7 n/a 1

q
(n)
7 → q

(n+1)
2 1 1/2

q
(n)
7 → q

(n+1)
4 1 1/2

q
(n)
7 → q

(n+1)
1 0 1

q
(n)
8 → q

(n)
1 n/a 1

Table 5: The Transition probability table for the OA1 binary exponentiation al-
gorithm using Smart HMM. We have Q∗ = {p2, p4, p6} and Q⊥ = {p1, p3, p5, p7}

4.3 Explanation of the State Diagram of the Randomised
Binary Algorithm

The State Diagrams can be derived easily from the code of two randomised
algorithms described above.

14



Transition Key Bits Probability
q
(n)
0 → q

(n+1)
1 0 1

q
(n)
0 → q

(n+1)
2 1 1

q
(n)
1 → q

(n+1)
1 0 1

q
(n)
1 → q

(n+1)
2 1 1

q
(n)
2 → q

(n)
3 n/a 1

q
(n)
3 → q

(n+1)
2 1 1/2

q
(n)
3 → q

(n+1)
4 1 1/2

q
(n)
3 → q

(n+1)
1 0 1

q
(n)
4 → q

(n)
5 n/a 1

q
(n)
5 → q

(n+1)
5 1 1

q
(n)
5 → q

(n+1)
6 0 1

q
(n)
6 → q

(n)
7 n/a 1

q
(n)
7 → q

(n+1)
8 0 1

q
(n)
7 → q

(n+1)
9 1 1/2

q
(n)
7 → q

(n+1)
7 1 1/2

q
(n)
8 → q

(n)
1 n/a 1

q
(n)
9 → q

(n)
10 n/a 1

q
(n)
10 → q

(n+1)
1 0 1

q
(n)
10 → q

(n+1)
2 1 1/2

q
(n)
10 → q

(n+1)
4 1 1/2

Table 6: The Transition probability table for the OA2 binary exponenti-
ation algorithm using Smart HMM. We have Q∗ = {p2, p4, p6, p8, p9} and
Q⊥ = {p1, p3, p5, p7, p10}
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Part II

Comparison between two types of
Hidden Markov Models (HMM)

What I am going to write in this part is something which I have noticed why
working and playing with both kinds of HMMs that were originally proposed by
Chris Karlop and David Wagner (I refer to this type of HMM as Karlop-Wagner
HMM) in [2] and then by Nigel P Smart (I refer to this type of HMM as Smart
HMM) in [3]. The conclusion is that the Smart HMM might be much more
compact and easier to draw as well as time consuming that the Karlop-Wagner
HMM. And there are two reasons for that as follows.

5 State Duplication

First of all, if you have read the paper by Chris Karlop and David Wagner [2],
you might have noticed that, on page 22 of the paper, the authors said that
the Karlop-Wagner HMM has to be faithful. So what it means is that there is
one-to-one correspondence between an execution q and the key k used in that
execution. Therefore there is no ambiguity in what bit annotated the corre-
sponding directed edge that was taken from Qi to Qj : (Where Qi and Qj are
states in the HMM)

∀Qi, Qj ∈ Q if Pr(Qi, Qj , 0) > 0 ⇒ Pr(Qi, Qj , 1) = 0 and vice versa.

On the other hand, we do not need this condition in HMM suggested by
Nigel Smart [3]. As a result, the number of states in the Karlop-Wagner HMM
is often more than twice as many as the number of states in the Smart HMM.

For example: if we look at Liardet-Smart Algorithm.

• Using Smart HMM (Fig.2): the states Q4, Q5 and Q6 can take both 0 and
1 as input.

e.g: Pr(Q7, Q4, 0) = Pr(Q7, Q4, 1) > 0

And when the maximum window size is 5 then the number of states is 7.
More generally, if the maximum widow width is R then the number of states in
the State Diagram is 4 + (R - 2) = R + 2.

• Using Karlop-Wagner HMM (Fig.5): as you can see the two states Q2 and
Q3 have the same functionality as single state Q7 in Fig.2 and similarly we have

Q4 + Q5 (Fig.5) = Q4 (Fig.2)

Q6 + Q7 (Fig.5) = Q5 (Fig.2)
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Q8 + Q9 (Fig.5) = Q6 (Fig.2)

Extending of the Karlop-Wagner HMM to different maximum window sizes
is trivial by removing or inserting new states such as Q10 and Q11..

We notice that in the Karlop-Wagner HMM for Smart-Liardet Algorithm,
observable operations are placed on the edges rather on the states. Fortunately,
edge annotated state machine can easily be transformed into a semantically
equivalent state annotated machine by treating each edge as a state of the new
HMM. However I am not going to do it here as the resulting model will be huge.

If we work out then when the maximum window width is 5 then there are 30
states (number of edges) in total. More generally, if the maximum window size
is R then the number of states in the State Annotated Machine is 6 + 2[2(R-2)
+ 2(R-2)] = 8R - 10.

So that when R goes to infinity, the number of states in the Karlop-Wagner
HMM is eight times as many as number of states in the Smart HMM.

6 Decomposition of observable sequence of op-
eration

• In Smart HMM, each state only can carry with it either Doubling (D) or
Addition (A) operation. As a result, it is very straight forward to decompose
a observable sequence operation into a sequence of symbols from O (set of ob-
servable symbols).

• However in the Karlop-Wagner HMM, each state can carry with it any
sequence of As or Ds and this is where we have a problem with deterministic
decomposition.

For example: we look at OA1 algorithm where at each state, we flip a coin
to decide whether or not to apply this transformation : 01a = 10a−11̄

Assume that it would be convenient if our observable alphabet O = {D,AD,AAD}∗.
From Fig.6(a) , the transition from Q2 to Q1 executes a D first and then an A,
resulting in a DA output symbol corresponding to that key bit. This is unde-
sirable as traces fail to be uniquely decode-able. For instance: DADD can be
interpreted as either (DA,D,D) or (D,AD,D). To be able to fix the problem we
have to relabel the DA transition from Q2 to Q1 to simply D and add a new
state Q3 as in Fig.6(b) As a consequence the number of states is more than
usual.
Furthermore, as each state can have more than one operation so that the num-
ber of possible states with same number of As and Ds is big a because there
are many combination of Ds and As compared to only two symbols which are
A and D in Smart HMM.
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Transition Key Bits Probability
q
(n)
1 → q

(n+1)
1 0 1

q
(n)
1 → q

(n+1)
4 1 1

q
(n)
2 → q

(n+1)
1 0 1

q
(n)
2 → q

(n+1)
4 1 1

q
(n)
3 → q

(n+1)
2 0 1

q
(n)
3 → q

(n+1)
3 1 1/2

q
(n)
3 → q

(n+1)
11 1 1/2

q
(n)
4 → q

(n+1)
5 0 1

q
(n)
4 → q

(n+1)
6 1 1/2

q
(n)
4 → q

(n+1)
9 1 1/2

q
(n)
5 → q

(n+1)
1 0 1

q
(n)
5 → q

(n+1)
4 1 1

q
(n)
6 → q

(n+1)
2 0 1

q
(n)
6 → q

(n+1)
3 1 1/2

q
(n)
6 → q

(n+1)
11 1 1/2

q
(n)
7 → q

(n+1)
1 0 1

q
(n)
7 → q

(n+1)
4 1 1

q
(n)
8 → q

(n+1)
5 0 1

q
(n)
8 → q

(n+1)
6 1 1/2

q
(n)
8 → q

(n+1)
9 1 1/2

q
(n)
9 → q

(n+1)
5 0 1

q
(n)
9 → q

(n+1)
6 1 1/2

q
(n)
9 → q

(n+1)
9 1 1/2

q
(n)
10 → q

(n+1)
2 0 1

q
(n)
10 → q

(n+1)
3 1 1/2

q
(n)
10 → q

(n+1)
11 1 1/2

q
(n)
11 → q

(n+1)
7 0 1

q
(n)
11 → q

(n+1)
8 1 1/2

q
(n)
11 → q

(n+1)
10 1 1/2

Table 7: The Transition probability table for the OA1 binary exponentiation
algorithm using Karlop-Wagner HMM.
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Transition Key Bits Probability
q
(n)
1 → q

(n+1)
1 0 1

q
(n)
1 → q

(n+1)
3 1 1

q
(n)
2 → q

(n+1)
11 0 1

q
(n)
2 → q

(n+1)
2 1 1

q
(n)
3 → q

(n+1)
4 0 1

q
(n)
3 → q

(n+1)
9 1 1/2

q
(n)
3 → q

(n+1)
5 1 1/2

q
(n)
4 → q

(n+1)
1 0 1

q
(n)
4 → q

(n+1)
3 1 1

q
(n)
5 → q

(n+1)
11 0 1

q
(n)
5 → q

(n+1)
2 1 1

q
(n)
6 → q

(n+1)
1 0 1

q
(n)
6 → q

(n+1)
3 1 1

q
(n)
7 → q

(n+1)
1 0 1

q
(n)
7 → q

(n+1)
3 1 1

q
(n)
8 → q

(n+1)
4 0 1

q
(n)
8 → q

(n+1)
9 1 1/2

q
(n)
8 → q

(n+1)
5 1 1/2

q
(n)
9 → q

(n+1)
4 0 1

q
(n)
9 → q

(n+1)
9 1 1/2

q
(n)
9 → q

(n+1)
5 1 1/2

q
(n)
10 → q

(n+1)
11 0 1

q
(n)
10 → q

(n+1)
2 1 1

q
(n)
11 → q

(n+1)
6 0 1

q
(n)
11 → q

(n+1)
12 1 1/2

q
(n)
11 → q

(n+1)
13 1 1/2

q
(n)
12 → q

(n+1)
7 0 1

q
(n)
12 → q

(n+1)
8 1 1/2

q
(n)
12 → q

(n+1)
10 1 1/2

q
(n)
13 → q

(n+1)
6 0 1

q
(n)
13 → q

(n+1)
12 1 1/2

q
(n)
13 → q

(n+1)
13 1 1/2

Table 8: The Transition probability table for the OA2 binary exponentiation
algorithm using Karlop-Wagner HMM.
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Part III

Randomised Algorithms that are
secure against HMM

In this part , I shall discuss a number of randomised algorithms that can not be
attacked by Input Hidden Markov Model with explanation why not. In some
cases we still can draw HMM for them but it does not mean they are vulnerable
to side channel attack.

All algorithms discussed in this part are different ways of randomised de-
composition.

7 Overlapping Window method and Simplifying
MIST-Liardet-Smart algorithms

7.1 Simplifying MIST-Liardet-Smart algorithm

The first algorithm I am going to introduce is something that is similar to both
MIST [5] and Liardet-Smart algorithms [1]. Below is the code for this algorithm:

ALGORITHM VI.1: Simple randomised Signed m-array Window decomposition
INPUT: An integer k =

∑l
j=0 2j , kj ∈ {0, 1}, kl = 0

OUTPUT: A sequence of pairs {(bi, ei)}d−1
i=0

1. d = 0, j = 0.
2. While j ≤ l do:
3. r =random {1, ..., R}
4. t = min{l, j + r − 1}, bd = (ktkt−1...kj)2
5. ed = j, d = d + 1, j = t + 1.
6. Return the sequence (b0, e0), (b1, e1), ..., (bd−1, ed−1).

This algorithm is similar to Liardet-Smart algorithm as the window size is
chosen randomly therefore the base is always a power of two. However, in MIST,
the base is not necessary a power of two as it can be any integer number.

Secondly, it is different from Liardet-Smart as it does not skip zero bit.
Therefore the number of window will increase in the case when the binary
representation of the input number is very sparse. It also does not add 1 to
(ktkt−1...kj)2 when the last bit of the previous window is non-zero so that bi is
always zero or positive number.

In general, the algorithm is very simple and it can be regarded as a small
case of MIST algorithm.
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7.2 Overlapping Window Method

This algorithm was proposed in [6].

In Overlapping window method, windows wi and wi+1 are allowed to overlap.

k = (kl−1kl−2...k0)2
= (...(w0 ∗ 2k−h0 + w1)...)2k−hs−1 + ws

where:

k is the window size (constant throughout the algorithm).
s is the number of windows.
hi is the overlapping bit length between wi and wi+1.
hi for i ∈ (0..s− 1) is chosen randomly.

Therefore: sk -
∑s−1

i=0 hi = l (bit length of k)

For example:

d = dl−1...dl−kdl−k−1....dl−k−(k−h0)...d0

dt0 = (dl−1...dl−k)2

w0 is picked randomly satisfying that dt0 − (2h0 − 1) ≤ w0 ≤ dt0

dt1 = (dt0 − w0)2k−h0 + (dl−k−1....dl−k−(k−h0))2

w1 is picked randomly satisfying that dt1 − (2h1 − 1) ≤ w1 ≤ dt1

Now, assume that dl−k−(k−h0) is the Least Significant Bit (LSB) of d then
we terminate the algorithm here and w1 = dt1. Otherwise we reiterate the pro-
cess until we get to the LSB of d.

Proof of the correctness of the algorithm:
Assume that dl−k−(k−h0) is the LSB of d then we have:

w02k−h0 + w1 = w02k−h0 + dt1

= w02k−h0 + (dt0 − w0)2k−h0 + (dl−k−1....d0)2
= dt02k−h0 + (dl−k−1....d0)2
= (dl−1....d0)2
= d

7.3 Why the two algorithms above are secure against HMM

As we can notice that there is no where in the algorithm where the value of
each bit of the binary representation of the input affects the observable output.
Even through the algorithm may look simple or complicated. Therefore:
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Pr(output = D | ki = 0) = Pr(output = D | ki = 1) = 1/2
and Pr(output = A | ki = 0) = Pr(output = A | ki = 1) = 1/2

So that we have achieved maximum entropy and that means the algorithms
are not vulnerable to DPA attack.

8 Flexible Countermeasure using Fractional Win-
dow Method

8.1 Original Algorithm

At first a binary representation of an odd integer number is decomposed in a
way described by the below algorithm:

ALGORITHM VII.11: SPA-resistant width w NAF with Odd Scalar
INPUT: An odd n-bit d = dn−1...d0

OUTPUT: dw[n], dw[n− 1], ....dw[0]
1. r = 0, i = 0, r0 = w
2. While d > 1 do

2.1 u[i] = (d mod 2w+1) - 2w

2.2 d = (d - u[i])/2ri

2.3 dw[r + ri − 1] = 0, dw[r + ri − 2] = 0,..., dw[r + 1] = 0,dw[r] = u[i]
2.4 r = r + ri, i = i + 1, ri = w

3. dw[n] = 0, dw[n− 1] = 0,.... dw[r + 1] = 0,dw[r] = 1
4. Return dw[n],....,dw[0]

Proof: d is always odd at every iteration.

d− u[i] = d− [(dmod2w+1)− 2w]
= d− (dmod2w+1) + 2w

= A0w+1 + 2w where A = dn−1...dw+1

= A10w

Therefore

d = (d− u[i])/2w

= A1
= 1(mod 2)

And then the output sequence dw[n],....,dw[0] of the above algorithm will be
the input for the Scalar Multiplication as follows.
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ALGORITHM VII.12: Scalar Multiplication with Width w NAF
INPUT: d = dw[n],....,dw[0], P, (—dw[i]—)P
OUTPUT: dP
1. Q = dw[c]P for the largest c with dw[c] 6= 0
2.For i = c - 1 to 0

2.1 Q = ECDBL(Q)
2.2 if dw[i] 6= 0 then Q = ECADD(Q,dw[i]P)

2.Return Q
Note that this algorithm is secure against both SPA (simple power analysis)

and DPA (differential power analysis) because the output sequence always has
a fixed pattern:

| 0w−1X || 0w−1X |...| 0w−1X | with odd integers | x |< 2w

| DwA || DwA |...| DwA |

8.2 Flexible Countermeasure with Fractional Window

The proposed countermeasure using Fractional Window method [8] was pro-
posed by Katsuyuki Okeya and Tsuyoshi Takagi in [9]. For simplicity, we assume
the window size is fixed and equal to 4 (w = 4) therefore:

Uw = {±1,±3, ...,±7,±9, ...,±15}
Uw−1 = {±1,±3, ...,±7}

F = {±1,±3, ...,±7,±9} (Fraction window)

The fractional window using class F is constructed by inserting the following
step between Step 2.1 and Step 2.2 in Algorithm VII.11 (where B is an integer
and 0 < B < 2w−1. In the case of F, we chose B = 1).

If | u[i] |> 2w−1 + B then u[i] = (u[i] mod 2w)− 2w−1, ri = w-1

However the sequence dw[n],....,dw[0] generated by this fractional window
method has no fixed pattern. For example: we know that | u[i] |> 2w−1 + B if
and only if w-2 (ri - 1) consecutive zeros appear. Otherwise | u[i] |≤ 2w−1 + B.
As a consequence it is not secure against SPA.

Fortunately, we can get around this problem by two novel ideas suggested
in [9] to make the algorithm secure against both DPA and SPA.

• Firstly, we reduce u[i] to the representation of mod 2w−1 with the same
probability for both | u[i] |> 2w−1 and | u[i] |< 2w−1 by using the following trick:

If | u[i] |< 2w−1 then u[i] = (u[i] mod 2w)−2w−1, ri = w-1 with Probability
1-Pw.

Where
Pw =

#F −#Uw−1

#Uw −#Uw−1
(1)
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So that the attacker cannot distinguish the two distributions.

• Secondly, elements in the subset F \Uw−1 are chosen randomly.
Assume B = F \Uw−1. From the above example, we have #F = 10, #Uw−1

= 8 therefore two elements in set B are chosen randomly from {±9, ...,±15}
and attackers cannot guess the value of B because of this random choice.

ALGORITHM VII.2: SPA resistant fractional window width w NAF with Odd Scalar.
INPUT: an odd n-but d, and a width w (rational number).
OUTPUT: dw[n + w0 − 1],....,dw[0], and B = {±b1, ...,±bw12w0−2}
1. w0 = dwe, w1 = w − (w0 − 1)
2. Randomly choose distinct integers

b1, ..., bw12w0−2 ∈R (U+
w0
\U+

w0−1) = {2w0−1 + 1, 2w0−1 + 3, ..., 2w0 − 1},
and but B = {±b1, ...,±bw12w0−2}, Pw = w1,
where U+

v = {1, 3, 5, ..., 2v − 1}
3. r = 0, i = 0
4. While d > 1 do

4.1 x[i] = (d mod 2w0+1) - 2w0 , y[i] = (d mod 2w0) - 2w0−1

4.2 If | x[i] |< 2w0−1 then ri = w0, u[i] = x[i] with Pw,
ri = w0 − 1, u[i] = y[i] with 1− Pw

Else if x[i] ∈ B then ri = w0, u[i] = x[i]
Else ri = w0 − 1, u[i] = y[i]

4.3 d = (d - u[i])/2ri

4.4 dw[r + ri − 1] = 0, dw[r + ri − 2] = 0,..., dw[r + 1] = 0,dw[r] = u[i]
4.5 r = r + ri, i = i + 1

5. dw[n + w0 − 1] = 0,....,dw[r] = 1
6. Return dw[n + w0 − 1],....,dw[0], and B = {±b1, ...,±bw12w0−2}

8.3 Hidden Markov Model

Assume that the window size w ∈ [4, 5], so that there are always at least 4
consecutive Doubling (D) appears. When it comes to the fifth bit we have:

Pr(w = 4 | 5thbit = 1) = Pr(w = 4 | 5thbit = 0) = 1− p
Pr(w = 5 | 5thbit = 1) = Pr(w = 5 | 5thbit = 0) = p

As you can see, it is possible to draw HMM for this algorithm but it does
not mean it is vulnerable to SPA or DPA because at every transition we have:

Pr(DOUBLING | bit = 1) = Pr(DOUBLING | bit = 0)
Pr(ADDITION | bit = 1) = Pr(ADDITION | bit = 0)

As we can not distinguish between zero and non-zero bit so that the algo-
rithm is secure against HMM attacks.
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9 Conclusion and Future Work

In this project, I have looked at six randomised exponentiation algorithms, three
of them are vulnerable to side channel attacks via IDHMM and another three
are not. I also have done some comparisons between two types of IDHMMs
proposed in [2] and [3] used to model side channel attacks.

Further work still needs to be carried out. For example: I have not imple-
mented a tool that takes a Smart HMM of an algorithm and a set of output traces
as inputs and returns the correspondent secret key. Therefore, it is not clear at
the moment, whether or not Smart HMM is actually faster than Karlop-Wagner
HMM, even through I can prove that for the same randomised algorithm, Smart
HMM tends to be more compact and easier to draw than Karlop-Wagner HMM.

In addition, apart from the six algorithms discussed in this report, I also
looked at other randomised algorithms such as Random register renaming to
foil DPA proposed by David May in [10], Add and Double always method in [11]
and Mongomery Ladder in [11]. However, it is quite trivial that these algorithms
are secure against HMM as they always produce fixed pattern output traces.

The conclusion I can draw from here is that Input-Driven Hidden Markov
Model can only attack algorithms that work or make decision and choice based
on the value of particular bits of the binary representation of a secret key.
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