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Abstract. Cloud computing is a conceptual paradigm that is receiving
a great deal of interest from a variety of major commercial organisations.
By building systems which run within cloud computing infrastructures,
problems related to scalability and availability can be reduced, and, from
the point of view of consumers of such infrastructures, abstracted away
from. As such infrastructures tend to be shared, it is important that
access to the sub-components of each system is controlled. One of the
first languages for controlling access to services within a cloud is the
Amazon Web Services access policy language. In this paper we present
two formal models of this language—one in Z and one in Alloy—and
show how the Alloy model might be used to test properties of multiple
policies and to generate and test candidate policies.

1 Introduction

Cloud computing (see, for example, [1]) is a conceptual paradigm that is receiv-
ing a great deal of interest from a variety of major commercial organisations. By
building systems which run within cloud computing infrastructures, problems
related to scalability and availability can be reduced, and, from the point of
view of consumers of such infrastructures, abstracted away from. As such infras-
tructures tend to be shared, it is important that access to the sub-components
of each system is controlled.

Many cloud computing infrastructures have emerged over the past few years;
at the time of writing, Amazon Web Services (AWS) [2] is one of the most widely
used. AWS consists of a number of different components, which can be used in
combination or alone. One common usage model is to use Elastic Compute Cloud
(EC2) instances to process information and to use the Simple Queue Service
(SQS) [3] to handle requests and responses. For example, a language translation
service might involve an end-user initially submitting input to a web page. Then
the inputted string would form part of a request placed in a queue (the request
queue). The EC2 instance would consume messages from the queue, perform the
required task (in this case, translation), and then put a message containing the
result in a second queue (the response queue). The result will then be consumed
by the web site.

If all of the sub-components of a system use the same security credentials, it is
possible to restrict access using an ‘all-or-nothing’ approach. However, there are
situations where more complex controls are appropriate. For example, there may
be a key requirement that a particular service is only available during certain
time periods. For this reason, the AWS access policy language was introduced,
which enables access to be restricted based on a number of factors, including
the time of the request and the originating IP address, as well as more common
factors, such as the action that is being performed and the resource that is being
acted upon. Currently, only the SQS service supports the AWS access policy
language, but there are plans for it to be used on additional components.

As the complexity of access control policies increases, there is a corresponding
increase in the risk that a mistake might be made when defining these policies.



The value of analysing such policies has been demonstrated by the work of others
in the community, such as Ryan and colleagues (see, for example, [4]) and Bryans
and Fitzgerald (see, for example, [5])).

In this paper we seek to reduce that risk with the appropriate application of
formal methods. We use a hybrid approach of using both the Z specification lan-
guage [6] and the Alloy modelling language [7]. Each language has its strengths
and weaknesses, with Z better suited to formal proof and Alloy being better
suited to automatic analysis. The differences in the languages reflect the inten-
tions of their creators with each having its place. In this paper the Z model is
used as a starting point for the Alloy model, which we use for the examples pre-
sented. From a pragmatic perspective, our choice of leveraging both languages
comes down to the fact that there may be some circumstances in which a fully
formal proof is necessary; typically, however, the excellent support for model
finding offered by Alloy will be appropriate.

In Section 2 we provide a necessarily brief description of the AWS access
policy language. In Section 3 we present a model of the AWS policy language
written in the Z specification language. In Section 4 we translate (manually)
the Z model into the Alloy language and also extend the model to support the
specifics of policies written for the SQS service. We give two examples of the
use of the Alloy model in Section 5. In the first example we look at a scenario
where multiple queues are used as part of a simple system; we then use the Alloy
Analyzer to find examples of situations in which the system will fail to perform
as required. In the second example we look at the use of the Alloy Analyzer
to assist in the creation of policies that meet a set of complex requirements.
By creating a set of requests with known outcomes we can generate candidate
policies. Finally, in Section 6, we summarise the contribution and explore avenues
of potential future work.

2 Background

The AWS access policy language allows one to construct policies that have a
tree-like structure, consisting of sub-components, each of which may give an
independent result—with these results being combined systematically to arrive
at a final decision. In this respect, it has similarities with the OASIS standard
XACML (eXtensible Access Control Markup Language) [8].

The AWS access policy language makes permit or deny decisions based on
the identity of the user, the action they are trying to perform, and the resource
they are trying to act on. Users are identified by a principal, which is used as part
of the authentication process and is tied to a specific AWS account. In addition,
a number of environmental factors may be used as part of the decision making
process, these are identified by the use of keys.

Each policy consists of a number of statements which contain a description
of the requests they apply to, plus an effect, which may be permit or deny. Each
statement contains lists of actions, lists of resources and lists principals, plus a



number of conditions which must be met. The conditions are related to the key
values of the request.

If multiple statements match a request, then deny effects take precedence
over permit effects. If no statements match, then the effect is referred to as a
soft deny: that is to say that final effect will be deny unless another policy has
an effect of permit.

Conditions have a type, which is a matching relation such as string equality
or ‘before’ on date-time values. Conditions also contain a number of clauses, all
of which must hold for the condition to be met. Each clause consists of a key
and a number of values: if any of the values match the request’s key value then
the clause holds.

When writing a policy for use with the SQS service a number of additional
restrictions apply. Each policy may only contain statements relating to a sin-
gle queue, the identity of which is used as the resource value. Only the fol-
lowing actions may be used: ReceiveMessage; SendMessage; DeleteMessage;
ChangeMessageVisibility; and GetQueueAttributes.

The only available keys are the standard keys, which are: CurrentTime
(DateTime); SecureTransport (Boolean); SourceIP (IP Address); and also
UserAgent (String).

The available condition types are dependent on the types of the available
keys, and include DateEquals, DateLessThan, IpAddress, and StringEquals.

In addition, there is also a restriction that all policies and statements are
uniquely identified.

The following example (from [3]) illustrates a policy in which all users are
given ReceiveMessage permission for the queue named 987654321098/queue1,
but only between noon and 3:00 p.m. on January 31, 2009.

{
"Version": "2008-10-17",
"Id": "Queue1_Policy_UUID",
"Statement":

{
"Sid":"Queue1_AnonymousAccess_ReceiveMessage_TimeLimit",
"Effect": "Allow",
"Principal": {

"AWS": "*"
},
"Action": "SQS:ReceiveMessage",
"Resource": "/987654321098/queue1",
"Condition" : {

"DateGreaterThan" : {
"AWS:CurrentTime":"2009-01-31T12:00Z"

},
"DateLessThan" : {

"AWS:CurrentTime":"2009-01-31T15:00Z"
}

}
}

}

One of the benefits of this language is that, when compared to, for example,
XACML, it is relatively streamlined: making a mapping to a formal representa-
tion more straightforward than would typically be the case.



3 A Z representation

In this section we describe the structure of an AWS access policy using the Z
specification language. The model represents all aspects of the policy language,
but does not include any explicit value types. To ease readability, some types
are used before they are defined.

Each policy has a unique identifier, a policy language version number (which
currently has no practical impact upon policies or their evaluation, but is in-
cluded for the sake of completeness) and a non-empty list of statements. As the
order of statements has no effect on request evaluation, the list is represented as
a set. There is currently only one version of the policy language, represented by
the constant v1.

[PolicyID ]

Version ::= v1

Policy
version : Version
id : PolicyID
statements : P1 Statement

Each statement places conditions upon the requests to which it applies: if
the statement applies, it may have an effect which can be to either allow or deny
access. During evaluation, a deny decision may be be the result of a statement
with an effect of deny—called a hard deny—or the absence of an applicable
statement with an effect of allow—called a soft deny. The absence of an effect in
a statement is modelled as a soft deny. In our model, we have explicitly captured
the soft deny effect; there is no need to model the hard deny effect explicitly.

Similarly to a policy, each statement has a unique identifier. It also details
the principals, actions and resources to which it applies. The principals represent
the identity of the requester, the actions represent the action to be performed,
and the resource represent the entity that the action will be performed on.
Each of these can take multiple values and are represented by non-empty sets.
Finally, a statement may contain a number of conditions which further restrict
the applicability of a statement.

[StatementID ,Principal ,Action,Resource]

Effect ::= Allow | Deny | SoftDeny



Statement
sid : StatementID
effect : Effect
principals : P1 Principal
actions : P1 Action
resources : P1 Resource
conditions : P Condition

Conditions consist of a matching relation, referred to as the type of the
condition, and a number of clauses describing the values to be matched. Each
clause contains a key and a number of values. Each key represents a specific
piece of data about the request, such as the current time or the IP address from
which the request originated. These are compared with concrete values using the
matching relation corresponding to the type of the condition.

Condition
type : CondType
clauses : P1 Clause

[Key ,Value]

Clause
key : Key
values : P1 Value

CondType
match : Value ↔ Value

As well as having a model of the policy, it is also necessary to model a request.
Each request contains a single principal, action and resource. In addition, the
keys function provide the value associated with each key. It is assumed that the
keys function is total.

Request
principal : Principal
action : Action
resource : Resource
keys : Key → Value

At the top level, a request is evaluated against a set of policies: if any policy
evaluates to Deny or no policy evaluates to Allow , then the result is a Deny . If
there are no Denys and at least one Allow , then the result is Allow .



EvalPolicies : Request → (P Policy)→ {Allow ,Deny}

∀ r : Request • EvalPolicies(r) =
(λ pols : P Policy • Deny)
⊕
(λ pols : P Policy |

(∃ p : pols • EvalPolicy(r)(p) = Allow) • Allow)
⊕
(λ pols : P Policy |

(∃ p : pols • EvalPolicy(r)(p) = Deny) • Deny)

The evaluation of a policy is dependent on the evaluation of the statements it
contains. When no statement results in a Deny or Allow , the result is a SoftDeny .

EvalPolicy : Request → Policy → Effect

∀ r : Request • EvalPolicy(r) =
(λ p : Policy • SoftDeny)
⊕
(λ p : Policy |

(∃ s : p.statements • EvalStatement(r)(s) = Allow) • Allow)
⊕
(λ p : Policy |

(∃ s : p.statements • EvalStatement(r)(s) = Deny) • Deny)

If a request matches the constraints of a statement, then the evaluation re-
sults in the value of the effect attribute, otherwise it evaluates to soft deny. For
a request to match the constraints of a statement, the principal, action and re-
source of the request must each be contained in the corresponding set in the
statement; in addition, all of the conditions must be met.

EvalStatement : Request → Statement → Effect

∀ r : Request • EvalStatement(r) =
(λ s : Statement • SoftDeny)
⊕
(λ s : Statement | (r , s) ∈ MatchStatement • s.effect)

MatchStatement : Request ↔ Statement

MatchStatement =
{r : Request ; s : Statement |

r .principal ∈ s.principals ∧
r .action ∈ s.actions ∧
r .resource ∈ s.resources ∧
(∀ c : s.conditions • (r , c) ∈ MeetsCondition)}

To meet a condition, each of the clauses must be met using the matching
relation specified by the type attribute. The key of the clause defines which of



the request keys to use for each clause. For a match to be made, at least one of
the clause values must match the key value.

MeetsCondition : Request ↔ Condition

MeetsCondition =
{r : Request ; c : Condition |

(∀ cl : c.clauses •
(∃ v : cl .values • (r .keys(cl .key), v) ∈ c.type.match))}

4 Alloy model

Having presented our Z description of the AWS access policy language, we
now consider an Alloy representation, which is, via the Alloy Analyzer, more
amenable to automatic analysis. We also describe domain-specific extensions
for the SQS service. In Section 5 we will use the extended model both to find
example policies and to test the properties of existing policies.

The domain-specific extensions are based around the types of values that can
be used in a policy, the matching relations for the values, and the request keys
used to access the values. In addition, the actions that can be performed are
domain-specific. All of these are entities declared using abstract signatures.

abstract sig Value, Key, Action {}
abstract sig CondType {

match : Value -> Value
}

The remaining signatures required for the policies are translated directly
from the Z model.

sig PolicyId {}
abstract sig Version {}
one sig v1 extends Version {}
sig Policy {

version : Version,
pid : PolicyId,
statements : some Statement

}
sig StatementId, Principal, Resource {}
abstract sig Effect {}
one sig Allow, Deny, SoftDeny extends Effect {}
sig Statement {

sid : StatementId,
effect : Effect,
principals : some Principal,
actions : some Action,
resources : some Resource,
conditions : set Condition

}
sig Condition {

type : CondType,
clauses : some Clause

}
sig Clause {

key : Key,
values : some Value

}



Fig. 1. Policy metamodel

sig Request {
principal : Principal,
action : Action,
resource : Resource,
keys : Key -> one Value

}

The metamodel of the basic policy signatures is shown in Figure 1.
The evaluation logic for the Alloy model is also a translation of that of the

Z model.

fun EvalPolicies ( r : Request, ps : set Policy ) : Effect {
(some p : one ps | EvalPolicy[r,p] = Deny) => Deny else
((some p : one ps | EvalPolicy[r,p] = Allow) => Allow else Deny)

}
fun EvalPolicy ( r : Request, p : Policy ) : Effect {

(some s : one p.statements | EvalStatement[r,s] = Deny) => Deny else
((some s : one p.statements | EvalStatement[r,s] = Allow) => Allow else SoftDeny)

}
fun EvalStatement ( r : Request, s : Statement ) : Effect {

MatchStatement[r,s] => s.effect else SoftDeny
}
pred MatchStatement ( r : Request, s : Statement ) {

r.principal in s.principals
r.action in s.actions
r.resource in s.resources
all c : one s.conditions | MeetsCondition[r,c]

}
pred MeetsCondition ( r : Request, c : Condition ) {

all cl : one c.clauses |
some v : one cl.values | (r.keys[cl.key] -> v) in c.type.match

}

SQS policies support five types of actions (ReceiveMessage, etc.—as listed
in Section 2). The request keys are: CurrentTime, which is a date-time value;
SecureTransport, which is a Boolean value; SourceIP, which is an IP address



value; and UserAgent, which is a string value. For strings and IP addresses, it
is possible for clauses to contain either regular expressions or IP address ranges
respectively. In these cases, requests contain IPSingle and StringSingle values,
and clauses contain IPRange and StringRange values—both of which contain a
range attribute, which is the set of values either in the IP range or that match
the regular expression.

one sig ReceiveMessage, SendMessage, DeleteMessage,
ChangeMessageVisibility, GetQueueAttributes extends Action {}

one sig CurrentTime, SecureTransport, SourceIP, UserAgent extends Key {}
abstract sig Boolean extends Value {}
one sig True, False extends Boolean {}
sig DateTime extends Value {}
sig IPSingle extends Value {}
sig IPRange extends Value { range : some IPSingle }
sig StringSingle extends Value {}
sig StringRange extends Value { range : some StringSingle }

The condition types depend on the types of values associated with the keys
used in the clauses. For Boolean values there is a single condition type called
Bool, which represents logical equivalence. For date-time values, there are condi-
tion types for comparing date-times include equality, less than and greater than.
For IP addresses, there are condition types for being within or outside an IP
range. Similarly, strings have condition types for matching regular expressions,
as well as equality. In order to provide ordering for date-times, a standard Alloy
ordering is applied to the Value signature.

The definitions of three of the condition types are given below.

one sig DateEquals extends CondType {} { match = { d1 , d2 : DateTime | d1 = d2 } }
one sig DateLessThan extends CondType {} { match = { d1 , d2 : DateTime | lt[d1,d2] } }
one sig IPAddress extends CondType {} {

match = { ip1 : IPSingle , ip2 : IPRange | ip1 in ip2.range}
}

As well as specifying the actions, condition types and values in a policy.
The SQS policy documentation also adds some constraints to the policies. These
include uniqueness of identifiers and limiting each policy to a single resource.
These constraints are added as facts in the Alloy model. In addition, a fact has
been added to ensure that the values returned by the keys function are of the
correct type.

fact TypedKeys {
Request.keys[CurrentTime] in DateTime
Request.keys[SecureTransport] in Boolean
Request.keys[SourceIP] in IPSingle
Request.keys[UserAgent] in StringSingle

}

5 Examples

In this section we give two examples of use of the Alloy model. In the first, the
properties of multiple policies are tested to find potential problems caused by
the use of distributed access control. In the second, we look at the feasibility of
using Alloy to generate candidate policies based on a set of test cases.



5.1 Two-policy test

In this example it is assumed that there are two queues: the first is used by an
application to submit jobs to an EC2 instance. The results of the jobs are placed
by the EC2 instance into a second queue which is then read by the application.
The use of two queues in this way is one of the basic scenarios described in the
SQS documentation.

There are exactly two principals used in this example: appPrincipal and
ec2Principal. The resources are restricted to the two queues requestQueue
and reponseQueue.

The policy for the first queue (policy1) contains two statements: the first
allows the application to send messages providing the current date-time is less
than some unspecified value; the second allows the EC2 instance to receive mes-
sages with an identical restriction on date-time values. The policy for the second
queue (policy2) is identical to the first with the principals reversed, so the EC2
instance can send and the application can receive.

-- Actors
one sig appPrincipal, ec2Principal extends Principal {}
one sig requestQueue, responseQueue extends Resource {}
one sig pid1, pid2 extends PolicyId {}
one sig sid1, sid2, sid3, sid4 extends StatementId {}
-- Policy
one sig clause1 extends Clause {} { key = CurrentTime }
one sig condition1 extends Condition {} { type = DateLessThanEquals && clauses = clause1 }
one sig statement1 extends Statement {} {

sid = sid1 && effect = Allow && principals = appPrincipal
actions = SendMessage && resources = requestQueue && conditions = condition1

}
one sig statement2 extends Statement {} {

sid = sid2 && effect = Allow && principals = ec2Principal
actions = ReceiveMessage && resources = requestQueue && conditions = condition1

}
one sig policy1 extends Policy {} {

version = v1 && pid = pid1
statements = statement1 + statement2

}
one sig statement3 extends Statement {} {

sid = sid3 && effect = Allow && principals = ec2Principal
actions = SendMessage && resources = responseQueue && conditions = condition1

}
one sig statement4 extends Statement {} {

sid = sid4 && effect = Allow && principals = appPrincipal
actions = ReceiveMessage && resources = responseQueue && conditions = condition1

}
one sig policy2 extends Policy {} {

version = v1 && pid = pid2
statements = statement3 + statement4

}

To test the policies, we assume that two requests are made: the first is a
request to send a message to the request queue; the second is to receive a message
from the response queue. We then test a predicate that states that there exists
a principal who is permitted to perform the first request but is not permitted to
perform the second request. That is to say that there exists a principal who can
send a message but cannot subsequently read the results.



one sig request1 extends Request {} { action = SendMessage && resource = requestQueue }
one sig request2 extends Request {} { action = ReceiveMessage && resource = responseQueue }
pred WriteButNotRead {

request1.principal = request2.principal
lt[request1.keys[CurrentTime],request2.keys[CurrentTime]]
EvaluatePolicy[request1, policy1] = Allow
EvaluatePolicy[request2, policy2] != Allow

}

The analyzer can find a counter-example to the predicate but requires at
least 6 values, which include, True, False, an IPSingle, a StringSingle and
two DateTime values. The IPSingle and StringSingle values are required as
there must be a value for each of the four request keys. The two DateTime
values are needed to meet the constraint that the first request happens before
the second request. The unconstrained entities of the instance are represented
in tree format below.

clause1$0
field key

CurrentTime$0
field values

DateTime$1

request1$0
field keys

CurrentTime$0 -> DateTime$1
SecureTransport$0 -> False$0
SourceIP$0 -> IPSingle$0
UserAgent$0 -> StringSingle$0

field principal
appPrincipal$0

request2$0
field keys

CurrentTime$0 -> DateTime$0
SecureTransport$0 -> True$0
SourceIP$0 -> IPSingle$0
UserAgent$0 -> StringSingle$0

field principal
appPrincipal$0

As can be seen, one failure case is that the first request is made at the same
date-time as the value in the clause. As the second request must come after the
first, it will fail. It should be noted that in this instance, DateTime$1 comes
before DateTime$0 in the ordering.

5.2 Policy creation

In this example, the assumption is that a user is trying to construct a policy
called candidate that meets three conditions: that only the application principal
can read from queue1; that only the EC2 principal can send messages to queue1;
and that nobody should be allowed to delete messages, change message visibility
or get queue attributes from any queue.

assert OnlyAppCanReceive {
all r : Request | r.action != ReceiveMessage || r.resource != queue1 ||

(r.principal = appPrincipal <=> EvaluatePolicy[r, candidate] = Allow)
}



assert OnlyEc2CanSend {
all r : Request | r.action != SendMessage || r.resource != queue1 ||

(r.principal = ec2Principal <=> EvaluatePolicy[r, candidate] = Allow)
}

assert noDeleteChangeAttr {
no r : Request |

r.action in DeleteMessage + ChangeMessageVisibility + GetQueueAttributes &&
EvaluatePolicy[r, candidate] = Allow

}

We could use the Alloy Analyzer to find a policy that meets all of the
assertions—but it is more likely to find a set of requests that avoided the con-
straints than a policy that met them in all cases. Instead, our approach involves
creating a set of concrete examples for which the desired result was known. Two
sets of requests were created: one set, which should always be successful and
another set that should always fail.

one sig request1 extends Request {} { action = ReceiveMessage && principal = appPrincipal }
one sig request2 extends Request {} { action = SendMessage && principal = ec2Principal }
fun success : Request { request1 + request2 }

one sig request3 extends Request {} { action = ReceiveMessage && principal = ec2Principal }
one sig request4 extends Request {} { action = SendMessage && principal = appPrincipal }
fun failure : Request { request3 + request4 }

pred FindPolicy(generated : Policy) {
all r : success | EvaluatePolicy[r, generated] = Allow
all r : failure | EvaluatePolicy[r, generated] != Allow

}

The FindPolicy predicate can be used to find a candidate policy which
gives the correct results for the examples given. The candidate policy can then
be tested against the three original constraints to find examples of requests for
which it gives incorrect results. These requests can then be added to the list
of examples and a new candidate policy generated. For example, after the first
iteration, the following request should have resulted in success but did not; as
such, it was added to the set of successful requests.

one sig request5 extends Request {} {
action = ReceiveMessage && principal = ec2Principal && resource = queue1
keys[CurrentTime] = dateTime0 && keys[SecureTransport] = True
keys[SourceIP] = ipSingle0 && keys[UserAgent] = stringSingle0

}

After six iterations, a candidate policy is found for which all three predicates
hold when tested up to a size of 20.

one sig sid0 extends StatementId {}
one sig statement0 extends Statement {} {

actions = ReceiveMessage
conditions = none
effect = Allow
principals = appPrincipal
resources = resource0
sid = sid0

}



one sig sid1 extends StatementId {}
one sig statement1 extends Statement {} {

actions = SendMessage
conditions = none
effect = Allow
principals = ec2Principal
resources = resource0
sid = sid1

}

one sig pid0 extends PolicyId {}
one sig candidate extends Policy {} {

pid = pid0
version = v1
statements = statement0 + statement1

}

This approach clearly has its limitations: in the general case, there is no
guarantee that the number of requests required to generate a policy that meets
the constraints will be of a practical size. However, if it is possible to create a
policy that meets the constraints which contains a small number of statements
and conditions, then the required number of tests is likely to be sufficiently small.
Certainly, we envisage this test-based approach as being accessible to policy
writers, and having the potential to provide some degree of formal assurance in
policy construction.

6 Discussion

Cloud computing is a new computing paradigm which is gaining popularity.
Computing systems built within a cloud infrastructure are constructed from
multiple interacting sub-components, and access control languages can be used
to restrict the interaction between these sub-components.

We have built formal models of the access policy language used within the
Amazon Web Services cloud computing infrastructure. Specifically we have ex-
plored policies written for the Simple Queue Service. Using the Alloy Analyzer
we have been able to explore properties of specific combinations of policies. We
have also been able to use the Alloy Analyzer to assist in the construction of new
policies by using sets of requests which result in known access control decisions.

As access control decisions are a security-critical function it is important that
policy writers have some degree of assurance with respect to their correctness.
Previous work in this area has centred around simple access control systems such
as Role-Based Access Control [9, 10]. Attempts at modelling the significantly
more complex XACML (see, for example, [11], [4], and [12]) have all resulted in
partial models which avoid some of the more complex elements such as conditions
and/or XPATH queries. In this paper we have presented a model of the whole
language (which is, admittedly, less complex than XACML) that is suitable
for analysis. By providing a model of the whole language it becomes possible
to analyse existing real-world systems instead of placing restrictions on future
systems so that analysis will be possible. This gives the model wide applicability
to the rapidly increasing number of systems built using Amazon Web Services.



While the Alloy Analyzer can find instances that meet a complex set of
predicates, it is not capable of simultaneously finding an instance of a policy and
testing its properties against all possible requests of bounded size. Instead it will
deliberately avoid requests that would break the predicates and a hence will find
a policy of limited application. By separating the two steps, it is possible to build
up a set of requests that will test different aspects of the predicates resulting in
increasingly applicable candidate policies. By testing candidate policies against
the original predicates new requests can be found which test different aspects of
the predicates.

One area of further work is to combine the model of the AWS policy language
with similar models for RBAC and XACML. This will give the opportunity
to explore the relationships between the models, with an ultimate goal of the
automatic translation of policies from one language to another. It will also be
useful when modelling the types of complex heterogeneous systems that are
encouraged by cloud computing. A second avenue of further work is to consider
the relationship between the Alloy and Z models (with a more concrete Z model
capturing the specifics of SQS policies). In particular, we will explore the mutual
benefits to be afforded through a combination of model finding and theorem
proving.
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A Z model

[PolicyID ]
Version ::= v1

Policy
version : Version
id : PolicyID
statements : P1 Statement

[StatementID ,Principal ,Action,Resource]
Effect ::= Allow | Deny | SoftDeny

Statement
sid : StatementID
effect : Effect
principals : P1 Principal
actions : P1 Action
resources : P1 Resource
conditions : P Condition

Condition
type : CondType
clauses : P1 Clause

[Key ,Value]

Clause
key : Key
values : P1 Value

CondType
match : Value ↔ Value

Request
principal : Principal
action : Action
resource : Resource
keys : Key → Value



MeetsCondition : Request ↔ Condition

MeetsCondition =
{r : Request ; c : Condition |

(∀ cl : c.clauses •
(∃ v : cl .values • (r .keys(cl .key), v) ∈ c.type.match))}

MatchStatement : Request ↔ Statement

MatchStatement =
{r : Request ; s : Statement |

r .principal ∈ s.principals ∧
r .action ∈ s.actions ∧
r .resource ∈ s.resources ∧
(∀ c : s.conditions • (r , c) ∈ MeetsCondition)}

EvalStatement : Request → Statement → Effect

∀ r : Request • EvalStatement(r) =
(λ s : Statement • SoftDeny)
⊕
(λ s : Statement | (r , s) ∈ MatchStatement • s.effect)

EvalPolicy : Request → Policy → Effect

∀ r : Request • EvalPolicy(r) =
(λ p : Policy • SoftDeny)
⊕
(λ p : Policy |

(∃ s : p.statements • EvalStatement(r)(s) = Allow) • Allow)
⊕
(λ p : Policy |

(∃ s : p.statements • EvalStatement(r)(s) = Deny) • Deny)

EvalPolicies : Request → (P Policy)→ {Allow ,Deny}

∀ r : Request • EvalPolicies(r) =
(λ pols : P Policy • Deny)
⊕
(λ pols : P Policy |

(∃ p : pols • EvalPolicy(r)(p) = Allow) • Allow)
⊕
(λ pols : P Policy |

(∃ p : pols • EvalPolicy(r)(p) = Deny) • Deny)



B Basic alloy model

module AWS/policy

-- Domain specific abstract signatures
abstract sig Value, Key, Action {}
abstract sig CondType {

match : Value -> Value
}

-- General signatures
sig Clause {

key : Key ,
values : some Value

}

sig Condition {
type : CondType ,
clauses : some Clause

}

sig StatementId, Principal, Resource {}
sig Statement {

sid : StatementId ,
effect : Effect ,
principals : some Principal ,
actions : some Action ,
resources : some Resource ,
conditions : set Condition

}

abstract sig Effect {}
one sig Allow, Deny, SoftDeny extends Effect {}

sig PolicyId {}
abstract sig Version {}
one sig v1 extends Version {}
sig Policy {

version : Version ,
pid : PolicyId ,
statements : some Statement

}

sig Request {
principal : Principal ,
action : Action ,
resource : Resource ,
keys : Key -> one Value

}

-- Evaluation logic
pred MeetsCondition ( r : Request , c : Condition ) {

all cl : one c.clauses | some v : one cl.values | (r.keys[cl.key] -> v) in c.type.match
}

pred MatchStatement ( r : Request , s : Statement ) {
r.principal in s.principals
r.action in s.actions
r.resource in s.resources
all c : one s.conditions | MeetsCondition[r,c]

}

fun EvalStatement ( r : Request , s : Statement ) : Effect {
MatchStatement[r,s] => s.effect else SoftDeny

}



fun EvalPolicy ( r : Request , p : Policy ) : Effect {
(some s : one p.statements | EvalStatement[r,s] = Deny) => Deny else
((some s : one p.statements | EvalStatement[r,s] = Allow) => Allow else SoftDeny)

}

fun EvalPolicies ( r : Request , ps : set Policy ) : Effect {
(some p : one ps | EvalPolicy[r,p] = Deny) => Deny else
((some p : one ps | EvalPolicy[r,p] = Allow) => Allow else Deny)

}



C SQS alloy model

module AWS/sqs
open AWS/policy
open util/ordering [Value]

-- Request Keys
one sig CurrentTime , SecureTransport , SourceIP , UserAgent extends Key {}

-- Actions
one sig ReceiveMessage , SendMessage , DeleteMessage ,

ChangeMessageVisibility , GetQueueAttributes extends Action {}

-- Facts
fact UniquePolicyIds{

all p1,p2 : Policy | p1 = p2 iff p1.pid = p2.pid
}
fact UniqueStatementIds{

all s1,s2 : Statement | s1 = s2 iff s1.sid = s2.sid
}
fact OneResourcePolicies {

all p : Policy | lone p.statements.resources
}

-- Boolean values
abstract sig Boolean extends Value {}
one sig True , False extends Boolean {}
-- DateTime values
sig DateTime extends Value {}
-- IP values
sig IPSingle extends Value {}
sig IPRange extends Value {

range : some IPSingle
}
-- String values
sig StringSingle extends Value {}
sig StringRange extends Value {

range : some StringSingle
}

-- Constrain keys function of requests to return values of correct types
fact TypedKeys {

Request.keys[CurrentTime] in DateTime
Request.keys[SecureTransport] in Boolean
Request.keys[SourceIP] in IPSingle
Request.keys[UserAgent] in StringSingle

}

-- Conditions
one sig Bool extends CondType {} {

match = { b1 , b2 : Boolean | b1 = b2 }
}
one sig DateEquals extends CondType {} {

match = { d1 , d2 : DateTime | d1 = d2 }
}
one sig DateNotEquals extends CondType {} {

match = { d1 , d2 : DateTime | d1 != d2 }
}
one sig DateLessThan extends CondType {} {

match = { d1 , d2 : DateTime | lt[d1,d2] }
}
one sig DateLessThanEquals extends CondType {} {

match = { d1 , d2 : DateTime | lte[d1,d2] }
}
one sig DateGreaterThan extends CondType {} {

match = { d1 , d2 : DateTime | gt[d1,d2] }
}



one sig DateGreaterThanEquals extends CondType {} {
match = { d1 , d2 : DateTime | gte[d1,d2] }

}
one sig IPAddress extends CondType {} {

match = { ip1 : IPSingle , ip2 : IPRange | ip1 in ip2.range}
}
one sig NotIPAddress extends CondType {} {

match = { ip1 : IPSingle , ip2 : IPRange | ip1 not in ip2.range}
}
one sig StringEquals extends CondType {} {

match = { s1 , s2 : StringSingle | s1 = s2 }
}
one sig StringNotEquals extends CondType {} {

match = { s1 , s2 : StringSingle | s1 != s2 }
}
one sig StringLike extends CondType {} {

match = { s1 : StringSingle , s2 : StringRange | s1 in s2.range}
}
one sig StringNotLike extends CondType {} {

match = { s1 : StringSingle , s2 : StringRange | s1 not in s2.range}
}


