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Abstract Yao “black boxes.”

However, there is an emerging class of security proto-
As mobile devices pervade physical space, the familiar au-cols for which it seems very difficult to bring these two
thentication patterns are becoming insufficient: besides e paradigms together. This class of protocols is used to pro-
tity authentication, many applications require, e.g. lboa vide security for what is known gservasive securitythat
authentication. While many interesting and subtle proto- is security for a network that is pervasive in the human en-
cols have been proposed and implemented to provide suclvironment. Because of constraints on the various devices
strengthened authentication, there are very few proofs tha and communication channels involved, it is often necessary
such protocols satisfy the required properties. to use weak cryptography that does not satisfy standard no-

. . Van. tions of indistinguishability, but in such a way that it does
We consider the problem of adapting the Dolev-Yao-style not threaten the security of the protocol itself,

reasoning methods for pervasive security. We show how
the notion ofguards previously used for symbolic reason- We consider the case where the standard authentication re-
ing about secrecy, can be extended into a tool for analyz- quirements need to be strengthened by the proofs of spatial
ing pervasive authentication. It supports a simple form of proximity. In some cases, for example the protocols ana-
probabilistic reasoning, necessary for situations whére t  lyzed in [10, 14] it has been possible apply symbolic meth-
authentication cannot be achieved in absolute sense, andods in a meaningful fashion. However, there other cases,
needs to be quantified. We show that extension of our proto-such as the Hancke-Kuhn [8] distance bounding protocol
col derivation logic, although quite modest, suffices to un- that appear resistant to analysis in this fashion. This pro-
cover some interesting properties of the Hancke-Kuhn dis-tocol implements the rapid, easily computable response of
tance bounding protocol, and to explain some of its deceiv-the prover by using weakly secure functions, that leak in-
ing simplicity. formation. The amount of information leaked depends on
a pseudo-random variable, generated during the course of
the protocol. This makes it impossible to construct a useful
symbolic model of this protocol. The algebraic approxi-
1 Introduction mations of the Hancke-Kuhn functions seem to either allow
implementations which leak all information, or do not allow

. . any implementations. So we must count bits somewhere.
Traditionally, there have been two paradigms used for prov- 5 tha other hand, we would like to retain the advantages
ing protocol security. One, the symbolic paradigm, com-

monly known as "Dolev-Yao” models both protocol and at-
tacker in terms of an algebraic theory [4]. While this has
been criticized as crude, it is often highly effective and-ea The goal of this paper is to provide a simple extension of
ily automated. The other, the computational paradigm, usu-the algebraic model used in [12], sufficient to capture these
ally relies on some notion of indistinguishability from the new primitives, while still supporting incremental reasun
point of view of a computationally limited attacker [6]. Re- and protocol derivations. Using this model, we provide a
cently, a lot of research, starting with [1], has been davote derivation and security proof of the Hancke-Kuhn protocol.
to drawing the two paradigms closer together. This strat-

egy has generally been to rely upon crypto-algorithms that

themselves satisfy strong enough definitions of secuiity, s Paper outline. In Section 2 we review the basic ideas
that, if used in the proper way, they can be treated as Dolev-about the challenge-response authentication in general,

of algebraic modeling, such as its cleanness, and hopefully
its amenability to automatic reasoning.



about proximity authentication in particular, and formu- tion protocol in the present paper is based on a novel use of
late the relevant security properties. We also describe theelements of secrecy logic from [12].

ancke-Kuhn protocol itself, and _flnally introduce a p_rob- Like most other authentication protocols, the Hancke-Kuhn
_ablhstlc extension of th_guard relgnon. Guards were orig-  hrotacol is an instance of the Challenge-Response (CR)
inally used for symbolic reasoning about secrecy in [12]; template, displayed in Figure 1. The verifier Victor gen-
here we use them for probabilistic reasoning about authen-erates a fresh value sends a Cha”engé/PI to the prover
ticity. In Section 3.2 we derive the necessary properties Peggy on the right, and receives a respartséz. The ex-

of the | function used by the Hancke-Kuhn protocol, and pressions/z, (¢VPz) and(rV”z) denote these three Vic-
prove that it is a canonical implementation of the propertie tor’s actions. The point of the CR template is that from his
required by Hancke-Kuhn. In Section 4 we give a quanti- OWn actions, Victor can draw conclusions about Peggy’s ac-
tative proof of security of Hancke-Kuhn using the guards tions. More precisely, the functiorsandr are assumed to

. . . P VP
relation. In Section 5 we conclude the paper and discuss?€ Such that only Peggy could transfor”z to " ",
how our results could be extended. so that Victor can be confident that, after he sehf'x

and before he received 'z, Peggy must have received
a message containing ”'z, and sent a message containing
rVPz. Formally, the CR template thus supports the follow-

2 Deriving the Hancke-Kuhn protocol ing CR axiom, capturing Victor’s reasoning:

o Vi (va)v e (¢ Pa)y > (VP a)y
2.1 Challenge-response authentication in PDL :((W)V o (VP a)y 5 (VP a)) o
,,,,,,,,,,,,,,,,, (rFa)pe ) e
v v P where the relation>b says that action occurs before action
Vip 3 b. Intuitively, the reasoning in axioiftr) can be justified by
(" Fz) —_ (&P x)) demonstrating that Victor can assume that

1. anyone who originated’ ©' z had to previously receive
cVPz, which could only happen after Victor sent it;

' VP
o e ) _
(r""z) | ; 2. no one could produce’”z without knowing the se-
‘ ‘ cretsV'?, so it must be Peggy.

Figure 1. CR template This last conclusion is based on the assumption that only
Peggy knows"V'?, or only Peggy and Victor. In both cases,

Our approach to modeling challenge-response protocoIsViCtor'S reasoning is the same, because he knows that he did

will be based on the approach used in Bretocol Deriva- not send-" "z,

tion Logic(PDL) [9, 3]. PDL is a logic that is used to derive  The above informal justifications ¢€r) can be refined into
the conclusions a principal can form as a result of partici- slightly more formal proof obligations, as follows. For any
pating in a protocol. It is based on the Dolev-Yao black set of principaldl, it is required that

box model of security. The axioms of the logic describe the

properties of communication channels and cryptographic 1. whenever there is a derivati@h " "z, then there
algorithms, and the expected behavior of principals in €ryp must also be a derivatiod - ¢V 7z, for any set of
tographic protocols. One uses the logic by expressing the  terms= known toIl in a run of CRbeforerV?z is
desired properties of a protocol in terms of a template. One sent;

then uses the observations of a participant and the axioms
of a logic to show that it is possible to derive the properties
expressed in the template.

2. whenever there is a derivatigh ¢« - rV Pz, then
there must also be a derivatia) ¢V z + sV, for
any set of term& known toll in a run of CR before
The earliest versions of PDL, e.g. in [9], only included ax- rVPzis sent.
ioms about authentication, assuming that some shared se-
crets were given in advance. A logical framework for rea- Both of these proof obligations can be formalized in terms
soning about the protocols where such secrets are generef theguardrelation, used in [12]. We first recall the orig-
ated, was presented in [12]. Some methods to combine thenal idea of algebraic guards, and its formalization in [12]
authentication and the secrecy modules of PDL were dis-and then propose a probabilistic version, necessary fer rea
cussed in [3]. The analysis of the Hancke-Kuhn authentica-soning about the Hancke-Kuhn authentication.



2.1.1 Algebraic derivability and guards 2.1.2 Reducing authentication and freshness to guards

The algebraic derivability relation, widely used in synmibol  Both the authentication and freshness requirements in the
reasoning about security protocols, can be defined by CR template can be stated as instances of the guard rela-
SLO s VieOIpeT IHCE tE0d tion. Authenticity of the.responsaé’Pa: is established by

proving that a secret”” is necessary to derive it, i.e. that
whereZ and © are finite sets of terms from an algebra it guards it relative to the séf - of the messages that be-
7, and¢ is a tuple in=. We assume that the algetifais come known in CR before the point whefi” z itself is first
specified by an equational theof¥, F), whereX are the  sent in some message. Likewise, the freshnes$ 6f: is
operations and” the equations. We denote By the set  established by proving that ©z guards-¥ Pz in T r.
of derived operations, i.e. well-formed with respect to the

" N . In this section, we formalize this technique. We begin b
arities; and by £ san equalition derivable frork. ;. gin by

formalizing the term conteXf o of a protocolQ.

Definition 2.1 We say that a set of sets of terisalge- | the following definition we use the notion ofgaotocol

braically guardsa term¢ with respect to a set of ternis, run defined in [12], that is, a run of a protocBlis a finite

and write . set of executions oP, whose actions are partially ordered
G guards ¢ within T by thes relation, and such that each receive actions is pre-

whenever ceded by a corresponding send action. That is, a protocol

run is close to the idea of tHrindleof Thayer, Herzog, and

VECT. EFt = dreg. EFT (2) Guttman [5].

Example. LetY = (DH) be the set of terms that may Ejgg:tr:(g Z-fﬁel,;;tr?ck;en,?eg{gizzo;é?n’ andi a set of ac-

become known to the participants and eavesdroppers of a

run of the Diffie-Hellman protocol. Then Q(A) = U I, U TS
{{z.¢"}.{y,9"}} guards ¢*¥ within Tpy pell

Note thatg*¥ can be derived not only fronjz, g} and wherell is the set of principals engaged in the rur, is

{y, g%} but also from{g, z,y} and{g, zy}; however, nei-  the set of terms known to a princip&linitially, before Q,

ther of these sets can occur in a run of the Diffie-Hellman and I';;* is the set of the terms thdt may receive inQ
protocol between two honest principals, and are thus notbeforeany of the actiona € A are executed.

contained irll . Proposition 2.3 Let CR be challenge-response protocol,

and letQ be a protocol run in CR. Suppose that the func-
Perfect cryptography and pseudo-free algebras. The tionsc”* andr"* used in CR are implemented to satisfy
algebraic guard relation is based on the assumption that a
term can only be derived algebraically, using the given op-
erations and equations. A ternthus either lies in a subal-
gebra generated by a set of termysor not, and we have

Ekt vV Eit

{{CVPCQSVP}} guards "z within Q(+""z) (crg)

wheres"F is a secret known only to Peggy (and possibly to
Victor). Then ¢€r) is validated.

_ ) ) The proof is obtained by expanding the definition of the
This means that the attacks on the implementation of theg|gepraic guard relation and analyzing the term context of

impossible to cryptanalyze the operations used to corstruc yish to consult [12].

t, and to derive it by partial information about it. In other

words, we assumgerfect cryptography

_ _ 2.2 Proximity authentication
Moreover, we assume that the algebraic derivatiéns ¢

only use the equations specified in the given algebraic the-

ory (X, E). This means that the implementation of that al- In pervasive computation, mobile devices often must prove
gebraic theory is assumed to yield a free algebrathat not only their identity, but also their proximity. This is,

it is computationally unfeasible for the attacker to find the for instance, the case whenever access to a secure loca-
additional equations, not specified in the theory, and to usetion is controlled using smart cards. In principle, a smart
them in his derivations. This is roughly tipseudo-free al-  card reader Victor could still simply use the standard cryp-
gebraassumption [13]. tographic challenge-response authentication to assare th



prover Peggy has sent the response, and that she did that v P

after she received his challenge. However, if Victor does ve
not verify that Peggy is close, then an intruder Ivan could | !
set up another smart card reader at a remote location where 7o(z) \ (@)

Peggy happens to be at that moment. He could then forward
Victor’s challenge to the other reader, and return Peggy’s r
sponse by a radio link. In cyberspace, this would be a com- ! !
pletely correct session of standard authentication, wiim| /(wEH(s-a-w)>
as a mere relay. In physical space, this could be a breach of 71 (afH(s.0.)) 3 1
security, based not on spoofing Peggy'’s location, rather tha
her location. Hence the need for proximity authentication.

One method to ascertain that Peggy is close to Victor is by Figure 2. Hancke-Kuhn protocol

distance boundingdt is implemented by the template CRP,
which is similar to the template CR, but Victor in it more-

over records the time, when he sends the challengée” z Peggy’s shared secret Peggy’s counter, and Victor's
and the timer; when he receives the response. If CRP val- noncew. The secrek is agreed in to in private, and can
idates strengtheningr) to be reused in many sessions, whereas the fresh values for
. VP vp andw are announced publicly at the beginning of each pro-
Vi (va)v e mole” "a)v > (v tocol session. While may be predictable, but must never

VP

:>((uz)v >ro(c’ Pa)y o ((¢VFx))pr> be reusedw should be unpredictable for each session.

(rVPa))s o (TVPx)V) (crp) The function® : Z§ x 73" — 75 is defined bitwise by

then after a successful session, Victor conclude not only (cBh) = B0 3)
that the response must be from Peggy, but also Peggy must !

be ata distance fori=1,2,...,¢,andh = R(® :: K wheren® n() €
d(V,P) < S(r—m) Zs.

Clearly, some bits of: B h can be extracted from H h,
wherec is the maximal speed of the messages. namely, the bit§z B h), wherez; = y;. Moreover, it is
possible to learn some bits efE h even without having
seenz, since the bitgxz B h), whereh; = hyy; are the
same no matter what the valuewofs. How likely is it that
the attacker, by challenging Peggy, learns enough about the
In order to guarantee that the timing information in CRP is secretH (s.a.w) to impersonate her? How likely is it that
accurate, the computation of the response from the chal-Peggy can learn enough about8 H(s.a.w) to respond
lenge must take negligible time. Unfortunately, quickly before she has seer? In the next section we introduce
computable functions tend to be cryptographically weak. some tools to answer these questions.

Some protocols, such as the Brands-Chaum distance bound-

ing protocol [2], achieve this quick response by separating

the timed response from the cryptographic response. In3 Guessing

contrast, the Hancke-Kuhn [8] protocol requires a single re

sponse message, where the cryptographic componentis re-

alized through a one-time secret, while the timed respanse i We denote by[E F 9} the probability that a set of terms
realized through a special function that leaks some bits, bu © C 7 can be guessed from a set of tefB\s. 7. To mea-

the authentication apparently succeeds with an overwhelm-sure this probability, we assume that the algebraf mes-

ing probability. Proving the security of the Hancke-Kuhn sages is given with a frequency distributiBrob : 7 —
protocol requires evaluating this probability. [0,1], and that guessing consists of trying the terms one
after the other, in order of their probability. To improve
his chances, a guessing attacker could engage in Bayesian
derivations. However, such derivations, and the distribu-
tions that they involve, must be feasibly computable, by the
The one-time secrell (s.a.w) is obtained by applying a  Turing machines from some suitable famify This means
public hash functiorfl on the concatenation of Victor and that the probability of guessingromZ is notProb(O | £),

2.3 Hancke-Kuhn protocol

The Hancke-Kuhn protocol can be viewed as an instance
of the CR template, with the challeng€”z = 2 and the
response’ Pz = x B H(s.a.w).



but 3.1 Probabilistic guards

=Fe], \/ Prob(®@ =A(E) [Z)  (4)

peF The idea of the guard relation is that a tetiis guarded by

one of the guards frorg if whenevert is derived, then at
where\/ denotes the supremum. least one of the guards € G is also derived. In the alge-
braic model, this was simple enough to state by Definition

In the present paper, unless specified otherwiSewill 2.1. Wher can be guessed, then this crude statement needs

be_ the family of Probabilistic Polynom|gl—t|me Tunng Ma- 5 pe refined: the event thais guessed must be preceded

ch!nes (PPT),_and we shall usually omit the subscnpt and by the event that sormié € G is guessed.

write [Z - ©] instead of[Z - ©] .. We also abbreviate

[t] — [@ [ t]. Definition 3.3 We say that a set of sets of tergiguards
(against guessing) term¢ with respect to a set of terms,

Proposition 3.1 For all sets of term&, I, ©, the following and write

inequality holds G guards t within T
[EbT] [2THO] < [2+T,0] 5) if for every set of term& C T such thatAdv|[= - ¢] > 0,
’ - ’ we have that
and wheneve(T'| > 0 Bk < \[EFT]-[ETH] 7
reg
r,e
rre) < LY © o
[ } The following proposition, with its straightforward prqof
tells that Definition 3.3 can be viewed as a refinement of
Definition 2.1.

Remark. Since an algorithm constrained to first guéss

from = alone, and the® from I' and= may have a sig-  Proposition 3.4 Suppose that the guessing machingEs
nificantly worse guessing probability than an algorithm al- used in (4) are constrained to never read their random bits,
lowed to guess the elements bfand © in any order, in- so that guessing boils down to algebraic derivations. Then
equalities (5) and (6) may be strict. For conditional proba- the guessing guard relation from (7) boils down to the alge-
bilities, (5) and (6) are, of course, always equations, Ardt braic guard relation from (2).

Bayes’ Theorem follows from them. . . .
Proof. If the Turing machinest used for guessing do not

Definition 3.2 Theadvantagerovided by a set of ternis use randomness, they become Deterministic Polynomial-

in computing the term® is the value Time Turing machines (DPT): they construct some terms
and apply some equations, in a prescribed order. For each
Adv[EF©] = [EF©]-[6] such machine, it is determined with certainty whether it wil

output a term or not. It follows that the probabilities on the
When this advantage is zero, we say tB&s computation-  right-hand side of (4), restrictel = DPT, must be either

ally independensof =, and write 0 or 1, and thus
[EL®] <+« Adv[EF®©]=0 [EFt]pr=1 < Ekt (8)
= [EF0e]=[6] The claim that (8) implies that (7}= (2)) follows by

case analysis.

Remark . The corresponding relation sfatistical inde- u
pendencerequiring thatProb(0|Z) = Prob(©), is well
known to be symmetric. In contrast, computational inde-

pendence is not a symmetric relation. For instance, 3.2 Partitioned functions and®

e [9" I z] = [z], because itis hard to computerom In this section we analyze quickly computable functions,

g*, but like the one used in the Hancke-Kuhn protocol. One re-

quirement of a quickly computable function is the bit de-

° [x F gm] > [gﬂ, because it is easy to compujé pendency of its outputs from its inputs must be partitioned:
from z. thei-th block of output bits should only depend on thth



block of input bits. Obviously, a function where every bit of
output depends on every bit of input has to wait for the last
bit of input before it can produce.

Definition 3.5 We say that a boolean functigh: Z3* —
7% is partitionedwhen

m mi1+mo+ -+ my
n = ni+tng+---+ny
f = fiuswfou-ufo

where the inputs and the outputs of each component func
tion f; : Z3 — Zg', fori = 1,2,...¢ are indepen-
dent on the inputs and the outputs of all other compo-
nentfunctions, in the sense tHat, fz(z7) L fi(z;)], where
1={j <tlj#i}.

Although partitioning a function decreases its complexity
also decreases its security, since it limits the bit profaga
In particular, knowingf (z) helps us guesf(z). In the next
section we make this more precise.

3.2.1 Guessing the values of partitioned functions

Proposition 3.6 (a) Let f be a partitioned function as
above, and let, z € Z3* be bitstrings with a common block
x; = z. Then[z, z, f(2) = f(x)] = 2m.

(b) Letf:Z{ — 75 bebitwise partitioned, i.e.|m;| =
Ini| = 1foralli < ¢ Then[z,z f(z) = f(z)] >
, whereA(z, z) = #{ilx # z} is the Hamming
distance.

27A(z.,z)

Proof. For (a),z; = z; yields f;(x;) = fi(zi), SO we only
need to guess at mast— n; bits. For (b),x; andz; are bits,
andn — A(z, z) of them are equal, so we only need to guess
at mostA(z, z) bits. O

A consequence of Prop. 3.6 is that a proximity authentica-
tion protocol, implemented using a partitioned functiBn
to compute the respons€ ”z = R(sVF ¢V x), cannot

wheref is the Hancke-Kuhn function (3), afid, 1¢ € Z§
are the strings of Os and 1s, respectively.

Proof. Using the definition of bitwise partitioned functions
at the first step, and (3) at the second, we get

(f@); = filws) = (2B (f(0) = f(19)),
O
Proposition 3.8 If f : Z5 — Z& is a bitwise partitioned

function, then the probability that its values can be gudsse
from one another is at the minimum

2,2, f(2) b f(2)] = 278G (10)

if and only if for everyi < ¢ holds
[£:(0) L f:(1)] and [f;(1) L fi(0)] (11)
Proof. If (11) are satisfied, thenr; # z; implies
[xi,zi,fi(zi) F fz(l'l)} = [,Ti F fz(:vz)] On

the other hand, by definition, the components of
a partitioned function are mutually independent, i.e.

[177 27, Ji(27) = fz(xz)} = [SCz H fl(arl)} Hence

::]N

IT [ziF fiza)]

=1

TiFzi

i
S =

— 27A(z,m)'

N =

A

)

0

The other way around, using (10) at the second step, we get

¢
H z,z, f(2) F fi(z:)]

i=1

(2,2, f(2) =

27A(z,m)

f()]

.’:1&

=1
TiF#24

be secure in an absolute sense, because the response m@hich, together with the componentwise independence

be guessed with a non-negligible probability from the other
responses’ ”z. Moreover, it seems that the Attacker can
always obtain some other respons¥s$ > by impersonating
Victor and issuing challenges’”z (as an attempt to au-
thenticate the challenge in an authentication protocaldea
into a vicious circle).

Lemma 3.7 A boolean functiory : Z§ — Z& is bitwise
partitioned if and only if for every € Z5 holds

f(x) z B8 (f(09) = f(1%)

(9)

again, yields (11). O

Remark. InasensepM(—): Z3* — Z4 isthus a "one-
and-half-way function”, since B h discloses only one half
of the bits ofh.

On the other hand—) B h : Z5 — Z5 is not just an ex-
ample of a bitwise partitioned function, satisfying the dee
of the Hancke-Kuhn protocol, but it is a canonical way to
represent such functions.



3.2.2 Guessing: H h

Looking at Prop. 3.8 from the other direction, note that the
values ofz B (A :: h(V)) are easier to guess from one
another whert(?) andh (") are more dependent. E.g., note

zH@y = y) =y xBy = w)=zdy
wherez @ y is the "exclusive or” operation.

Definition 3.9 For » € Z5 andI C ¢ = {0,1,2,.../ —
1} we definez®! € Z& to be the bit string obtained by
replacing for alli € I the bitsx; with a "wild card” &

®I
. _{

For h = h(® :: b whereh(® (V) ¢ Z¢ we define the

ifkel
otherwise

®

T

kernelxh to be the set of places where its first and its second

half coincide

kh

fiet|n® =n"y

Proposition 3.10 For = andh as above holds

@) [hFzBh] =2lmhl-*
(b) [I}—Iﬁﬂh]:[:c®“h|—xﬁﬂh]
(€) [z,hFxzBhA] = [z®" 2B A

Proof. Note that for each € xh, the bit(z B h); = h§0) =

hl(.l) does not depend on;. This means that B h only
depends ox®"", O

The following illustrates that guessingt h may get unex-
pectedly subtle.

Proposition 3.11 For randomz € Z5 andh € Z2¢ and for
everyz € Z§ holds.

3 ¢

4

Proof. Guessing:H#h from z andzHh can be modeled as a
version of the Monty Hall problem [15], where Monty ran-
domly selects: andh, and the contestant choosesMonty
then announcest h and the contestant must guasd h.

[ZEth—:vEEh]

Consider the case wheh= 1. Monty thus flips three fair
coins to pick the secret bitg 1(*) andh(!), while the con-
testant picks a bit. Monty then announces/® h = h(*).
Should the contestant now guess thdd h = z B h, or
should he switchta B h = —(z B h)?

Denote byy the probability that the contestant pick&h =
2B h. If KO = h(D | the contestant wins with this choice,
because the valuef h is the same for every. Sinceh(©)
andh(!) were randomly chose®rob(h(® = h(V) = 1.
Otherwise, ifh(®) % 1V thenz B h = z B h holds if and
only if z = z. Sincex is randomProb(z = z) = %, and
henceProb(h(®) # K Az = 2) = 1, becaus&(®), A1)
andx are independent.

The probability that the contestant will make a correct gues
is thus

q- (Prob (h“” - h<1>) + Prob (h“” A0 A g = z))

_

4
To maximize this probability, the contestant negds 1,
and should thus sti¢kwith Monty’s bit z B h.

The inductive step té + 1 is left to the reader. O

Remark. Taken together, Propositions 3.11 and 3.8 imply
that there are situations when

[ZEEhl—xEHh} > [x,z,zEEhl—xEHh} (12)

Formally, this inequality is satisfied whenevArz, z) >
(2 —log 3)¢, which happens with a probability of abaup.
But how can it be easier to guessH h from z B h alone,
than together with: andz?

In 3.11, whenr andz are not available, the optimal guess-
ing strategy is to always tryx B h); = (z B h);. In

3.8, whenr andz are available, the optimal guessing strat-
egy can be to test for everiywhetherxz;, = z; and to try

(x B h); = (2B h), ifitis, or to randomize(z B h);
otherwise. But wheneven'” | h{"], as assumed in 3.8,
the guessing algorithm can randomizeH h); by setting

(x B h); = (28 h);. Whetherz andz are known or not,

the guessing algorithm can thus proceed in the same way,
by always trying(z B h); = (z B h);.

This strategy is, of course, more successful in the cases
when the Hamming distance betweeand:z happensto be
smaller. When: andz are known, the probability of its suc-
cess can be precisely evaluated, as it was done in 3.8. When
2 andz are not known, we can, in principle, only estimate
the expected (average) value of this probability. Prop. 4.5
below shows that this is just what was done in 3.11, albeit
implicitly. The situations whem\(z, z) > (2 — log 3)¢ and

(12) hold are just those when the probability of a successful
guess ofc H h from z B h, for the specifiecc andz, happens

to be lower than its expected value, averaged avandz.

1This solution is in contrast from the original Monty Hall jilem [15],
where it is advantageous to switch. The reasoning is, hawgquée simi-
lar.



4 Security of the Hancke-Kuhn protocol

We quantify the security of the Hancke-Kuhn protocol by
evaluating the probabilityrob(crp), that the sequence of
events in a complete protocol run validatesp). In order

to evaluate this probability, we analyze the probabilitgtth
(crp) fails. How can it happen that Victor observes a satis-
factory sequence

1% (va)v > 1o(z)v > 1 (e B H(s.a.w)),, (13)

but that the event

O = 1o{x)y > (z)p>
(xB H(s.aw))pr> 7 (zB H(s.a.w)), (14)

did not take place? The idea that we pursue is that this AN, order to evaluat®rob

happen either when

A: the responder is not Peggy, but dttacker, who does
not know the secret, or when

&: the responder is Peggy, but she responfiadier than
she received the challenge.

We shall us4 and€ as generic notations for the runs where
the above events occur. In other words, the evefitis
decomposed as a disjoint union dfand£. We proceed
to evaluateProb(.A) andProb(€). This will be done by
determining probabilistic guards of the response in thm ter
contexts of4 and&, Defn. 2.2.

Response token

Recall that Peggy’s response tokéh(s.a.w) is derived

from the shared secret Peggy’s counted (predictable but
never reused), and Victor’'s nonee(unpredictable), using
a secure public hash functidih.

The requirements that andw are random and thatl is
secure are needed to assure that the families

(o = H(s)}ueny
{9w = H(—-—-w)}wezg

F
G

(15)
(16)

are pseudorandom [7]. For our purpose, these requirement

boil down to the fact that a PPT cannot distinguish between
the outputs of a member df and the values of a random
variable without knowing the index and ditto forG and

w.

The pseudo-randomness Bfmeans that the Attacker who
is attempting in a rund to impersonate Peggy should not

be able to guess any bits &f(s.a.w) without knowings,
even ifa, w and some other bits df (s.a.w) are known.

The reason for requiring th&t be pseudo-random is more
subtle. Suppose that Peggy is trying in a &io respond
early, without having seem. According to Prop. 3.10(a),
if |xH (s.a.w)| = k then Peggy only needs to guess k
bits of z in order to respond. Ik = ¢, she does not need
z at all! A dishonest Peggy will thus try to choosein
such a way to make H (s.a.w) as large as possible. The
pseudo-randomness 6fmeans that she should not be able
to control H (s.a.w) without knowinguw.

For brevity, we often writé" ¥ instead ofH (s.a.w).
4.1 Guards in undesired runs

(crp), we need to determine the
probability that the correct respons@l h"'* is guessed in
the undesired rungl and£. More precisely, what can be
guessed in the term context§x B 1V 7)) and€&(z), as de-
fined in 2.2? — The following lemmas simplify this ques-
tion.

Lemma 4.1 (a) Let.A be an attack run with a long term se-
cret s, Peggy’s countet, Victor's noncew, and Attacker’s
challengez, for which he obtains the response® rV 7,
wherehV? = H(s.a.w). Then foranyg C A(z BrYT)
holds

[E"mﬁﬂhvp] = [Eﬂ{s,mw,m,z?zEﬂ hvp} }_:CEEhVP}

(b) Let& be a run with a long term secret Peggy’s counter
a, Victor's noncew, and where Peggy responds early. Then
forany= C &(x)
[= F o | hVP] [E N {s,a,w} F oo | hVP}
Proof (a). Recall thatd(x B h"Y ) is the union of the con-
texts observed by the possible participants in the Ayn
beforexz B hY" is known. Besides, known by Victor
and Peggy, and, w andz, announced publicly but never
reused, the contexd (x B 1Y) thus also contains a single
additional challenge, issued by thedttacker, and the cor-
responding responsef 1Y * (provided by Peggy before
she receives Victor’s challengg.

?/Ioreover, theAttacker may issue a family C Z¢ of ad-
ditional challenges to Peggy, and even construct and pro-
vide some suitable noncdsv, },cy. To each new chal-
lenge, Peggy will respond with B h,,, where the response
tokenh, = H(s.ay.w,) is derivedusing a new value of
the countera,. The whole family of responsei, },cy

will not uncover anything about" ” because the family’



from (15) is pseudorandom, i.e. becausef,(a,,w,) = Lemma 4.1(b) says that suffices to considér C
H(s.ay.w,) seems random as soon@asY — Z5 varies. {s,a,w}. But the pseudo-randomness assumption implies
that [ = =z B hYVF] = 27 whenever= is a proper sub-
set. So (19) holds trivially. FoE = {s,a,w}, using
A BRYP) = {s,a,w, 2,2, 2BV} U Prop. 3.10 and Lemma 4.2, we ha{@ - = 8 hV?] =

F 2®h""] = 2lsh"I=¢ and on the other hand
P s hVP] = 1. Hence (19).

In summary, the term context is thus

{y,ay, wy,yBhy | hy = H(s.ay.wy) Ny €Y} [

for someY C Z§, wherea : Y — Z& is injective, and [
w : Y — Zy arbitrary. The pseudo-randomnessfof= 0
{H(s._._) implies [y, ay, wy,y B h, L xBAVF], which
further implies that for ang C A (z B hYP)

{s,a,w,2,zBLT}INE=) — [E € 9cEHhVP]

and we are done. We are now ready to compute the probability that the
Attacker can authentication, or that the response can be
Earlier than the challenge. By Proposition 4.3, for a given

the probability that avdttacker can violate authentication is

[T

4.2 Bounds on undesired runs

The reasoning towardd) is slightly simpler, elaborating
the fact that obtaining one challenge tells nothing about an

other one. The details are left to the reader. O bounded above by
Besides the preceding lemma, the main results of this sec- [@Fs] - [@,sFa@BrYF] orby
tion, stated below, depends on the following simple equa-
tions: [@F2BR"F]-[@,zBA P FaBLT]
Lemma4.2 (a) [z BRYF] = [z FaBRVF] = where® = {a,w,z,z,z B HYVF}
VP] _ VP] _ 9—t
[ 2BV = [z, 2 Fa@AVF] =27 By Proposition 4.4, the probability that Peggy can respond
(b) [2’ O | hvp} _ [Q I hvp] Early, again for a givem, is bounded above by
whenX C {s,a,w} andQ C {z,z,z@ AV}, [s,a,w x@nh‘”’} i [s,a,w,x®“hvp 2 @ H(s, a,w)]
(©) [a, w, Sawavfy_ s BhVP] = Note that in the attack rum, the Attacker cannot learm
[a,w, s, 2@ o BRVFP] =1 until after she has created The distribution ofz is thus
whereQ C {z,zB AV}, independent from that of.
Proposition 4.3 {{s},{zBA""}} guards z BA"" Proposition 4.5 Suppose that Victor's challenge € Z
within A(z B hYP) is chosen randomly, according to the uniform distribu-
) tion; and that the Attacker, before receiving, can pick

Proof. TC‘; claim follows from the fact that each < her own challenge: € Z5 and obtain a single response
.A(Z B A" ") satisfies at least one of the following inequal- , @ 4,VP. Then the expected probabiliBtrob(V | A) that
ities: the Attacker can guess the correct respons@ »¥' ", and

[EFzBrVFP] < [EFs]-[E,skaBRVP]  (17)  deceive Victoris

4
— VP
[EFa@a"’] < / [x,z,zEEIhvpl—:cEEthP] = <§>
mGZé 4

[EFzBA"] [E,z8r" P FaBR"] (18)

But this is easily shown by case analysis, using Lemma 4.2Proof. Sinc‘?}:r()b(fc Evgg) = 24_ by assumption, and
since according to Lemma 4.1(a) it suffices to consider the 2,2,z BRY" = 2 @AYF] by (10), it follows that

subsetE Of{s,a,w,x,z,zEEthP}. O
/ [w,z,zEEhvpl—:vEEhVP}:
Proposition 4.4 {{x@)“hvp}} guards z B hVF w€L]
within & () > 27z, 2,z BA P FaBRYT] =
T€ZY

Proof. The claim is that each C £(z) satisfies

o=~ (\ai o, 3t 3\*
B 2 'Z%i 2t =27 = (3

(2 2@ 7] 2,2 2 BRVE] (19) 0



Proposition 4.6 Suppose that Victor's challenge € 7§
and his random noncev € Z35* (announced prior to

the challenge-response exchange) are chosen indepepndentl

and according to the uniform distribution. The expected

probability that Peggy can guess and send her response

xBhVE, wherehV? = H(s.a.w), before she receives the
challenger is

§ 4

4

Proof. Since [s,a,wlz] holds by assumption,
[s,a,waBRYF] = [KYP 2 B8 rVF] follows, since
s,a,w can only be useful to derive" © = H(s.a.w). But
Prop. 3.10(a) then implies that, a, w = xBAY Y] = 207,

/ [s,a,wl—xEEhVP}
IEZg

wherei = |khYF|. Since H is assumed to be a pseu-
dorandom function, because of € Z5, Peggy cannot
distinguishhV?" = H(s.a.w) from a random variable

n € Z3'. The expected value that she will gues& h" "
must therefore be averaged over the possible valueg of
and hence

/ / [77 Fax@ 77} =
nez3t Jxezl

Yo > 2 ke =

nELL €L

4 ! 3 4
275 . Z <)2’Ll — 272[ . 35 — (Z)
- 1

O

Theorem 4.7 Suppose that it is assured that

e Prob(A),Prob(€) < C; < 1, i.e. not every response
is from the Attacker, and not every response is too
Early;

e Prob(V) > Cy > 0, i.e. Victor does not always reject.

Then the probability that the Hancke-Kuhn protocol imple-
mentg(crp) satisfies
|20 (3
Cy \4

Proof. As explained in the beginning of this section,
Prob(crp) is the conditional probabilityProb(O | V),
whereQ is a desired run ant Victor’s observation, as de-
fined in (13-14). Since the undesired run® decompose
into a disjoint union of4 and¢, it follows that

Prob(crp) >

Prob(crp) = 1 —Prob(A|V)—Prob(€|V) (20)

10

Since Bayes’ Theorem gives

Prob(V | A) - Prob(A)

Prob(A | V) Prob(V)

we derive from Prop. 4.5 and the hypothesis

()

Similarly, from Prop. 4.6 and the hypothesis we derive

Cy /3\°
< 2=
=y \4

The result follows by substituting (21) and (22) into (20).

Prob(V | A) - Prob(.A) < Ch

Prob(V) = Cy (21)

Prob(V | €) - Prob(€)
Prob(V)

(22)

Remark. The presented analysis suggests a strategy for
reducing attackers’ chances to break freshness. If Victor
and Peggy agree to abort if the kernel siz&bf is over a
certain threshold, then guessingd A" ¥ without knowing

x becomes harder.

5 Conclusion

In this paper we have given a structured probabilistic proof
of the security of the Hancke-Kuhn distance bounding pro-
tocol. It not only provides a proof of security of Hancke-
Kuhn in particular, but provides a template for reasoning
about probabilistic challenge-response in general:

e Determine all messages that can be sent before the re-
sponse.

e Compute the probability of deriving the response from
each subset of the set of messages computed in the first
step.

e Use the results of the second step to derive the guards
relation for both challenge and and secret key.

e Use the results of the second and third step to de-
rive the probability that a protocol satisfies the desired
challenge-response template.

One advantage of our methodology is that it can teach us
things about a protocol beyond the main security results we
start out to prove. For example, we were able to show that,
on the advantage, that an outside attacker gains no advan-
tage in guessing the response from knowing Victor’s chal-
lenge. Comparing Propositions 3.11 and 4.5 we see that
both probabilities are on the average the same. All the at-
tacker obtains from knowing the challenge is the knowledge



of how successful her guess is likely to be in a given in-

(8]

stance. The ability to detect such subtle interplay between
different types of guessing can be very useful when analyz-

ing protocols like these.

But the main contribution of this paper is that it gives a
methodology that can be applied to complex probabilistic
functions that cannot easily be reasoned about in an al- [9]

gebraic model. We expect it to have applications beyond

timed challenge and response; for example, another class of
pervasive protocols that emplogeman-verifiable channels
[16, 11] relies upon weak hash functions that satisfy prob-
abilistic security guarantees, and are currently working o
applying our framework there. Finally, our ultimate goal is
the develop grobabilistic Protocol Derivation Logic that

could be used to reason formally about protocols with these

types of probabilistic guarantees. This paper represbats t
first step in that direction.
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