
RSA Threshold Cryptography

H.L. Nguyen

May 4, 2005

Dept. of Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB,
United Kingdom.

hn2503@bristol.ac.uk

Abstract

In this project, a new threshold signing scheme for RSA has been pro-
posed. The scheme does not require a trusted third party and no secure
information is leaked throughout the protocol. The time and storage com-
plexity of the protocol is linear in the number of parties and no restriction
is placed on the RSA moduli. Combined with the n-out-of-n key genera-
tion protocol of Boneh and Franklin, one has a complete solution for the
threshold RSA problem with no trusted dealer. The complete protocol
has also been implemented, a paper has been written and submitted to a
conference on cryptography and coding.

1

Contents

1 Introduction 4

2 Applications of the protocol 6
2.1 Digital Signature . 6
2.2 Distributed Certificate Authority 6
2.3 Electronic voting system and Internet card game protocols 6
2.4 Identification Scheme . 7

3 Cryptography Techniques 8
3.1 Hard Problem . 8

3.1.1 Factoring Problem . 8
3.1.2 Discrete Logarithm Problem 8

3.2 Euler Theorem and Fermat Primality test 8
3.2.1 Euler Theorem . 8
3.2.2 RSA case . 8
3.2.3 Fermat Primality Test 9

3.3 RSA Algorithm . 9
3.4 Shared RSA Threshold Decryption 9

3.4.1 Discrete Logarithm Approach 10
3.4.2 RSA Paillier Approach 10

4 Multi-party Computation Protocols 12
4.1 Shamir Secret Sharing Scheme and Lagrange Coefficient 12

4.1.1 Modulo non-prime . 13
4.1.2 Sharing the final outcome 13

4.2 Benaloh Protocol . 13
4.3 BGW Protocol . 14

4.3.1 Privacy . 15
4.3.2 Sharing the final outcome 15
4.3.3 Extension . 15

5 Shared RSA Secret Keys Generation Protocol, an n-out-of-n
Threshold Scheme 16
5.1 Problem Definition and Notation 16
5.2 Scheme Definition . 17

5.2.1 Picking candidates and Distributed Sieving: 17
5.2.2 Distributed Computation of N: 18
5.2.3 Parallel Trial Division: 19
5.2.4 Load Balance Primality Test: 19
5.2.5 Private Key Generation: 20
5.2.6 Trial Decryption: . 21

5.3 Discussion of the Above Scheme 22
5.3.1 Privacy . 22
5.3.2 Smallest number of parties 22
5.3.3 Generating Prime number 22
5.3.4 Complexity . 23

2

6 Partially Interactive Threshold RSA Signatures 24
6.1 Problem Definition and Notation 24
6.2 Scheme Definition . 25

6.2.1 Dealing Algorithm: . 25
6.2.2 Subset Presigning Algorithm: 26
6.2.3 Signature Share Generation Algorithm: 27
6.2.4 Signature Share Verification Algorithm: 27
6.2.5 Share Combining Algorithm: 28

6.3 Discussion of the Above Scheme 28
6.3.1 Interactiveness . 28
6.3.2 Share Refreshing . 28
6.3.3 Robustness . 29

7 Design, Implementation and Testing 30
7.1 Choice of Language . 30
7.2 Requirement Analysis . 30
7.3 Network protocol . 31

7.3.1 N-ary tree network structure 31
7.3.2 Fully connected network structure 32

7.4 Testing . 34
7.5 Running the protocol . 34
7.6 Limitation and Future work 35

8 Experiment Result and Discussion 36
8.1 Scaling to many parties . 37
8.2 Doubling the length of RSA moduli 37

9 Conclusion 37

3

1 Introduction

Threshold decryption has been studied a lot for the last two decades. It is a
branch of public key cryptography in general, and multi-party computation in
particular. Essentially, in a k-out-of-n threshold crypto-system, denoted (k, n)
where 1 < k ≤ n, for the RSA function [31], our aim is to generate and then
split the secret decryption/signing exponent d into n different pieces, which are
then distributed privately to n parties. This enables:

• Any k or more out of n total parties, when they come together, they can
“reconstruct” the secret d in a way which enables them to decrypt or sign
a message. This should be done in a way that does not reveal the value
of d and its shares to any one in the scheme.

• Secondly, signing or decryption will be totally impossible in the circum-
stance where less than k parties are present.

The area of threshold cryptography has been pioneered by Adi Shamir in his
1978 paper [32], however the idea only took off when the problem was formally
stated by Desmedt in [13]. Since then there has been much work devoted to
the topic such as Desmedt and Frankel [14], Pedersen [29], Gennaro et. al. [21],
and many more. However, the majority of these solutions are only for discrete
logarithm based system that has a direct application to the Elgamal encryption
and decryption algorithm [16]. The reason why discrete logarithm based thresh-
old systems are easier to design is because the group in which one works has a
publicly known order. Whereas, in the RSA signature scheme, the group we are
working in has an unknown group order and so various technical problems arise.
For example, standard polynomial interpolation over the ring Zφ(N) is hard as
no party knows φ(N).

Another problem is that it is relatively easy to generate a shared discrete
logarithm public/private key pair, but it is harder to generate a shared RSA
public/private key pair, n-out-of-n threshold scheme, without the presence of a
trusted third party. However, there was in breakthrough in the area of shared
RSA key generation when both Boyd [7] and Frankel [19] independently pro-
posed a simple and elegant solution for distributed RSA. The decryption key d
is additively shared amongst n parties, d = d1 + d2 + · · ·+ dn, signing is simply
done as follows:

s = md = md1 · · ·mdn (mod N),

and each si = mdi (mod N) is called the partial signature or signature share.
Extending this idea, a number of new schemes for shared RSA key generation

were proposed, for example, a complete solution for this problem was given
in [11]. Unfortunately, the moduli N was assumed to be generated by a trusted
dealer. The dealer, therefore can forge a signature on a message of his or her
choosing. There was also something called general secure circuit evaluation
techniques presented in [4, 8, 22, 34] as primality test can be done by using
boolean circuit. However, this idea was too inefficient to be implemented in
practice. So far, the best solution for this problem is probably the one that
was built by Boneh and Franklin [5, 6], which does not require a trusted third
party, and which can efficiently generate shared RSA keys that satisfy the above
property. This solution is also the one, we have studied and implemented in the

4

first half of this project. The drawback of the scheme is that it only gives us a
n-out-of-n threshold decryption that cannot be switched easily into a k-out-of-n
threshold scheme.

In trying to solve the last piece of this problem, a number of threshold
schemes for RSA have been proposed in the literature, most notable are Ra-
bin’s [30] and Shoup’s [33] schemes. In Rabin’s protocol, the author uses Shamir
secret sharing to share the secret but on signing the k signing parties need to
interact so as to recover the secrets of the non-signing parties. This removes
the problem of working in a group of unknown order, but means the scheme
leaks information about the additive shares of various parties. To get around
this problem a share-refreshing protocol is given. All parts of Rabin’s scheme
require a large amount of interaction between the various parties.

Taking a different approach, Shoup provides a framework that leads to the
possibility of applying the protocol in practice, where dealing, signature share
generation, signature share verification and signature share combining are sep-
arated from each other and only the first part, i.e. dealing, requires interaction
of the various parties. The scheme Shoup proposes is then fully non-interactive,
bar the initial dealing phase. However, the drawbacks of his scheme are that it
requires both a trusted dealer and strong RSA moduli. Hence, Shoup’s scheme
cannot be applied with the Boneh and Franklin shared key generation protocol.

In this project we give a new RSA threshold scheme [25] which does not
require trusted dealers and which can be applied with the Boneh and Franklin
shared key generation protocol. In addition we try to minimise the amount of
interaction required between the parties and we eliminate the need for a share
refreshing stage of the protocol.

5

2 Applications of the protocol

The reason why threshold decryption/signing is very useful in practice is be-
cause not only does it provide secrecy and reliability but also flexibility. In
addition, the property of sharing the secret is ideally suited to applications in
which a group of mutually suspicious individuals with conflicting interests must
cooperate, for example, in an electronic voting system or any gambling games
that will be explained in more detail later on in this section.

2.1 Digital Signature

One of many typical examples is in digital signature. Assuming there are 10
managers in a bank, if every manager has his or her own copy of the secret key
then the system can be easily suffers from single point of failure or misuse due to
compromise and machine break down. In contrast, if a valid signature requires
the signatures of all ten managers in the company then it will be very secure
but might not be convenient to use in real life. Therefore the best solution for
this problem might be that as long as a document is digitally signed by any 5 or
more out of 10 managers then it will be valid and that is exactly what a (5,10)
threshold signing scheme tries to achieve. In addition, if an adversary wants to
obtain a signature on a message, he must compromise at least 5 people in the
scheme and that is a much harder thing to do compared to a traditional public
protocol.

2.2 Distributed Certificate Authority

As another example one can consider a PKI, public key infrastructure, imple-
mentation where the CA, certificate authority, is distributed amongst many
sites, so as to avoid a single point of failure. But the system must be robust
against occasional system downtime or network problems. Hence, distributing
the RSA signing key amongst a number of boxes which implement the CA in a
threshold manner one can obtained security against a single point of failure and
robustness against errors.

2.3 Electronic voting system and Internet card game pro-
tocols

Both of these two applications share many remarkable things in common, and
they are also used as the bench mark to test new ideas in cryptography and
information security. In an electronic election, as Cramer described in [10],
where voters can vote on line, it is really crucial to make sure that no body,
party or organisation can find out the final result by doing a decryption before
the very end of the election. In traditional way, the secret resides or is under
the control of a trusted third party. As a consequence, the system is susceptible
to single point of failure because if the trusted dealer is compromised (with a
very low probability) then that is the end of the election. On the other hand,
sharing the secret key by multiple parties, each holds a share of the secret, can
guarantee that decryption is done if and only if all parties agree to do it and
therefore the scheme can give us a much higher level of security. The same thing
can be applied to Internet Card Game protocols, such as the one presented by

6

Barnett and Smart in [1] where all players must agree to decrypt a card in order
to do so.

2.4 Identification Scheme

There are many proposed identification schemes notably, Guillou-QuisQuater [23],
Fiat-Shamir [18] and their extended and modified versions in [17, 20, 26, 27] that
are achieved by asking a dealer to generate RSA moduli N . Clearly, the dealer
must be trusted to generate N correctly as well as keeping them secret to all
parties and in real life this is a too strong assumption. The protocol imple-
mented by me will be able to eliminate the need of the trusted party since all
parties can generate the moduli N by themselves and not knowing about the
secret in the mean time.

7

3 Cryptography Techniques

3.1 Hard Problem

There are two hard problems, factoring big number and discrete logarithm,
which we are going to describe in this section. Everything in this protocol is
based on the assumption that these two problems are computationally infeasible
to be solved in polynomial time.

3.1.1 Factoring Problem

The problem states that given a big number, about 1000 bits, it is computa-
tionally infeasible to factorise the number into prime factors. The best known
algorithm has exponential complexity in term number of bits of the number.

For example: If N = pq where p and q are big prime numbers (500 bits)
then it is hard to find p and q given the value of N . This problem will be the
basis of security of RSA encryption and decryption scheme.

3.1.2 Discrete Logarithm Problem

Given a big number N , of size 1000 bits, and y, g in the interval [1, · · · , (N −1)]
where gcd(g,N) = 1. It is hard to find x that satisfies the equation:

y = gx (mod N)

This problem will be the basis of threshold decryption and the signing scheme
implemented in this project.

3.2 Euler Theorem and Fermat Primality test

Euler theorem is probably one of the most important theorem used in public
cryptography.

3.2.1 Euler Theorem

Given a number N = pa1
1 p

a2
2 · · · pan

n and p1, · · · , pn are prime numbers, there are
exact φ(N) numbers between 1 and (N − 1) that are co-prime to N , where:

φ(N) =
n∏
i=1

(
pai−1
i (pi − 1)

)
3.2.2 RSA case

When N = pq, we have φ(N) = (p − 1)(q − 1) and for any e co-prime to N it
satisfies that:

eφ(N) = 1 (mod N)

An interesting direct result of this case is that it gives us a way to test whether
or not a number is a product of two large prime numbers indirectly. The method
will be explained in more detail in section 5.2.4 as it actually forms the primality
testing stage of this protocol.

8

3.2.3 Fermat Primality Test

When N is a prime number, φ(N) = N − 1 and for any e co-prime to N , we
have eφ(N) = 1 (mod N).

This theorem also gives us a way to test whether N is prime or not. The
test can be implemented very fast in practice by using binary power method (or
Indian power) in conjunction with Montgomery multiplication. Unfortunately,
there are still composite numbers that output 1 when being tested, but with a
very low probability. This type of number is called Carmichael and there are
infinite number of them.

3.3 RSA Algorithm

After the invention of public cryptography by Diffie and Hellman [15] in the 70s,
the first practical scheme was due to Ron Rivest, Adi Shamir and Adleman in
their jointed paper [31], and it has been the most popular and successful public
algorithm since then. Given N = p.q where p and q are large prime numbers
then:

• The public components are moduliN and the encryption exponent e where
e is co-prime to N .

• The private components are prime factors of N , which are p and q, and
the decryption exponent d where:
e.d = 1 (mod φ(N))
e.d = 1 (mod (p− 1)(q − 1)) due to Euler theorem.

• To encrypt a message m that is smaller than N , the cipher text, c, is
computed as follows:

c = me (mod N)

• To decrypt a cipher text c, the message, m, is determined by computing:

m = cd (mod N)

3.4 Shared RSA Threshold Decryption

Similarly to traditional RSA, in shared RSA scheme, we also have N = pq, and
the public components are moduli N and the encryption exponent e where e is
co-prime to N .

However, decryption is more complicated as there are more parties who get
involved in the scheme. Assuming there are n parties and the prime factors of
N remain unknown to every person. Each party Pi now only knows the tuple
< pi, qi, di > and keeps it secret to any other parties, and they are also required
to satisfy the four following conditions:

1. p is an unknown big prime number and p = p1 + p2 + · · ·+ pn =
∑n
i=1 pi.

2. q is an unknown big prime number and q = q1 + q2 + · · ·+ qn =
∑n
i=1 qi.

3. The unknown decryption exponent d = d1 + d2 + · · ·+ dn =
∑n
i=1 di.

9

4. And ed = 1 (mod φ(N)).

The reader might wonder how can we generate such a scheme like this with-
out the help of a trusted third party and still keep p, q, and d secret to everyone
in the world? The answer is that such scheme is exactly what we want to achieve
with the n-out-of-n shared key generation protocol in first half of this project.
For now, I shall assume that we have achieved the properties and I am going
to show you two different ways to encrypt a message and decrypt a cipher text
based on Discrete Logarithm Problem and RSA Paillier presented in [28].

3.4.1 Discrete Logarithm Approach

As the name implies, this approach is based on the difficulty of Discrete Loga-
rithm problem.

• Encryption: is identical to RSA: c = me (mod N).

• Decryption: each party Pi computes mi = cdi(mod N) and then pub-
lishes mi to all other parties. As it is hard to find di given mi and c
(discrete logarithm problem) so that di still remains secret to party Pi
after decryption. Now, each party knows all mi for i = 1, · · · , n and
therefore can recover m from the following formulae:

m =
n∏
i=1

mi

Proof:
m = m1m2..mn (mod N)
m = cd1cd2 · · · cdn = c

∑i=n
i=1 di (mod N)

m = cd = med (mod N)
m = m (mod N)

An alternate way to do encryption and decryption can be based on Elgamal
algorithm [16].

3.4.2 RSA Paillier Approach

This scheme has been recently proposed in [28] for a single party and extended
to deal with multiple participants in another paper of Barnett and Smart [1].
All the parties generate a share of φ = (p− 1)(q − 1) by setting:

xi =
{
n− (p1 + q1) + 1 If i = 1
−(pi + qi) If i > 1

Note that φ =
∑n
i=1 xi. The parties then commit to the value xi by pub-

lishing hi = gxi (mod N2) where g = N + 1. They then set publicly:

h =
n∏
i=1

hi − 1 (mod N2) = gφ − 1 (mod N2)

10

• Encryption: To encrypt a message m, a user chooses a random number
r in the range [1, · · · , N] and gcd(r,N) = 1. The cipher text is computed
as follows:

c = gmrN (mod N2)

• Decryption: each party Pi computes mi = cxi (mod N2) and then
publishes mi to all other parties. Each party knows all mi for i = 1, · · · , n
and therefore can recover message m by computing:

m =
1
h

(
n∏
i=1

mi − 1 (mod N2)

)
(mod N)

11

4 Multi-party Computation Protocols

A number of multi-party computation schemes that are used throughout the
protocol have been implemented in this project. They are all described and
analysed in this section.

4.1 Shamir Secret Sharing Scheme and Lagrange Coeffi-
cient

Shamir Secret Sharing scheme gives us a mechanism where a secret is split into
n pieces and any w ≤ n shares when they are gathered together will be enable
us to reconstruct the secret. Also note that after reconstruction, the secret
becomes known to all parties.

A trusted dealer has a secret s and chooses a large prime number M > n,
the number of servers. Unless otherwise stated, all arithmetic operations are
done modulo M .

• Step 1: Let l is some number smaller than or equal to (n−1). The dealer
picks a random degree l polynomial f ∈ ZM [x] satisfying f(0) = s.

f(x) = alx
l + · · ·+ aix

i + · · ·+ a1x+ s where ai ∈ ZP for all i = 1, · · · , n

• Step 2: For all i = 1, · · · , n, the dealer computes yi = f(i). The dealer
then privately sends fi to server i for all i = 1, · · · , n.

• Step 3: To reconstruct the secret s, any w servers come together. They
can recover the secret by solving the system of linear equations, provided
that w > l.

y1 = alx
l
1 + · · ·+ aix

i
1 + · · ·+ a1x1 + s

. . . .

. . . .

yw = alx
l
w + · · ·+ aix

i
w + · · ·+ a1xw + s

As w parties all know xi for all i = 1, · · · , w so that they also can compute
xji for all i = 1, · · · , w and j = 1, · · · , l.
Whilst the system can be solved by using either polynomial interpolation
or Gaussian elimination, a more efficient method, Lagrange Coefficient,
is always used in practice. The reason is because we are only interested
in the secret s = f(0) and not any other coefficients in the system. The
computation is done as below:

– We first compute: bj =
∏

1≤h≤w,h6=j
xh

xh−xj
, for all j = 1, · · · , n.

– Then for j between 1 and w: sj = bjyj .

– Finally the secret s is the sum of all additive shares sj :

s = f(0) =
w∑
j=1

sj =
w∑
j=1

bjyj

12

4.1.1 Modulo non-prime

In the previous case, M is chosen as a prime number. In fact, the scheme still
works as long as M is a composite and does not have any prime factor that is
smaller than or equal to the number of servers. The reader shall see this case is
applied in the Distributed Sieving stage of the protocol.

4.1.2 Sharing the final outcome

Note that the additive share sj = bjyj = (
∏

1≤h≤w,h6=j
xh

xh−xj
)yj can be com-

puted privately by party Pj . Therefore, the secret s can be additively shared
amongst the servers rather than becomes publicly available. As a result, the
servers do not perform the above step 3 of Shamir Secret Sharing scheme any
more.

4.2 Benaloh Protocol

Suppose each of the n parties has a secret share, si. They wish to compute
s =

∑n
i=1 si (mod M) without revealing any further information about their

secret shares modulo M . This can be done by Benaloh’s protocol developed in
[3], which is (n− 2) private, and it works as follows:

• Step 1: Each party Pi picks n random elements si,j for j = 1, · · · , n
such that si =

∑n
j=1 si,j (mod M). For example, party Pi chooses (n−1)

random numbers, si,1, · · · , si,(n−1) and sets:

si,n = (si −
n−1∑
j=1

si,j) (mod M)

• Step 2: Each party Pi privately sends si,j to party j for j = 1, · · · , n.

• Step 3: Each party Pj receives n shares si,j for i = 1, · · · , n and then
computes:

ŝj =
n∑
i=1

si,j (mod M)

And then broadcasts ŝj to all other parties.

• Step 4: Each party receives ŝ1, · · · , ŝn and computes the required sum
as follows:

s =
n∑
i=1

ŝi (mod M)

Proof:
s =

∑n
i=1 si (mod M)

s =
∑n
i=1(

∑n
j=1 si,j) (mod M)

s =
∑n
j=1(

∑n
i=1 si,j) (mod M)

s =
∑n
j=1 ŝj (mod M)

13

The scheme is (n− 2) private as if (n− 1) parties collude then they will be
able to find out the final share of the single left party modulo M .

4.3 BGW Protocol

The reader can skip this section and come back to it later when she has got to
the Distributed Sieving and N Computation stages of the protocol.

This protocol was originally invented by Ben-Or, Goldwasser and Wigdirson
in [4]. The following protocol is a simplified version of it. This protocol makes
use of Shamir Secret Sharing scheme, and therefore the reader is strongly rec-
ommended to understand Shamir’s scheme first before attempting to read this
one.

Suppose each one of n parties has pi, qi. They wish to compute:

N = (
n∑
i=1

pi)(
n∑
j=1

pj)

Without revealing any further information about their secret shares, pi and
qi. That means at the end of the protocol, N is made public but pi and qi are
known to only party Pi. In addition, p =

∑n
i=1 pi and q =

∑n
j=1 pj are also

unknown to all parties.
Let M be a big number, M > N and M does not have any prime factor that

is smaller or equal to number of parties. Unless otherwise stated, all arithmetic
operations are done modulo M .

• Step 1: Let l = bn−1
2 c, each party Pi picks 4l random secret coefficients:

ai,1, · · · , ai,l and bi,1, · · · , bi,l, and ci,1, · · · , ci,l, ci,(l+1), · · · , ci,2l that form
the three polynomials:

fi(x) = pi +
∑l
j=1 ai,jx

j

gi(x) = qi +
∑l
j=1 bi,jx

j

hi(x) =
∑2l
j=1 ci,jx

j

and therefore we have for all i = 1, · · · , n: fi(0) = pi, gi(0) = qi and
hi(0) = 0. They computes the followings for all j = 1, · · · , n:

fi,j = fi(j)
gi,j = gi(j)
hi,j = hi(j)

• Step 2: Each party Pi sends tuple < fi,j , gi,j , hi,j > to party Pj privately
for all j = 1, · · · , n.

• Step 3: Each party j receives n tuples < fi,j , gi,j , hi,j > for i = 1, · · · , n
and then computes:

Nj = (
∑n
i=1 fi,j)(

∑n
i=1 gi,j) +

∑n
i=1 hi,j

= (
∑n
i=1 fi(j))(

∑n
i=1 gi(j)) +

∑n
i=1 hi(j)

Party Pj publishes Nj to every one in the scheme.

14

• Step 4: At this point of the protocol, each party receives N1, · · · , Nn
from all other parties. Let:

N(x) = F (x)G(x) +H(x)

Where:

– F (x) =
∑n
i=1 fi(x) and the order of function F (x) is equal to the

order of function fi(x) that is l.
– G(x) =

∑n
i=1 gi(x) and the order of function G(x) is equal to the

order of function gi(x) that is l.
– H(x) =

∑n
i=1Hi(x) and the order of function H(x) is equal to the

order of function hi(x) that is 2l.

That means the order of function N(x) will be 2l. As l = bn−1
2 c so n ≥ 2l

and therefore knowing n values of N(x) for different non-zero values of
x can help each party to find N = N(0) by Lagrange Coefficients as
described in section 4.1.

Proof:
N = N(0)

= F (0) ∗G(0) +H(0)
= (

∑n
i=1 fi(0))(

∑n
i=1 gi(0)) +

∑n
i=1 hi(0)

= (
∑n
i=1 pi)(

∑n
i=1 qi) +

∑n
i=1 0

= (
∑n
i=1 pi)(

∑n
i=1 qi)

4.3.1 Privacy

The protocol is l = bn−1
2 c private as all the polynomials fi and gi for i = 1, · · · , n

have order l, so even if bn−1
2 c are dishonest, not any coefficient of any polynomial

fi, gi and hi is revealed.

4.3.2 Sharing the final outcome

Similarly to Shamir’s scheme, the final outcome N can be additively shared
amongst the n parties. As a result, the parties do not need to perform Step 4
any more but instead each party only needs to compute:

nj = (
∏

1≤h≤w,h6=j

xh
xh − xj

)Nj

However, N remains unknown and N =
∑n
j=1 nj .

4.3.3 Extension

Note that it is easy enough to extend the protocol further. If each party i of n
parties has pi, qi, ti, then they can compute:

N = (
n∑
j=1

pj)(
n∑
j=1

qj)(
n∑
j=1

tj)

by using similar method as described above. However, the order of some of the
polynomials are bn−1

3 c and therefore the scheme is only bn−1
3 c private.

15

5 Shared RSA Secret Keys Generation Proto-
col, an n-out-of-n Threshold Scheme

5.1 Problem Definition and Notation

In this section, I would like to give the reader a high level overview of the
protocol before going into detailed discussion of each stage of the protocol.

What the protocol wants to achieve is that multiples parties, say n, will come
together to generate a moduli N and make N and the encryption exponent, e
public. No body knows the prime factors of N but everyone is convinced that
N is a product of two large prime numbers. The scheme is n-out-of-n threshold
scheme, and that means decryption requires the presence of all parties because
each party keeps an additive share, di of the decryption exponent, d. As a
result, this scheme allows a new Threshold Signing Scheme, (k, n), to be added
later on in this project. Also note that the value of d is unknown to all parties
and after any number of decryptions. Throughout the protocol, a trusted third
party is not required and all stages in the protocol need the contribution of all
individual parties.

• Picking candidates and Distributed Sieving.

1. Each party i picks two secret numbers pi and qi.

2. All parties determine whether or not, the sums p =
∑n
i=1 pi and

q =
∑n
i=1 qi are not divisible by any prime number between 0 and

some bound, B1, by using distributed sieving method. If they are,
the protocol will come back to part (1) of this stage. Note that the
values of p and q remain totally unknown to all parties.

• N Computation: All parties come together to implement the distributed
computation of

N = (
n∑
i=1

pi)(
n∑
i=1

qi)

N is public but p1, · · · , pn and q1, · · · , qn remain private.

• Trial Division: This stage is done to make sure that N is not divisible
by any number between B1 and B2, agreed by all parties.

• Primality Test: Extended Fermat Primality test is used to determine
whether N is a product of two prime numbers. If the test failed, then
the protocol would come back to the first stage, Picking candidates and
Distributed Sieving.

• Private Key Generation: Having computed N and a public encryption
exponent e, each party now computes its own private additive share, di,
of the decryption key, d. So we have:

d =
∑n
i=1 di + x and de = 1 (mod N)

Note that x is not known at the moment.

16

• Trial Decryption: As x can be proved to be in the range [0, n] and
therefore we can easily determine it by doing a trial decryption. This part
is also responsible for eliminating candidates of N that passed the above
Primality test but actually are not a product of two big prime numbers.

Thus, the main advantages of the scheme over previous protocols are that it
does not require a trusted third party, and it still can generate the public/private
keys pairs efficiently. The main disadvantage is that the protocol is fully inter-
active in every single stage as all parties need to known to the identities of each
other.

5.2 Scheme Definition

5.2.1 Picking candidates and Distributed Sieving:

The purpose of distributed sieving is to make sure that the sum of all parties’
shares, p =

∑n
i=1 pi and q =

∑n
i=1 qi are not divisible by any prime number

between 2 and some bound B1. In order to achieve this goal, firstly all par-
ticipants must agree on bound B1 and compute M as the product of all prime
numbers between n, the number of parties, and B1.

M =
t∏

j=1

mi

where n < m1 < m2 < · · · < mt ≤ B1 and mj is prime for all j = 1, · · · , t.

Then each party Pi picks a random secret integer ai relatively prime to M ,
so that their product across all parties is also relatively prime to M .

a =
∏n
i=1 ai

gcd(ai,M) = 1 for all i = 1, · · · , n

}
⇒ gcd(a,M) = 1

However, what we want to have is that each party Pi keeps pi secret and

a = a1 · · · an = p1 + · · ·+ pn

That is equivalent to converting a multiplicative sharing (a1, · · · , an) into an
additive sharing (p1, · · · , pn) and it is done iteratively as follows:

• Step 1: Initially we have:{
u1,i = a1 and v1,i = 1 for i = 1
u1,i = 0 and v1,i = 0 for i 6= 1

Note that party Pi keeps ai secret. All parties run the algorithm of section
4.3 on the input:

a1 = (a1 + 0 + · · ·+ 0)(1 + 0 + · · ·+ 0) (mod M)
= (u1,1 + · · ·+ u1,n)(v1,1 + · · ·+ v1,n) (mod M)

The algorithm produces the following additive sharing:

17

a1 = u2,1 + · · ·+ u2,n (mod M)

Also note that the value of a1 at the end of this step still remains secret
to party P1. However, now it is additively shared across the n parties as
each of them knows u2,i and keeps it private.

• Step i: (for (n+ 1) > i > 1)

From the (i− 1) previous iterations, all parties know that:

a1 · · · ai−1 = ui,1 + · · ·+ ui,n (mod M)

They starts this iteration with the below assignment.

{
vi,j = ai+1 if j = i+ 1
vi,j = 0 if j 6= i+ 1

Again, the parties run the algorithm of section 4.3 on input:

a1 · · · ai−1ai = (ui,1 + · · ·+ ui,n)(0 + 0 + · · ·+ ai + · · ·+ 0) (mod M)
= (ui,1 + · · ·+ ui,n)(vi,1 + · · ·+ vi,n) (mod M)

The algorithm produces the following additive sharing:

a1 · · · ai−1ai = u(i+1),1 + · · ·+ u(i+1),n (mod M)

At the end of the algorithm, step n, all parties have:

a = a1 · · · an = u(n+1),1 + · · ·+ u(n+1),n (mod M)

And therefore they have achieved the required additive sharing of a by re-
placing u(n+1),i by pi for all i = 1, · · · , n. The same method can be used to
construct the share of the other prime factor q.

5.2.2 Distributed Computation of N:

Recall that each party i keeps its shares pi and qi secret. Now, they want
to compute N = pq = (

∑n
i=1 pi)(

∑n
i=1 qi). N is made public, however no

partial information about any secret shares is revealed. This is exactly what the
protocol BGH in section 4.3 can do. Therefore, all parties agree on a big prime
number M > N and then run the BGH protocol on the following input:

N = (p1 + · · ·+ pn)(q1 + · · ·+ qn) (mod M)

18

5.2.3 Parallel Trial Division:

Once, the parties have computed the public moduli N , they now want to test
whether N is not divisible by any prime number between two bounds, B1 and
B2 where B2 > B1 before invoking the expensive primality test described in
the next section. We can store the list of all these prime numbers as an array
s1, s2, · · · , st into each party permanently. So

B1 < s1 < · · · < st < B2

In order to speed up the process by factor of n, trial division is done in
parallel. So what it means is that party i is in charge of testing that N is not
divisible by any prime number sj in the above list for all j = i (mod n) and
1 ≤ j ≤ t. As a result of n-fold increase in speed, we can use a large trial
division bound, B2 which then increases the effectiveness of trial division.

5.2.4 Load Balance Primality Test:

In this stage, all parties need to determine whether N is a product of two large
prime numbers or not. This can be done by using the extended Fermat primality
test explained in section 3.2.2. This requires the cooperation of all parties as
follows:

• Step 1: All parties agree on a random number g, where gcd(g,N) = 1.

• Step 2: Party ith computes:

vi =
{
gN−p1−q1+1 (mod N) If i = 1
gpi+qi (mod N) If i > 1

and then publishes vi. Note that because of difficulty of solving Discrete
Logarithm Problem, an eavesdropper cannot find out the value of pi and
qi for i = 1, · · · , n.

• Step 3: Each party receives all vi for i = 1, · · · , n and checks the equality:

v1 =
n∏
i=0

vi

If the equality holds then all parties are nearly convinced that N is a
product of two large prime numbers.

Proof:
g(p−1)(q−1) = gpq−(p+q)+1 (modN)

= gN−(
∑n

i=1 pi+
∑n

i=1 qi)+1 (mod N)
= gN−p1−q1+1

∏n
i=2 g

−(pi+qi) (mod N)
= v1∏n

i=2 vi
(mod N)

So if both p and q are prime then

g(p−1)(q−1) = gφ(N) = 1 (mod N)

Therefore:

19

v1 =
n∏
i=0

vi

Unfortunately, there are still cases where p and q are not both prime but
g(p−1)(q−1) = 1 (mod pq), however, this only happens very rarely. Furthermore,
all the cases will be eliminated by trial decryption done at the very end of this
protocol.

Load balance optimisation: In practice, we have to carry out this test
with many different candidates for N to make sure that at least one of them is
correct. As the reader might notice that the length of (N − p1− q1 + 1) is twice
as long as (pi + qi) and therefore it takes party 1 a longer time to finish step 2
of the primality test.

So it makes sense to assign the task equally to all parties when the number of
N is large to get a factor of 2 speed up. For example: if there are n ∗ t different
Ns, then:

• The first party will carry this task for the first t candidates of N .

• The second party will carry this task for the next t candidates of N and
so on.

• The nth party will carry this task for the last t candidates.

5.2.5 Private Key Generation:

At this point in the scheme, N has been computed and all parties agree on the
public encryption exponent, e. Now, they want to find their additive shares of
the decryption exponent, d. Another word, each party i keeps di secret and:{

d =
∑n
i=1 di (mod N)

ed = 1 (mod φ(N))

No body knows φ(N) and d. This can be achieved by the following algorithm:

• Step 1: All parties generate a share of φ(N) bet setting:

φi =
{
N − (p1 + q1) + 1 If i = 1
−(pi + qi) If i > 1

So φ(N) = (p− 1)(q − 1) = N −
∑n
i=1 pi −

∑n
i=1 qi + 1 =

∑n
i=1 φi

• Step 2: By using Benaloh’s protocol described in section 4.2 on input
φ1, φ2, · · · , φn. All parties can find:

ψ = φ(N) (mod e) =
∑n
i=1 φi (mod e) and ψ−1 (mod e)

As the public encryption exponent e is small and therefore only a few bits
are leaked in this stage of the protocol.

20

• Step 3: All parties generate a share of the decryption exponent, d, by
setting:

di =

{
b 1−φ1ψ

−1

e c If i = 1
b−φiψ

−1

e c If i > 1

So at the end of this step:

n∑
i=1

di = b1− φ1ψ
−1

e
c+

n∑
i=2

b−φiψ
−1

e
c

Lifting up the lower bound symbols on the right hand side, we shall need
to introduce a dummy variable x that is in the short interval [0, n], and
we get:

∑n
i=1 di + x = 1−ψ−1 ∑n

i=1 φi

e∑n
i=1 di + x = 1−ψ−1φ(N)

e

Multiplying both sides by e:

(
∑n
i=1 di + x)e = 1− ψ−1φ(N)

(
∑n
i=1 di + x)e = 1 (mod φ(N))

The decryption exponent d is equal to (
∑n
i=1 di+x) where di is kept privately

by party ith. The unknown x can be easily found by doing a trial decryption
done in the next section.

5.2.6 Trial Decryption:

The purpose of trial decryption is to find the value of x left unknown in the
previous section and more importantly is to eliminate all incorrect candidates
of N that were able to get though the primality test. The below algorithm is
done multiple times on different messages, m.

• Step 1: All parties agree on a message m and then each party Pi com-
putes:

mi = (mdi)e (mod N)

He or she then sends mi to party P1.

• Step 2: Party P1 receives mi for i = 1, · · · , n and computes their product:

m
′
= m1m2 · · ·mn (mod N)

He then tries out all values of x from 0 to n−1 to find the one that satisfies
this equation:

m = m
′
(mx)e (mod N)

21

After running the above algorithm a number of time and the values of x are
always the same at the end of every iteration (on different message, m) then
all parties can conclude that they have found a correct solution. Party P1 now
knows the value of x so will adjust its additive share, d1 as follows:

d1 = d1 + x

The value of x can be made public at the end of this step.

5.3 Discussion of the Above Scheme

5.3.1 Privacy

The first drawback of this protocol is about privacy as it is only bn−1
2 c private

where n is the number of participants. So that the attacker only can recover
the secret key if it compromises at least bn−1

2 c + 1 parties. In contrast, even if
bn−1

2 c parties corrupt, no partial information about the secret key is revealed.
The reason for this drawback is because in both Distributed Sieving and N

Computation stages of the protocol, Shamir Secret Sharing scheme has been
used. The lowest order of a polynomial is bn−1

2 c and therefore if bn−1
2 c + 1

parties are dishonest then they can find all coefficients of the polynomial and
can reconstruct the secret keys.

5.3.2 Smallest number of parties

As the scheme is only bn−1
2 c private so n must be greater or equal to three

because if n = 2 then

bn− 1
2

c+ 1 = b2− 1
2

c+ 1 = 1

Therefore either party can reconstruct the decryption key which is not what
we want to achieve anymore.

5.3.3 Generating Prime number

The main reason that makes this protocol run significantly more slowly than
traditional RSA scheme is because both the prime factors of RSA moduliN must
be generated simultaneously as we do not know any way to test whether or not
P =

∑n−1
i=0 pi is a prime number where P remains unknown to all participants

and each party keeps its share pi secret. Whereas we can use Fermat primality
test in conjunction with Discrete Logarithm to test whether N is a product of
two prime numbers or not as explained in section 5.2.4.

In another word, if it takes approximately n trials to generate a prime number
of n bits then it will take about n2 trials to find 2 prime numbers, each n bits,
in the same time. Fortunately, due to Distributed Sieving, things are not so
bad, the reader can see more detail about it in section 5.2.2.

This section directly leads us to an unsolved problem that is whether or not
we can construct a very big prime number that is additively shared by multiple
parties. This algorithm will need a way to test whether the sum of shares across
all parties is prime or not with a linear complexity in term of the bit length of
that prime number. If one could find such an algorithm then we would be able
to improve the storage complexity from quadratic to linear as well.

22

5.3.4 Complexity

Due to generating prime number problem explained in the previous section, the
protocol’s run-time has complexity of O(l2) where l is the number of bits of
prime factor P , and Q of RSA moduli N .

The storage complexity is O(n ∗ l2). There are two reasons why I come up
with this formula, firstly there are l2 trial as we need to find 2 large primes
concurrently. Secondly, I use Shamir Secret Sharing scheme, and the highest
order of a polynomial is equal to the number of parties in the protocol, which
is n, therefore I need to store at least n coefficients for each trial.

23

6 Partially Interactive Threshold RSA Signa-
tures

6.1 Problem Definition and Notation

We assume that a set of n players wishes to generate a number of threshold
RSA signatures. Using a scheme, I have described above, the n players can
generate a shared RSA moduli N , a public exponent e and n shares di of the
secret exponent d, such that

d = d1 + d2 + · · ·+ dn.

This shared RSA key generation protocol can be executed without the need for
a trusted dealer.

The parties now wish to use these shares so as to generate a threshold RSA
signature scheme, with threshold value k. The resulting signature should be
compatible with existing hash-and-sign RSA signatures such as RSA-FDH [2].
This means that we want any k parties to come together so as to be able to
sign a document. We let I = {t1, . . . , tk} ⊂ {1, . . . , n} denote the set of parties
who wish to come together to sign the document and I ′ = {1, . . . , n} \ I =
{tk+1, . . . , tn} denote the other parties. There are essentially two existing ways
of doing this, both with disadvantages.

In [30] Rabin gives a scheme which does not require a trusted dealer, as we
require, but which works by the k signing parties, when signing a document,
reconstructing the n− k secrets dti for i = k + 1, . . . , n. This means that after
signing one message, if a different subset is going to sign for the second mes-
sage, one needs to re-key in some way. Hence, Rabin defines a share refreshing
protocol which occurs after a signing operation. The signing stage requires the
interaction of all k signing parties, so as to reconstruct the n−k missing secrets,
and the share refreshing protocol requires the interaction of all n parties.

In [33] Shoup gives a scheme which is completely non-interactive in that each
party signs the message independently and a separate, public, share combining
algorithm is used to combine k of the signature shares into a valid full RSA
signature. There is no need for a share refreshing protocol and once the scheme
is set up there is no need for any of the parties to interact. However, the set-up
phase of the Shoup scheme requires a trusted dealer who knows the factors of
the RSA moduli N .

Our scheme gives a threshold RSA scheme which combines some of the ad-
vantages of the previous schemes, and tries to reduce their disadvantages. In
particular we define the following algorithms, with the following properties:

• Dealing Algorithm: An interactive protocol amongst the n players.
Each player has an input di, which is their share of the unknown RSA
private key d. At the end of this protocol the players agree on a threshold
value k and some global public information S. In addition each player also
obtains a public/private share (Pi, Si) of the data needed to implement
the threshold signature scheme. We note that this stage does not require
a trusted third party in our scheme.

• Subset Presigning Algorithm: This is an interactive protocol amongst
k members I = {t1, . . . , tk} of the n parties. The protocol results in public

24

dataDI which is used by the share combining algorithm to generate a valid
full RSA signature from the signature shares. The protocol results in each
of the k parties holding some secret information SI,ti which depends on
the subset I. This protocol is interactive, but only needs to be run once
for each subset I.

• Signature Share Generation Algorithm: This algorithm takes as
input a subset I as above, the secret information SI,ti and a message m.
The result is a partial signature σI,ti on the message m.

• Signature Share Verification Algorithm: This takes as input a sig-
nature share σI,ti on the message m and verifies that it is validly formed
using the public information DI and Pti .

• Share Combining Algorithm: This takes as input the public informa-
tion S, Pi and DI , plus a message m and the partial signature shares σI,ti
for all ti ∈ I, and then produces a valid full RSA signature σ. Or returns
fail if one of the signature shares is invalid.

Hence, the main advantages of our scheme over those of Rabin and Shoup are
that we do not require a trusted dealer (as Shoup’s scheme does) and we do
not require to rekey or interact once the Subset Presigning algorithm has been
implemented for a given subset I. The main disadvantage is that the signature
share generation algorithm needs to know which subset of shares are going to
be combined later on.

6.2 Scheme Definition

In this section we describe our scheme and justify that it works.

6.2.1 Dealing Algorithm:

The parties i = 1, . . . , n first agree on a number of parameters.

• A prime number M where M > N .

• The threshold value k where 1 < k < n.

• An element g of high order in Z∗N .

Each party i picks a random degree (k − 1) polynomial fi ∈ ZM [x] where

fi(x) = ai,k−1x
k−1 + · · ·+ ai,1x+ di

This ith party then computes fi,j = fi(j) and then privately sends fi,j to party
Pj , for all j = 1, . . . , n. Note that the fi,j for j = 1, · · · , n are the standard
k-out-of-n Shamir sharing [32] of di. In addition, the ith party also computes
bi,j = gai,j (mod N) for j = 0, . . . , (k − 1), where we let ai,0 = di. He then
broadcasts bi,0, · · · , bi,(k−1) to all other parties, these are the commitments of
all the coefficients of the polynomial fi(x).

25

At this point each party j receives f1,j , · · · , fn,j . Player j verifies that:

gfi,j = gfi(j) (mod N) = g[ai,k−1j
k−1+...+ai,1j+di] (mod N)

=
k−1∏
t=0

(gai,t)j
t

(mod N)

=
k−1∏
t=0

bj
t

i,t (mod N).

If this does not hold then the protocol is aborted, as one knows that player i is
not honest.

We finally set

S = {k,M, g} ,
Pi = {{bj,l}j=1...n,l=0,...,k−1} ,
Si =

{
di, {ai,j}k−1

j=1 , {fj,i}i 6=j
}
.

6.2.2 Subset Presigning Algorithm:

Recall in this stage we have as input I = {t1, . . . , tk} and I ′ = {1, . . . , n} \ I =
{tk+1, . . . , tn}. This protocol is executed amongst the k parties represented by
the set I.

Each party ti ∈ I computes

λti =
∏

1≤j≤k,j 6=i

tj
tj − ti

(mod M),

sti =

 n∑
j=k+1

ftj ,ti

λti (mod M).

They also compute hti = gsti (mod N), which is the commitment to the share
sti of party ti. This commitment will help other parties to verify the signature
share generated by party ti later on in the scheme.

Note that we have

st1 + · · ·+ stk = (
n∑

i=k+1

fti,t1)λt1 + · · ·+ (
n∑

i=k+1

fti,tk)λtk (mod M)

=
k∑
i=1

(ftk+1,tiλti) + · · ·+
k∑
i=1

(ftn,tiλti) (mod M)

= dtk+1 + · · ·+ dtn (mod M)

The last equality follows from the properties of Shamir’s secret sharing scheme
and the fact that M is a large prime.

Over the integers we then have that

k∑
i=1

sti = dtk+1 + · · ·+ dtn + xIM

26

for some integer xI ∈ [k− n, k]. That xI lies in such a small interval is because
sti and dti are both positive and smaller than M for all i.

To determine the value of xI the parties then produce their signature share
σI,ti on the dummy message, m′ = 2e (mod N). That is they compute and
broadcast,

c′ti = 2e(dti
+sti

) (mod N).

plus a proof of its correctness. The signature share verification algorithm is then
executed, to check that c′ti is valid.

The value of xI can then be computed via exhaustive search by verifying
which value makes the following equation hold,

∏
ti∈I

c′ti = 2e
(∑

ti∈I dti
+sti

)
(mod N)

= 2e(xIM+
∑n

i=1 di) (mod N)
= 2exIM+ed (mod N)
= 2 ·

(
2eM

)xI (mod N).

We finally set

DI =
{
xI , {hti , c′ti}ti∈I

}
,

SI,ti = {sti} .

Notice, that from c′ti the correctness of xI can be verified publicly.

6.2.3 Signature Share Generation Algorithm:

The parties now want to obtain a signature on the message m. Each party ti
computes

cti = mdti
+sti (mod N)

along with a (non-interactive) proof that

DLogmcti = dti + sti

= DLogg
(
gdti

+sti

)
= DLogg (bti,0 · hti) .

This proof can be produced using a standard adaption of the protocol of Chaum
and Pederson [9] to a group with unknown order. We let this proof be denoted
by P(m, cti , ti). The signature share is then given by

σI,ti = {cti ,P(m, cti , ti)}.

6.2.4 Signature Share Verification Algorithm:

Each signature share σI,ti = {cti ,P(m, cti , ti)} can be verified by checking
whether the proof P(m, cti , ti) holds.

27

6.2.5 Share Combining Algorithm:

At this point in the scheme, the signature shares

σI,ti = {cti ,P(m, cti , ti)}

have been published and verified to be correct. To produce the final signature
on the message m we compute

m−xIM
k∏
i=1

cti = m−xIM
k∏
i=1

mdti
+sti (mod N)

= m−xIM+
∑k

i=1 dti
+sti (mod N)

= m
∑n

i=1 di = md (mod N)
= s.

6.3 Discussion of the Above Scheme

6.3.1 Interactiveness

If the k parties I want to sign a different message, they need to come back the
Signature Share Generation Algorithm. This is because the values of xI , sti etc
can be reused. signature share generation and combining the signature shares.

If there is change in the threshold set parties, from I to I ′, then all the shares
st′i , for t′i ∈ I

′
, will have to be calculated again as their values depend on the set

I
′
. So that the parties need to come back to Subset Presigning Algorithm stage.

A new value of xI′ needs to be determined. Note that the threshold value, k,
still remains the same in this case.

If all parties agree to decrease the threshold value, k, then all of them need
to run the protocol from the beginning, i.e. the Dealing phase. Also note that
the threshold value can only be decreased, but not increased.

Hence, we can the scheme partially interactive since of the five main stages
of the protocol the only interactive stages are the Dealing and Subset Presigning
Algorithms.

6.3.2 Share Refreshing

In Rabin’s threshold scheme, [30][Figure 3], the additive shares of the absent
parties must be reconstructed at one place or by a single party. The reason
for this requirement arises from the difficulty in working with modulo φ(N) =
(p− 1)(q − 1) that remains unknown to all parties.

As a consequence, all the n parties have to refresh or renew their additive
shares of the secret exponent d whenever there is a change in either the threshold
value of k or the set of the threshold parties, I. Note, that the value of d still
remains the same, what differs are the individual shares of each party. If they
do not renew their shares, then a certain single party might end up to know the
shares of all other parties in the scheme, for example, if we have three parties
P1, P2, and P3 and a (2,3) threshold scheme:

• In the first signature, party P2 is away and its share is reconstructed by
party P1. So P1 now knows shares d1 and d2.

28

• In the second signature, party P3 is away and its share is reconstructed
by party P1 again. So P1 now knows shares d1, d2, and d3. That means
the first party knows the shares of all parties.

This problem leads Rabin’s scheme to require a Share Refreshing stage, which
is interactive and requires the presence of all parties who wish to continue in
the scheme.

In contrast to Rabin’s scheme, in our scheme each individual share, di, is
reconstructed in a way that does not further reveal its value to any party after
any number of changes in the set of threshold parties. As a result, the scheme
not only does not leak any information about the share to any one else but also
avoids the refreshing procedure that requires the interaction of all parties in the
scheme.

6.3.3 Robustness

Even through the protocol is always (k−1) private, i.e. no information is leaked
when up to (k − 1) parties corrupt, it does not mean the combining signature
process will be always successful.

If the number of dishonest parties is l, and (n−k) < l < k, then the number
of honest parties is (n − l) and n − l < n − (n − k) = k. That means a valid
signature on a message cannot be obtained. As a result, to make sure that this
never happens we require that (n− k) > k, i.e. k < bn2 c.

29

7 Design, Implementation and Testing

7.1 Choice of Language

The language chosen for this project is Java because Java offers several libraries
that are not available or not well developed in many other languages such as C
or C++ listed below:

• “BigInteger” library can manipulate unlimited size numbers used in public
cryptography.

• It also has well developed library that supports the front end such as GUI
and API and therefore they all can be done very easily and quickly in
Java.

• Secure Socket Layer, SSL, is also can be integrated easily with socket. It is
important to have this feature because information transmitted between
any pair of parties needs to be kept secure and confidential sometimes
even to the other parties in the scheme.

• The final important feature is the Threat library. The nature of the pro-
tocol is that any single party has to talk to all other parties in the same
time, so each such connection is dealt by a separated threat. So that we
really need a well threat supported library and that is exactly what Java
is very good at.

All of these above features of Java have saved me so much time, and as a
result more time has been spent on trying to understand the cryptography issues
and improving the cryptographic algorithms.

7.2 Requirement Analysis

The main aim of this project is to implement the Shared RSA Key Generation
protocol invented by Bonel and Franklin and then integrated it with my pro-
posed Threshold Signature scheme to see whether these protocols are correct or
not and if so how efficiently they are.

Therefore not much effort was put in dealing with the presence of adversary,
I would assume every parties in the scheme is honest. Only the raw algorithm
of encryption and decryption were implemented. The code also does not get
involved into the complication of verification. As a consequence the program
cannot detect where and who has not cooperated properly in the protocol.

As efficiency is one of the most important factor of the project and therefore
so much thought has been taken to speed up the protocol as much as possible.
The reason we have to be very careful with speed is because manipulating with
big numbers, some thousand bits, such as mod power, multiplication is going
to be very expensive. In order to achieve the goal, I have taken two different
approaches concurrently described below:

• Theoretical approach: This involves analysing the algorithms used in
the protocol to see whether or not I can improve their complexity. One
of several typical examples is the usage of the technique of Distributed
Sieving to speed up primality test.

30

• Practical and Programming approach: In order to use the advantages
of multiple parties participated in the scheme, in almost operations, the
tasks of trial division, primality test, and many more are split equally
to all parties. The reader might want to look at them in more detail in
section 5.2.3 of the thesis. In addition, network topology has also been
used to find the best solution for communication between all parties in the
scheme to avoid the situation where too much information is transmitted
via a single party as well as in dealing with deadlock, starvation etc , and
the problem will be discussed in more detail in next section.

7.3 Network protocol

Network presents an interesting problem, it is not suitable for a central server to
take a big responsibility in running the protocol due to the absence of a trusted
third party in the scheme. Therefore the central server structure is definitely
unsuitable in this circumstance.

As the information transmitted between any pair of parties must be kept
unknown not only to outsiders but also to other parties in the protocol. There-
fore Secure Socket Layer (SSL) has been put on top of the network to satisfy
the requirement. All connection between two parties are direct and that means
if party A wants to send information to party B then the information is trans-
mitted directly to B and not via any one else in between.

As a result, the protocol often takes a short time at the beginning to set up
so each party knows the IP addresses and port numbers of all other parties in
the network.

In order to exploit the capability of all parties, nearly every major operation
of the protocol is done in parallel. In general, there are two main types of
network communication as follows:

7.3.1 N-ary tree network structure

As the reader can see from the figure 1,

Figure 1: N-ary network structure.

in this structure, one party talk to all other parties. This kind of structure
is used in various places in the protocol such as setting phase, trial division, and

31

primality testing.
Each connection is dealt by a separated thread created at the beginning of

the connection, all parties, A, B, C and D can do calculation in the same time
and therefore the total time is decreased by a factor of number of parties. As
the most expensive part of the protocol is the primality testing, so the more
the number of parties, the quicker the protocol will be, that means the protocol
tends to run faster when there are more parties taking a part in. Readers can
see more detail about this in section 8.

7.3.2 Fully connected network structure

Perhaps, I should start this section by a brief introduction of the nature of the
problem.

There are N parties and each party needs to receive private information from
all other parties. When it has received all required data, it will then do some
calculation and then split the result into n pieces and then send each piece to
each party. This whole process can be summarised as follows:

• In the first half, each party Pi needs to send information to all other parties
in the network.

• In the second half, when each party Pi has received all information it needs
and has done some calculation, it splits the result into n pieces: I1, · · · , In
and sends each piece Ij to party Pj .

The difficulty is that it seems there is no way to notify each threat used in
the first half when all information have been received and computed by each
party in the second half and therefore I cannot reuse the connection already
established between any pair of parties in the first half of the procedure.

The second unexpected problem, I encountered in this part is that if I put
SSL on top of the network then deadlock will occur when two parties A and B
do the following things simultaneously:

• Client at A tries to establish a connection with server at B on port number
X and

• Client at B tries to establish a connection with server at A on port number
Y where X is different from Y .

The reason I mention the two problems here is because I took me quite a
while to figure out what were happening and then went on to find a solution for
this problem described below.

Assume, without loss of generality, there are 4 parties in total, labelled with
A, B, C, and D, note that each party can be represented by a computer or a
process.

In the first round of an iteration:

• Party A transmits information to parties D, and then C, and then B.

• Party B transmits information to parties D, and then C.

• Party C transmits information to parties D.

32

Figure 2: First round communication.

So graphically, communication between all parties looks like in figure 2.
Note that all A, B and C transmit information simultaneously and party D

will be the one that first receives all required information. Whereas parties A,
B, and C are still waiting information that are sent out in the second round of
the iteration.

In the second round of an iteration:

• Party D transmits information to parties C and then B and then A.

• Only after C has received data from D, it transmits information to B and
then A.

• Only after B has received data from C, it transmits information to A.

So graphically, communication between all parties looks like in figure 3.

Figure 3: Second round communication.

The result of this algorithm helps me make sure that:

• D is always the party who finishes network connection firstly.

33

• C is always the party who finishes network connection secondly as it only
finishes when C has received data from D.

• B is always the party who finishes network connection thirdly as it only
finishes when B has received data from C.

• A is the final party that finishes network and calculation.

So why I have to come up with a rather complex network algorithm, the
reason is because if I am going to reuse the network protocol one above the
other then things must be in the right order otherwise in the worst situation,
deadlock or starvation will definitely occur.

Clearly the payload complexity of the above scheme is O(n) where n is the
number of parties compared to O(n2) if I make all payload be transfered via a
single party that will be then a bottleneck in a network system.

7.4 Testing

It is quite simple to test the functionality of the protocol as there are only two
main operations that are encrypting a message and decrypting a cipher-text.
And as long as we get the right message after decrypting the corresponding
cipher-text then the scheme works correctly as the chance of getting the correct
result of a false system is extremely small.

In contrast, it is much harder to test network synchronisation because bugs
do not normally cause the program to hang until it has been run in a large scale
where there are many parties/computers taking a part in the scheme and they
communicate with one another for a very long period of time.

In order to assure that unexpected phenomenas such as deadlock or starva-
tion do not occur, I have carried out testing the protocol rigorously, with large
number of players, up to ten at the moment, the key lengths have been tested are
512, 1024 and 2048 bits. They run concurrently on different types of machines
and computers by using variety of operating systems such as Linux, Unix and
Window Microsoft (by using SSH). In addition, the machines are also located
in different places, such as five laboratories in Merchant Venturers Building,
department of Computer Science, the University of Bristol as well as machines
in various libraries and other buildings.

Of course, it is not possible to say that the protocol will work up to any
number of parties, however, as far as there are fewer than ten parties, it seems
to be very robust.

7.5 Running the protocol

Very different from other types of software, one should be careful when he or
she wants to run the program. The reason is because in order to generate the
correct public/private key pair in an optimal time, all of the parameters need
to be selected and inputed accurately, if not it is unlikely that the program
will terminate. Having thought about this problem, I have written a document
that helps new user to known how to use the manual to assign the parameters
correctly. And as long as the key length is less that or equal to 2048 bits and
the number of parties is smaller than 10, all the parameters will be assigned
automatically. An alternative way is to look at the result tables presented at

34

the end of this report, as all the parameters were shown clearly for the purpose
of comparison.

7.6 Limitation and Future work

As I am only interested in the accuracy and efficiency of the protocol, so this is
not a finished product and there are many areas that are still missing or needed
to be improved and upgraded in the future. The four main areas are:

• Network protocol: My program should be able to deal with cases like
what happen when a disconnection occurs due to connection time out or
machine break down or even when a party does not want to cooperate
with other parties any more. The opposite case will be re-connection, and
obviously, the scheme will have to be started from the beginning in this
case.

• API: the API needs to be extended to allow a variety of functions that
can be incorporated with the scheme such RSA-Full Domain Hash.

• Verification: This part has not been done in this project, so we shall
need to develop it from the very beginning.

• Big number manipulation: At the moment, all numbers are of type
“BigInteger”, the problem is that we do not know exactly how the library
was implemented and whether it has been implemented by using the most
efficient algorithm up to date or not. An alternative approach is to write
our own library that is responsible for representing big number and its
operations such as mod power, multiplication, and division by using the
best currently known arithmetic method, Montgomery Arithmetics.

35

Number of Number of Sieve N Trial Primality Total
Parties Trial time Computation Division Test Time

3 40 1 1 1 2 9
4 40 2 2 2 2 12
5 40 4 3 1 1 13
6 80 6 17 3 4 35
7 80 9 25 3 5 46
8 50 12 11 2 2 32
9 100 18 60 4 6 96
10 100 26 80 4 8 130

Table 1: Shared key generation time when moduli N is 512 bits, times are
measured in second

Number of Number of Sieve N Trial Primality Total
Parties Trial time Computation Division Test Time

3 60 1 2 3 15 26
4 50 5 8 8 35 57
5 80 4 14 5 56 93
6 80 6 20 5 41 77
7 80 9 29 4 38 88
8 80 13 37 4 43 105
9 90 19 59 5 49 140
10 60 47 58 10 56 188

Table 2: Shared key generation time when moduli N is 1024 bits, times are
measured in second

8 Experiment Result and Discussion

There are six main stages in the Shared Key Generation protocol and four
stages in the Threshold Signing Scheme. However, only four stages, Distributed
Sieving, N Computation, Trial Division and Primality Testing that consume a
lot of running time of the protocol. The rest can be done instantaneously.

I have measured the performance of shared key generation in a number of
environments, which has been described previously in section 7.4.

From the three result tables, Distributed Sieving can be done very fast, as
the number of trials is only in the range between 50 and 300. However, the
number of trials in N computation stage is equal to the number of trials in
Distributed Sieving squared and therefore N Computation takes much longer
time to compute.

As a result of Distributed Sieving, all the candidates for N are not divisible
by any prime number between 0 and some bound and it has a direct impact on
the result of Trial Division. In the current protocol, trial division often decreases
the number of candidate for N by a factor of three, it should have been much
more efficient if I had taken Sieving out.

It is clear that the most expensive stage of the protocol is Primality Testing
because of many modular power operations are carried out in all parties at this
stage of the protocol.

36

Number of Number of Sieve N Trial Primality Total
Parties Trial time Computation Division Test Time

3 50 3 7 11 260 283
4 60 2 8 6 163 192
5 50 10 25 15 450 542
6 85 15 76 31 1050 1471
7 100 18 100 23 1150 1248
8 80 35 105 30 1100 1274
9 100 35 117 29 1350 1551
10 100 48 156 25 1005 1261

Table 3: Shared key generation time when moduli N is 2048 bits, times are
measured in second

8.1 Scaling to many parties

It seems to me that the protocol can be scaled well in term of number of parties.
I have tested the protocol up to ten parties and the time difference between 10
and 3 parties are not very much compared to the increase when I double the
length of the secret key, which will be discussed later. The reason for this is
that the more number of parties participate in the protocol, the less work each
party has to carry out in the long run due to nice distribution of computation in
two stages, Primality testing and Trial Division. That is why you can see from
the result tables that the time of Primality Testing and Trial Division actually
decrease slightly when the number of parties increases, this is most clearly shown
when the key length is large, 2048 bits. As they are the most expensive parts
of the protocol and therefore it has a huge impact on the chance of using this
protocol in practice.

8.2 Doubling the length of RSA moduli

In contrast to how little the impact of increasing the number of parties has on
the overall run time, there is a big difference when I increase the length of N
moduli from 512 to 1024 bits and particularly from 1024 to 2048 bits. So why
it is the case here, first of all, the protocol has quadratic complexity in term
of number of bits of RSA moduli due to the difficulty in finding two big prime
numbers simultaneously. A more intuitive reason might be that when I double
the length from 1024 bits to 2048, what I have done is to increase the moduli
N by 21024 times and it is a huge number, so that it is much harder to find a
prime number at that size. Finally, manipulating with 2000 bits number such
as division and multiplication is very slow.

9 Conclusion

A new threshold Signing scheme is proposed in this project that when combined
with Shared RSA secret keys generation will leads us to a complete solution for
the Threshold RSA problem. The complete solution has also been implemented
successfully in this project.

37

References

[1] Adam Barnett and Nigel P.Smart. Mental Poker Revisited. Cryptography
and Coding 2003, Springer-Verlag LNCS 2898, pp. 370-383, 2003.

[2] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for
designing efficient protocols. Proc. 1st ACM Conference on Computer and
Communications Security, 1993, 62–73, 1993.

[3] Benaloh. Secret sharing homomorphisms: keeping shares of a secret. Ad-
vances in Cryptography - CRYPTO ’86. Lecture notes in Computer Science,
vol. 263. Springer-Verlag, New York, LNCS 263, pp. 251-260.

[4] Ben-Or, M. Goldwasser and Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. Proceeding of the
20th Annual ACM Symposium on Theory of Computing. Chicago, I11, May
2-4. ACM, Newyork, pp. 1-10.

[5] D.Boneh and M. Franklin. Efficient generation of shared RSA keys. Ad-
vances in Cryptography – CRYPTO ’97, Springer-Verlag LNCS 1233, 425–
439, 1997.

[6] Dan Boneh and Matthew Franklin. Efficient Generation of shared RSA
keys. J. ACM, 48, 702-722, 2001.

[7] C. Boyd. Digital Multisignatures. Cryptography and Coding 1989. Institute
of Mathematics and its application, IMA. 241–246, Clarendon Press, 1989.

[8] D.Chaum, C. Crepeau and I. Damgard. Multiparty unconditional secure
protocols. ACM STOC 1988. 11–19, 1988.

[9] D.Chaum and T. Pedersen. Wallet databases with observers. Advances in
Cryptology – CRYPTO ’92, Springer-Verlag LNCS 740, 89–105, 1992.

[10] R. Cramer, M.Franklin, B. Schoenmakers and M. Yung. Multi-authority
secret-ballot elections with linear work. Advances in Cryptography - EIRO-
CRYPT ’96. Springer-Verlag LNCS 1592, pp. 223-238, 1999.

[11] A. DeSantis, Y. Desmedt, Y. Frankel, M. Yung. How to share a function
securely. STOC 1994. 522–533, 1994.

[12] Yvo Desmedt. Threshold Cryptography. In GBrassard, editor, European
Transactions on Telecommunications, 5(4): 449-457, July 1994.

[13] Y. Desmedt. Society and group oriented cryptography: an new concept. Ad-
vances in Cryptography – CRYPTO ’87, Springer-Verlag LNCS 293, 120–
127, 1987.

[14] Y. Desmedt and Y. Frankel. Threshold Crypto-Systems. Advances in Cryp-
tography – CRYPTO ’89, Springer-Verlag LNCS 435, 307–315, 1989.

[15] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans.
on Info. Theory, 31, 644–654, 1976.

[16] ElGamal. A public key crypto-system and a signature scheme based on the
discrete logarithm. IEEE Trans. Inf. Theory 31. pp 469-472.

38

[17] U. Feige, A. Fiat and A. Shamir. Zero knowledge proofs of identity. Journal
of Cryptology 1, 1988. pp. 77-94

[18] Fiat and Shamir. How to prove yourself: Practical solutions to identification
and signature problems. Advances in Cryptography - CRYPTO ’86. Lecture
notes in Computer Science, vol. 263, Springer-Verlag, LNCS 263, pp. 186-
194, 1987.

[19] Y. Frankel. A practical protocol for large group oriented networks. Ad-
vances in Cryptology – EUROCRYPT ’89, Springer-Verlag LNCS 434, 56–
61, 1989.

[20] M. Franklin and S. Haber. Joint encryption and message-efficient secure
computation. Journal of Cryptology 9, 1996. pp. 217-232.

[21] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Robust and effi-
cient sharing of RSA functions. Advances in Cryptology – CRYPTO ’96,
Springer-Verlag LNCS 1109, 157–172, 1996.

[22] O. Goldreich, S. Micali and A. Wigderson. How to play any mental game.
STOC 1987, 218–229, 1987.

[23] L. Guillou and J. Quisquater. A practical zero-knowledge protocol fitted
to security microprocessor minimising both transmission and memory. Ad-
vances in Cryptography - EIROCRYPT ’88. LNCS 330, pp 123–128, 1988.

[24] M. Maklin, T. Wu, and D. Boneh. Experimenting with Shared Generation
of RSA keys. Proceedings of the Internet Society’s 1999 Symposium on
Network and Distributed System Security. Internet Society, Reston, Va.,
pp. 43-56.

[25] Hoang Long Nguyen. Partially Interactive Threshold RSA Signatures.
Cryptography and Coding. Institute of Mathematics and its application,
IMA. Unpublished, 2005.

[26] K. Ohta and T. Okamoto. A modification of the Fiat-Shamir scheme.
Advances in Cryptography - CRYPTO ’88. LNCS 403, pp. 232-243, 1990.

[27] H. Ong and C. Schnorr. Fast signature generation with a Fiat-Shamir like
scheme. Advances in Cryptography - EUROCRYPT ’90. LNCS 473, pp.
432-440, 1991.

[28] P. Paillier. Public key crypto-systems based on composite residue classes.
Advances in Cryptography - EIROCRYPT ’99. Springer-Verlag LNCS 1070,
pp. 72-83, 1996.

[29] T. Pederson. A threshold crypto-system without a trusted dealer. Advances
in Cryptology – EUROCRYPT ’91, Springer-Verlag LNCS 547, 522–526,
1991.

[30] T. Rabin. A simplified approach to threshold and proactive RSA. Advances
in Cryptology – CRYPTO ’98, Springer-Verlag LNCS 1462, 89–104, 1998.

39

[31] T. Rabin, A. Shamir and L.M Adleman. A method for obtaining digital
signatures and public-key crypto-systems. Communications of the ACM,
21, 120–126, 1978.

[32] A. Shamir. How to share a secret. Communications of the ACM, 22,
612–613, 1979.

[33] V. Shoup. Practical threshold signatures. Advances in Cryptology – EU-
ROCRYPT 2000, Springer-Verlag LNCS 1807, 207–220, 2000.

[34] A. Yao. How to generate and exchange secrets. FOCS 1986. 162–167, 1986.

40

