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Abstract

As mobile devices pervade physical space, the familiar au-
thentication patterns are becoming insufficient: besides en-
tity authentication, many applications require, e.g. location
authentication. While many interesting and subtle proto-
cols have been proposed and implemented to provide such
strengthened authentication, there are very few proofs that
such protocols satisfy the required properties.

We consider the problem of adapting the Dolev-Yao-style
reasoning methods for pervasive security. We show how
the notion ofguards, previously used for symbolic reason-
ing about secrecy, can be extended into a tool for analyz-
ing pervasive authentication. It supports a simple form of
probabilistic reasoning, necessary for situations where the
authentication cannot be achieved in absolute sense, and
needs to be quantified. We show that extension of our proto-
col derivation logic, although quite modest, suffices to un-
cover some interesting properties of the Hancke-Kuhn dis-
tance bounding protocol, and to explain some of its deceiv-
ing simplicity.

1 Introduction

Traditionally, there have been two paradigms used for prov-
ing protocol security. One, the symbolic paradigm, com-
monly known as ”Dolev-Yao” models both protocol and at-
tacker in terms of an algebraic theory [4]. While this has
been criticized as crude, it is often highly effective and eas-
ily automated. The other, the computational paradigm, usu-
ally relies on some notion of indistinguishability from the
point of view of a computationally limited attacker [6]. Re-
cently, a lot of research, starting with [1], has been devoted
to drawing the two paradigms closer together. This strat-
egy has generally been to rely upon crypto-algorithms that
themselves satisfy strong enough definitions of security, so
that, if used in the proper way, they can be treated as Dolev-

Yao “black boxes.”

However, there is an emerging class of security proto-
cols for which it seems very difficult to bring these two
paradigms together. This class of protocols is used to pro-
vide security for what is known aspervasive security, that
is security for a network that is pervasive in the human en-
vironment. Because of constraints on the various devices
and communication channels involved, it is often necessary
to use weak cryptography that does not satisfy standard no-
tions of indistinguishability, but in such a way that it does
not threaten the security of the protocol itself.

We consider the case where the standard authentication re-
quirements need to be strengthened by the proofs of spatial
proximity. In some cases, for example the protocols ana-
lyzed in [10, 14] it has been possible apply symbolic meth-
ods in a meaningful fashion. However, there other cases,
such as the Hancke-Kuhn [8] distance bounding protocol
that appear resistant to analysis in this fashion. This pro-
tocol implements the rapid, easily computable response of
the prover by using weakly secure functions, that leak in-
formation. The amount of information leaked depends on
a pseudo-random variable, generated during the course of
the protocol. This makes it impossible to construct a useful
symbolic model of this protocol. The algebraic approxi-
mations of the Hancke-Kuhn functions seem to either allow
implementations which leak all information, or do not allow
any implementations. So we must count bits somewhere.
On the other hand, we would like to retain the advantages
of algebraic modeling, such as its cleanness, and hopefully
its amenability to automatic reasoning.

The goal of this paper is to provide a simple extension of
the algebraic model used in [12], sufficient to capture these
new primitives, while still supporting incremental reasoning
and protocol derivations. Using this model, we provide a
derivation and security proof of the Hancke-Kuhn protocol.

Paper outline. In Section 2 we review the basic ideas
about the challenge-response authentication in general,
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about proximity authentication in particular, and formu-
late the relevant security properties. We also describe the
Hancke-Kuhn protocol itself, and finally introduce a prob-
abilistic extension of theguard relation. Guards were orig-
inally used for symbolic reasoning about secrecy in [12];
here we use them for probabilistic reasoning about authen-
ticity. In Section 3.2 we derive the necessary properties
of the⊞ function used by the Hancke-Kuhn protocol, and
prove that it is a canonical implementation of the properties
required by Hancke-Kuhn. In Section 4 we give a quanti-
tative proof of security of Hancke-Kuhn using the guards
relation. In Section 5 we conclude the paper and discuss
how our results could be extended.

2 Deriving the Hancke-Kuhn protocol

2.1 Challenge-response authentication in PDL

V P
νx

〈cV P x〉

(rV P x)

((cV P x))

〈〈rV P x〉〉

Figure 1. CR template

Our approach to modeling challenge-response protocols
will be based on the approach used in theProtocol Deriva-
tion Logic(PDL) [9, 3]. PDL is a logic that is used to derive
the conclusions a principal can form as a result of partici-
pating in a protocol. It is based on the Dolev-Yao black
box model of security. The axioms of the logic describe the
properties of communication channels and cryptographic
algorithms, and the expected behavior of principals in cryp-
tographic protocols. One uses the logic by expressing the
desired properties of a protocol in terms of a template. One
then uses the observations of a participant and the axioms
of a logic to show that it is possible to derive the properties
expressed in the template.

The earliest versions of PDL, e.g. in [9], only included ax-
ioms about authentication, assuming that some shared se-
crets were given in advance. A logical framework for rea-
soning about the protocols where such secrets are gener-
ated, was presented in [12]. Some methods to combine the
authentication and the secrecy modules of PDL were dis-
cussed in [3]. The analysis of the Hancke-Kuhn authentica-

tion protocol in the present paper is based on a novel use of
elements of secrecy logic from [12].

Like most other authentication protocols, the Hancke-Kuhn
protocol is an instance of the Challenge-Response (CR)
template, displayed in Figure 1. The verifier Victor gen-
erates a fresh valuex, sends a challengecV P x to the prover
Peggy on the right, and receives a responserV P x. The ex-
pressionsνx, 〈cV P x〉 and(rV P x) denote these three Vic-
tor’s actions. The point of the CR template is that from his
own actions, Victor can draw conclusions about Peggy’s ac-
tions. More precisely, the functionsc andr are assumed to
be such that only Peggy could transformcV P x to rV P x,
so that Victor can be confident that, after he sentcV P x
and before he receivedrV P x, Peggy must have received
a message containingcV P x, and sent a message containing
rV P x. Formally, the CR template thus supports the follow-
ing CR axiom, capturing Victor’s reasoning:

V : (νx)V ⊲ 〈cV P
x〉V ⊲ (rV P

x)V

=⇒
“

(νx)V ⊲ 〈cV P
x〉V ⊲ ((cV P

x))P ⊲

〈〈rV P
x〉〉−→

P
⊲ (rV P

x)V

”

(cr)

where the relationa⊲b says that actiona occurs before action
b. Intuitively, the reasoning in axiom(cr) can be justified by
demonstrating that Victor can assume that

1. anyone who originatedrV P x had to previously receive
cV P x, which could only happen after Victor sent it;

2. no one could producerV P x without knowing the se-
cretsV P , so it must be Peggy.

This last conclusion is based on the assumption that only
Peggy knowssV P , or only Peggy and Victor. In both cases,
Victor’s reasoning is the same, because he knows that he did
not sendrV P x.

The above informal justifications of(cr) can be refined into
slightly more formal proof obligations, as follows. For any
set of principalsΠ, it is required that

1. whenever there is a derivationΞ ⊢ rV P x, then there
must also be a derivationΞ ⊢ cV P x, for any set of
termsΞ known toΠ in a run of CRbeforerV P x is
sent;

2. whenever there is a derivationΞ, cV P x ⊢ rV P x, then
there must also be a derivationΞ, cV P x ⊢ sV P , for
any set of termsΞ known toΠ in a run of CR before
rV P x is sent.

Both of these proof obligations can be formalized in terms
of theguard relation, used in [12]. We first recall the orig-
inal idea of algebraic guards, and its formalization in [12],
and then propose a probabilistic version, necessary for rea-
soning about the Hancke-Kuhn authentication.
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2.1.1 Algebraic derivability and guards

The algebraic derivability relation, widely used in symbolic
reasoning about security protocols, can be defined by

Ξ ⊢ Θ ⇐⇒ ∀t ∈ Θ ∃ϕ ∈ Σ∗ ∃~ξ ⊆ Ξ. t
E
= ϕ(~ξ) (1)

whereΞ and Θ are finite sets of terms from an algebra
T , and~ξ is a tuple inΞ. We assume that the algebraT is
specified by an equational theory(Σ, E), whereΣ are the
operations andE the equations. We denote byΣ∗ the set
of derived operations, i.e. well-formed with respect to the

arities; and byt
E
= s an equalition derivable fromE.

Definition 2.1 We say that a set of sets of termsG alge-
braically guardsa termt with respect to a set of termsΥ,
and write

G guards t within Υ

whenever

∀Ξ ⊆ Υ. Ξ ⊢ t ⇒ ∃Γ ∈ G. Ξ ⊢ Γ (2)

Example. Let Υ = (DH) be the set of terms that may
become known to the participants and eavesdroppers of a
run of the Diffie-Hellman protocol. Then

{

{x, gy}, {y, gx}
}

guards gxy within ΥDH

Note thatgxy can be derived not only from{x, gy} and
{y, gx} but also from{g, x, y} and{g, xy}; however, nei-
ther of these sets can occur in a run of the Diffie-Hellman
protocol between two honest principals, and are thus not
contained inΥDH .

Perfect cryptography and pseudo-free algebras. The
algebraic guard relation is based on the assumption that a
term can only be derived algebraically, using the given op-
erations and equations. A termt thus either lies in a subal-
gebra generated by a set of termsΞ, or not, and we have

Ξ ⊢ t ∨ Ξ 6⊢ t

This means that the attacks on the implementation of the
termt are abstracted away. In particular, we assume that it is
impossible to cryptanalyze the operations used to construct
t, and to derive it by partial information about it. In other
words, we assumeperfect cryptography.

Moreover, we assume that the algebraic derivationsΞ ⊢ t

only use the equations specified in the given algebraic the-
ory (Σ, E). This means that the implementation of that al-
gebraic theory is assumed to yield a free algebra,or that
it is computationally unfeasible for the attacker to find the
additional equations, not specified in the theory, and to use
them in his derivations. This is roughly thepseudo-free al-
gebraassumption [13].

2.1.2 Reducing authentication and freshness to guards

Both the authentication and freshness requirements in the
CR template can be stated as instances of the guard rela-
tion. Authenticity of the responserV P x is established by
proving that a secretsV P is necessary to derive it, i.e. that
it guards it relative to the setΥCR of the messages that be-
come known in CR before the point whenrV P x itself is first
sent in some message. Likewise, the freshness ofrV P x is
established by proving thatcV P x guardsrV P x in ΥCR.

In this section, we formalize this technique. We begin by
formalizing the term contextΥQ of a protocolQ.

In the following definition we use the notion of aprotocol
run defined in [12], that is, a run of a protocolP is a finite
set of executions ofP , whose actions are partially ordered
by the⊲ relation, and such that each receive actions is pre-
ceded by a corresponding send action. That is, a protocol
run is close to the idea of thebundleof Thayer, Herzog, and
Guttman [5].

Definition 2.2 LetQ be a protocol run, andA a set of ac-
tions inQ. Theterm contextis the set

Q(A) =
⋃

P∈Π

Γι
P ∪ Γ⊲A

P

whereΠ is the set of principals engaged in the run,Γι
P is

the set of terms known to a principalP initially, beforeQ,
and Γ⊲A

P is the set of the terms thatP may receive inQ
beforeany of the actionsa ∈ A are executed.

Proposition 2.3 Let CR be challenge-response protocol,
and letQ be a protocol run in CR. Suppose that the func-
tionscV P andrV P used in CR are implemented to satisfy

n

{cV P
x, s

V P }
o

guards r
V P

x within Q(rV P
x) (crg)

wheresV P is a secret known only to Peggy (and possibly to
Victor). Then (cr) is validated.

The proof is obtained by expanding the definition of the
algebraic guard relation and analyzing the term context of
CR. For more about the use of this relation, the reader may
wish to consult [12].

2.2 Proximity authentication

In pervasive computation, mobile devices often must prove
not only their identity, but also their proximity. This is,
for instance, the case whenever access to a secure loca-
tion is controlled using smart cards. In principle, a smart
card reader Victor could still simply use the standard cryp-
tographic challenge-response authentication to assure the
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prover Peggy has sent the response, and that she did that
after she received his challenge. However, if Victor does
not verify that Peggy is close, then an intruder Ivan could
set up another smart card reader at a remote location where
Peggy happens to be at that moment. He could then forward
Victor’s challenge to the other reader, and return Peggy’s re-
sponse by a radio link. In cyberspace, this would be a com-
pletely correct session of standard authentication, with Ivan
as a mere relay. In physical space, this could be a breach of
security, based not on spoofing Peggy’s location, rather than
her location. Hence the need for proximity authentication.

One method to ascertain that Peggy is close to Victor is by
distance bounding. It is implemented by the template CRP,
which is similar to the template CR, but Victor in it more-
over records the timeτ0 when he sends the challengecV P x
and the timeτ1 when he receives the response. If CRP val-
idates strengthening(cr) to

V : (νx)V ⊲ τ0〈c
V P

x〉V ⊲ τ1(r
V P

x)V

=⇒
“

(νx)V ⊲ τ0〈c
V P

x〉V ⊲ ((cV P
x))P ⊲

〈〈rV P
x〉〉−→

P
⊲ τ1(r

V P
x)V

”

(crp)

then after a successful session, Victor conclude not only
that the response must be from Peggy, but also Peggy must
be at a distance

d(V, P ) ≤
c

2
(τ1 − τ0)

wherec is the maximal speed of the messages.

2.3 Hancke-Kuhn protocol

In order to guarantee that the timing information in CRP is
accurate, the computation of the response from the chal-
lenge must take negligible time. Unfortunately, quickly
computable functions tend to be cryptographically weak.
Some protocols, such as the Brands-Chaum distance bound-
ing protocol [2], achieve this quick response by separating
the timed response from the cryptographic response. In
contrast, the Hancke-Kuhn [8] protocol requires a single re-
sponse message, where the cryptographic component is re-
alized through a one-time secret, while the timed response is
realized through a special function that leaks some bits, but
the authentication apparently succeeds with an overwhelm-
ing probability. Proving the security of the Hancke-Kuhn
protocol requires evaluating this probability.

The Hancke-Kuhn protocol can be viewed as an instance
of the CR template, with the challengecV P x = x and the
responserV P x = x ⊞ H(s.a.w).

The one-time secretH(s.a.w) is obtained by applying a
public hash functionH on the concatenation of Victor and

V P
νx

τ0〈x〉

τ1(x⊞H(s.a.w))

(x)

〈x⊞H(s.a.w)〉

Figure 2. Hancke-Kuhn protocol

Peggy’s shared secrets, Peggy’s countera, and Victor’s
noncew. The secrets is agreed in to in private, and can
be reused in many sessions, whereas the fresh values fora

andw are announced publicly at the beginning of each pro-
tocol session. Whilea may be predictable, but must never
be reused,w should be unpredictable for each session.

The function⊞ : Z
ℓ
2 × Z

2ℓ
2 −→ Z

ℓ
2 is defined bitwise by

(x ⊞ h)i = h
(xi)
i (3)

for i = 1, 2, . . . , ℓ, andh = h(0) :: h(1), whereh(0), h(1) ∈
Z

ℓ
2.

Clearly, some bits ofx ⊞ h can be extracted fromy ⊞ h,
namely, the bits(x ⊞ h)i wherexi = yi. Moreover, it is
possible to learn some bits ofx ⊞ h even without having
seenx, since the bits(x ⊞ h)i wherehi = hℓ+i are the
same no matter what the value ofx is. How likely is it that
the attacker, by challenging Peggy, learns enough about the
secretH(s.a.w) to impersonate her? How likely is it that
Peggy can learn enough aboutx ⊞ H(s.a.w) to respond
before she has seenx? In the next section we introduce
some tools to answer these questions.

3 Guessing

We denote by
[

Ξ ⊢ Θ
]

the probability that a set of terms
Θ ⊆ T can be guessed from a set of termsΞ ⊆ T . To mea-
sure this probability, we assume that the algebraT of mes-
sages is given with a frequency distributionProb : T −→
[0, 1], and that guessing consists of trying the terms one
after the other, in order of their probability. To improve
his chances, a guessing attacker could engage in Bayesian
derivations. However, such derivations, and the distribu-
tions that they involve, must be feasibly computable, by the
Turing machines from some suitable familyF . This means
that the probability of guessingt fromΞ is notProb(Θ | Ξ),
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but

[

Ξ ⊢ Θ
]

F
=

∨

A∈F

Prob(Θ = A(Ξ) | Ξ) (4)

where
∨

denotes the supremum.

In the present paper, unless specified otherwise,F will
be the family of Probabilistic Polynomial-time Turing ma-
chines (PPT), and we shall usually omit the subscript and
write

[

Ξ ⊢ Θ
]

instead of
[

Ξ ⊢ Θ
]

PPT
. We also abbreviate

[

t
]

=
[

∅ ⊢ t
]

.

Proposition 3.1 For all sets of termsΞ, Γ, Θ, the following
inequality holds

[

Ξ ⊢ Γ
]

·
[

Ξ, Γ ⊢ Θ
]

≤
[

Ξ ⊢ Γ, Θ
]

(5)

and whenever
[

Γ
]

> 0

[

Γ ⊢ Θ
]

≤

[

Γ, Θ
]

[

Γ
] (6)

Remark. Since an algorithm constrained to first guessΓ
from Ξ alone, and thenΘ from Γ andΞ may have a sig-
nificantly worse guessing probability than an algorithm al-
lowed to guess the elements ofΓ andΘ in any order, in-
equalities (5) and (6) may be strict. For conditional proba-
bilities, (5) and (6) are, of course, always equations, and the
Bayes’ Theorem follows from them.

Definition 3.2 Theadvantageprovided by a set of termsΞ
in computing the termsΘ is the value

Adv
[

Ξ ⊢ Θ
]

=
[

Ξ ⊢ Θ
]

−
[

Θ
]

When this advantage is zero, we say thatΘ is computation-
ally independentof Ξ, and write

[

Ξ⊥Θ
]

⇐⇒ Adv
[

Ξ ⊢ Θ
]

= 0

⇐⇒
[

Ξ ⊢ Θ
]

=
[

Θ
]

Remark . The corresponding relation ofstatistical inde-
pendence, requiring thatProb(Θ|Ξ) = Prob(Θ), is well
known to be symmetric. In contrast, computational inde-
pendence is not a symmetric relation. For instance,

•
[

gx ⊢ x
]

=
[

x
]

, because it is hard to computex from
gx, but

•
[

x ⊢ gx
]

>
[

gx
]

, because it is easy to computegx

from x.

3.1 Probabilistic guards

The idea of the guard relation is that a termt is guarded by
one of the guards fromG if whenevert is derived, then at
least one of the guardsΓ ∈ G is also derived. In the alge-
braic model, this was simple enough to state by Definition
2.1. Whent can be guessed, then this crude statement needs
to be refined: the event thatt is guessed must be preceded
by the event that someΓ ∈ G is guessed.

Definition 3.3 We say that a set of sets of termsG guards
(against guessing)a termt with respect to a set of termsΥ,
and write

G guards t within Υ

if for every set of termsΞ ⊆ Υ such thatAdv
[

Ξ ⊢ t
]

> 0,
we have that

[

Ξ ⊢ t
]

≤
∨

Γ∈G

[

Ξ ⊢ Γ
]

·
[

Ξ, Γ ⊢ t
]

(7)

The following proposition, with its straightforward proof,
tells that Definition 3.3 can be viewed as a refinement of
Definition 2.1.

Proposition 3.4 Suppose that the guessing machinesF
used in (4) are constrained to never read their random bits,
so that guessing boils down to algebraic derivations. Then
the guessing guard relation from (7) boils down to the alge-
braic guard relation from (2).

Proof. If the Turing machinesF used for guessing do not
use randomness, they become Deterministic Polynomial-
Time Turing machines (DPT): they construct some terms
and apply some equations, in a prescribed order. For each
such machine, it is determined with certainty whether it will
output a term or not. It follows that the probabilities on the
right-hand side of (4), restrictedF = DPT, must be either
0 or 1, and thus

[

Ξ ⊢ t
]

DPT
= 1 ⇐⇒ Ξ ⊢ t (8)

The claim that (8) implies that ((7)⇐⇒ (2)) follows by
case analysis.

�

3.2 Partitioned functions and⊞

In this section we analyze quickly computable functions,
like the one used in the Hancke-Kuhn protocol. One re-
quirement of a quickly computable function is the bit de-
pendency of its outputs from its inputs must be partitioned:
thei-th block of output bits should only depend on thei-th
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block of input bits. Obviously, a function where every bit of
output depends on every bit of input has to wait for the last
bit of input before it can produce.

Definition 3.5 We say that a boolean functionf : Z
m
2 −→

Z
n
2 is partitionedwhen

m = m1 + m2 + · · · + mℓ

n = n1 + n2 + · · · + nℓ

f = f1 :: f2 :: · · · :: fℓ

where the inputs and the outputs of each component func-
tion fi : Z

mi

2 −→ Z
ni

2 , for i = 1, 2, . . . ℓ are indepen-
dent on the inputs and the outputs of all other compo-
nent functions, in the sense that

[

xı, fı(xı)⊥ fi(xi)
]

, where
ı = {j ≤ ℓ| j 6= i}.

Although partitioning a function decreases its complexity, it
also decreases its security, since it limits the bit propagation.
In particular, knowingf(z) helps us guessf(x). In the next
section we make this more precise.

3.2.1 Guessing the values of partitioned functions

Proposition 3.6 (a) Let f be a partitioned function as
above, and letx, z ∈ Z

m
2 be bitstrings with a common block

xi = zi. Then
[

x, z, f(z) ⊢ f(x)
]

≥ 2ni−n.

(b) Let f : Z
ℓ
2 −→ Z

ℓ
2 bebitwisepartitioned, i.e.|mi| =

|ni| = 1 for all i ≤ ℓ. Then
[

x, z, f(z) ⊢ f(x)
]

≥

2−∆(x,z), where∆(x, z) = #{i|x 6= z} is the Hamming
distance.

Proof. For (a),xi = zi yieldsfi(xi) = fi(zi), so we only
need to guess at mostn−ni bits. For (b),xi andzi are bits,
andn−∆(x, z) of them are equal, so we only need to guess
at most∆(x, z) bits. �

A consequence of Prop. 3.6 is that a proximity authentica-
tion protocol, implemented using a partitioned functionR

to compute the responserV P x = R(sV P , cV P x), cannot
be secure in an absolute sense, because the response may
be guessed with a non-negligible probability from the other
responsesrV P z. Moreover, it seems that the Attacker can
always obtain some other responsesrV P z by impersonating
Victor and issuing challengescV P z (as an attempt to au-
thenticate the challenge in an authentication protocol leads
into a vicious circle).

Lemma 3.7 A boolean functionf : Z
ℓ
2 −→ Z

ℓ
2 is bitwise

partitioned if and only if for everyx ∈ Z
ℓ
2 holds

f(x) = x ⊞
(

f(0ℓ) :: f(1ℓ)
)

(9)

where⊞ is the Hancke-Kuhn function (3), and0ℓ, 1ℓ ∈ Z
ℓ
2

are the strings of 0s and 1s, respectively.

Proof. Using the definition of bitwise partitioned functions
at the first step, and (3) at the second, we get

(f(x))i = fi(xi) =
(

x ⊞
(

f(0ℓ) :: f(1ℓ)
))

i

�

Proposition 3.8 If f : Z
ℓ
2 −→ Z

ℓ
2 is a bitwise partitioned

function, then the probability that its values can be guessed
from one another is at the minimum

[

x, z, f(z) ⊢ f(x)
]

= 2−∆(z,x) (10)

if and only if for everyi ≤ ℓ holds
[

fi(0)⊥ fi(1)
]

and
[

fi(1)⊥ fi(0)
]

(11)

Proof. If (11) are satisfied, thenxi 6= zi implies
[

xi, zi, fi(zi) ⊢ fi(xi)
]

=
[

xi ⊢ fi(xi)
]

. On
the other hand, by definition, the components of
a partitioned function are mutually independent, i.e.
[

xı, zı, fı(zı) ⊢ fi(xi)
]

=
[

xi ⊢ fi(xi)
]

. Hence

[

x, z, f(z) ⊢ f(x)
]

=

ℓ
∏

i=1

[

x, z, f(z) ⊢ fi(xi)
]

=

ℓ
∏

i=1
xi 6=zi

[

xi ⊢ fi(xi)
]

=
∏

∆(z,x)

1

2
= 2−∆(z,x).

The other way around, using (10) at the second step, we get

ℓ
∏

i=1

[

x, z, f(z) ⊢ fi(xi)
]

=
[

x, z, f(z) ⊢ f(x)
]

= 2−∆(z,x)

=

ℓ
∏

i=1
xi 6=zi

[

xi ⊢ fi(xi)
]

which, together with the componentwise independence
again, yields (11). �

Remark. In a sense,x⊞ (−) : Z
2ℓ
2 −→ Z

ℓ
2 is thus a ”one-

and-half-way function”, sincex⊞ h discloses only one half
of the bits ofh.

On the other hand,(−) ⊞ h : Z
ℓ
2 −→ Z

ℓ
2 is not just an ex-

ample of a bitwise partitioned function, satisfying the needs
of the Hancke-Kuhn protocol, but it is a canonical way to
represent such functions.

6



3.2.2 Guessingx ⊞ h

Looking at Prop. 3.8 from the other direction, note that the
values ofx ⊞

(

h(0) :: h(1)
)

are easier to guess from one
another whenh(0) andh(1) are more dependent. E.g., note

x ⊞ (y :: y) = y x ⊞ (y :: ¬y) = x ⊕ y

wherex ⊕ y is the ”exclusive or” operation.

Definition 3.9 For x ∈ Z
ℓ
2 and I ⊆ ℓ = {0, 1, 2, . . . ℓ −

1} we definex⊛I ∈ Z
ℓ
2 to be the bit string obtained by

replacing for alli ∈ I the bitsxi with a ”wild card” ⊛

x⊛I
k =

{

⊛ if k ∈ I

xk otherwise

For h = h(0) :: h(1), whereh(0), h(1) ∈ Z
ℓ
2 we define the

kernelκh to be the set of places where its first and its second
half coincide

κh = {i ∈ ℓ | h
(0)
i = h

(1)
i }

Proposition 3.10 For x andh as above holds

(a)
[

h ⊢ x ⊞ h
]

= 2|κh|−ℓ

(b)
[

x ⊢ x ⊞ h
]

=
[

x⊛κh ⊢ x ⊞ h
]

(c)
[

x, h ⊢ x ⊞ h
]

=
[

x⊛κh, h ⊢ x ⊞ h
]

Proof. Note that for eachi ∈ κh, the bit(x ⊞ h)i = h
(0)
i =

h
(1)
i does not depend onxi. This means thatx ⊞ h only

depends onx⊛κh. �

The following illustrates that guessingx ⊞ h may get unex-
pectedly subtle.

Proposition 3.11 For randomx ∈ Z
ℓ
2 andh ∈ Z

2ℓ
2 and for

everyz ∈ Z
ℓ
2 holds.

[

z ⊞ h ⊢ x ⊞ h
]

=

(

3

4

)ℓ

Proof. Guessingx⊞h from z andz⊞h can be modeled as a
version of the Monty Hall problem [15], where Monty ran-
domly selectsx andh, and the contestant choosesz. Monty
then announcesz ⊞ h and the contestant must guessx ⊞ h.

Consider the case whenℓ = 1. Monty thus flips three fair
coins to pick the secret bitsx, h(0) andh(1), while the con-
testant picks a bitz. Monty then announcesz ⊞ h = h(z).
Should the contestant now guess thatx ⊞ h = z ⊞ h, or
should he switch tox ⊞ h = ¬(z ⊞ h)?

Denote byq the probability that the contestant picksx⊞h =
z ⊞ h. If h(0) = h(1), the contestant wins with this choice,
because the valuex ⊞ h is the same for everyx. Sinceh(0)

andh(1) were randomly chosen,Prob(h(0) = h(1)) = 1
2 .

Otherwise, ifh(0) 6= h(1), thenx ⊞ h = z ⊞ h holds if and
only if x = z. Sincex is random,Prob(x = z) = 1

2 , and
henceProb(h(0) 6= h(1) ∧ x = z) = 1

4 , becauseh(0), h(1)

andx are independent.

The probability that the contestant will make a correct guess
is thus

q ·
“

Prob
“

h
(0) = h

(1)
”

+ Prob
“

h
(0) 6= h

(1) ∧ x = z
””

=
3q

4

To maximize this probability, the contestant needsq = 1,
and should thus stick1 with Monty’s bit z ⊞ h.

The inductive step toℓ + 1 is left to the reader. �

Remark. Taken together, Propositions 3.11 and 3.8 imply
that there are situations when

[

z ⊞ h ⊢ x ⊞ h
]

>
[

x, z, z ⊞ h ⊢ x ⊞ h
]

(12)

Formally, this inequality is satisfied whenever∆(z, x) >

(2− log 3)ℓ, which happens with a probability of about.42.
But how can it be easier to guessx ⊞ h from z ⊞ h alone,
than together withx andz?

In 3.11, whenx andz are not available, the optimal guess-
ing strategy is to always try(x ⊞ h)i = (z ⊞ h)i. In
3.8, whenx andz are available, the optimal guessing strat-
egy can be to test for everyi whetherxi = zi and to try
(x ⊞ h)i = (z ⊞ h)i if it is, or to randomize(x ⊞ h)i

otherwise. But whenever
[

h
(0)
i ⊥ h

(1)
i

]

, as assumed in 3.8,
the guessing algorithm can randomize(x ⊞ h)i by setting
(x ⊞ h)i = (z ⊞ h)i. Whetherx andz are known or not,
the guessing algorithm can thus proceed in the same way,
by always trying(x ⊞ h)i = (z ⊞ h)i.

This strategy is, of course, more successful in the cases
when the Hamming distance betweenx andz happens to be
smaller. Whenx andz are known, the probability of its suc-
cess can be precisely evaluated, as it was done in 3.8. When
x andz are not known, we can, in principle, only estimate
the expected (average) value of this probability. Prop. 4.5
below shows that this is just what was done in 3.11, albeit
implicitly. The situations when∆(z, x) > (2 − log 3)ℓ and
(12) hold are just those when the probability of a successful
guess ofx⊞h from z ⊞h, for the specificx andz, happens
to be lower than its expected value, averaged overx andz.

1This solution is in contrast from the original Monty Hall problem [15],
where it is advantageous to switch. The reasoning is, however, quite simi-
lar.
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4 Security of the Hancke-Kuhn protocol

We quantify the security of the Hancke-Kuhn protocol by
evaluating the probabilityProb(crp), that the sequence of
events in a complete protocol run validates(crp). In order
to evaluate this probability, we analyze the probability that
(crp) fails. How can it happen that Victor observes a satis-
factory sequence

V = (νx)V ⊲ τ0〈x〉V ⊲ τ1 (x ⊞ H(s.a.w))V (13)

but that the event

O = τ0〈x〉V ⊲ (x)P ⊲

〈x ⊞ H(s.a.w)〉P ⊲ τ1 (x ⊞ H(s.a.w))V (14)

did not take place? The idea that we pursue is that this can
happen either when

A: the responder is not Peggy, but anAttacker, who does
not know the secrets, or when

E : the responder is Peggy, but she respondedEarlier than
she received the challenge.

We shall usA andE as generic notations for the runs where
the above events occur. In other words, the event¬O is
decomposed as a disjoint union ofA andE . We proceed
to evaluateProb(A) andProb(E). This will be done by
determining probabilistic guards of the response in the term
contexts ofA andE , Defn. 2.2.

Response token

Recall that Peggy’s response tokenH(s.a.w) is derived
from the shared secrets, Peggy’s countera (predictable but
never reused), and Victor’s noncew (unpredictable), using
a secure public hash functionH .

The requirements thats andw are random and thatH is
secure are needed to assure that the families

F = {fs = H(s. . )}s∈Zm

2
(15)

G = {gw = H( . .w)}w∈Zn

2
(16)

are pseudorandom [7]. For our purpose, these requirements
boil down to the fact that a PPT cannot distinguish between
the outputs of a member ofF and the values of a random
variable without knowing the indexs; and ditto forG and
w.

The pseudo-randomness ofF means that the Attacker who
is attempting in a runA to impersonate Peggy should not

be able to guess any bits ofH(s.a.w) without knowings,
even ifa, w and some other bits ofH(s.a.w) are known.

The reason for requiring thatG be pseudo-random is more
subtle. Suppose that Peggy is trying in a runE to respond
early, without having seenx. According to Prop. 3.10(a),
if |κH(s.a.w)| = k then Peggy only needs to guessℓ − k

bits of x in order to respond. Ifk = ℓ, she does not need
x at all! A dishonest Peggy will thus try to choosea in
such a way to makeκH(s.a.w) as large as possible. The
pseudo-randomness ofG means that she should not be able
to controlH(s.a.w) without knowingw.

For brevity, we often writehV P instead ofH(s.a.w).

4.1 Guards in undesired runs

In order to evaluateProb(crp), we need to determine the
probability that the correct responsex ⊞ hV P is guessed in
the undesired runsA andE . More precisely, what can be
guessed in the term contextsA(x ⊞ hV P ) andE(x), as de-
fined in 2.2? — The following lemmas simplify this ques-
tion.

Lemma 4.1 (a) LetA be an attack run with a long term se-
cret s, Peggy’s countera, Victor’s noncew, andAttacker’s
challengez, for which he obtains the responsez ⊞ hV P ,
wherehV P = H(s.a.w). Then for anyΞ ⊆ A(x ⊞ hV P )
holds

ˆ

Ξ⊢ x⊞h
V P

˜

=
ˆ

Ξ∩
n

s, a, w, x, z, z ⊞ h
V P

o

⊢ x⊞h
V P

˜

(b) LetE be a run with a long term secrets, Peggy’s counter
a, Victor’s noncew, and where Peggy responds early. Then
for anyΞ ⊆ E(x)

ˆ

Ξ ⊢ x ⊞ h
V P

˜

=
ˆ

Ξ ∩ {s, a,w} ⊢ x ⊞ h
V P

˜

Proof (a). Recall thatA(x ⊞ hV P ) is the union of the con-
texts observed by the possible participants in the runA,
beforex ⊞ hV P is known. Besidess, known by Victor
and Peggy, anda, w andx, announced publicly but never
reused, the contextA(x ⊞ hV P ) thus also contains a single
additional challengez, issued by theAttacker, and the cor-
responding responsez ⊞ hV P (provided by Peggy before
she receives Victor’s challengex).

Moreover, theAttacker may issue a familyY ⊆ Z
ℓ
2 of ad-

ditional challenges to Peggy, and even construct and pro-
vide some suitable nonces{wy}y∈Y . To each new chal-
lenge, Peggy will respond withy ⊞ hy, where the response
tokenhy = H(s.ay.wy) is derivedusing a new value of
the counteray. The whole family of responses{hy}y∈Y

will not uncover anything abouthV P because the familyF
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from (15) is pseudorandom, i.e. becauseλy.fs(ay, wy) =
H(s.ay.wy) seems random as soon asa : Y −→ Z

ℓ
2 varies.

In summary, the term context is thus

A(x ⊞ hV P ) =
{

s, a, w, x, z, z ⊞ hV P
}

∪

{y, ay, wy, y ⊞ hy | hy = H(s.ay.wy) ∧ y ∈ Y }

for someY ⊆ Z
ℓ
2, wherea : Y → Z

ℓ
2 is injective, and

w : Y → Z
n
2 arbitrary. The pseudo-randomness ofF =

{H(s. . ) implies
[

y, ay, wy, y ⊞ hy ⊥ x ⊞ hV P
]

, which
further implies that for anyΞ ⊆ A

(

x ⊞ hV P
)

{s, a, w, z, z ⊞ hV P } ∩ Ξ = ∅ =⇒
[

Ξ ⊥ x ⊞ hV P
]

and we are done.

The reasoning towards(b) is slightly simpler, elaborating
the fact that obtaining one challenge tells nothing about an-
other one. The details are left to the reader. �

Besides the preceding lemma, the main results of this sec-
tion, stated below, depends on the following simple equa-
tions:

Lemma 4.2 (a)
[

x ⊞ hV P
]

=
[

x ⊢ x ⊞ hV P
]

=
[

z ⊢ x ⊞ hV P
]

=
[

x, z ⊢ x ⊞ hV P
]

= 2−ℓ.

(b)
[

Σ, Ω ⊢ x ⊞ hV P
]

=
[

Ω ⊢ x ⊞ hV P
]

whenΣ ⊂ {s, a, w} andΩ ⊆ {x, z, z ⊞ hV P }.

(c)
[

a, w, s, x,Ω ⊢ x ⊞ hV P
]

=
[

a, w, s, x⊛κhV P

⊢ x ⊞ hV P
]

= 1

whereΩ ⊆
{

z, z ⊞ hV P
}

.

Proposition 4.3
{

{s}, {z ⊞ hV P }
}

guards x ⊞ hV P

within A(x ⊞ hV P )

Proof. The claim follows from the fact that eachΞ ⊆
A(z ⊞ hV P ) satisfies at least one of the following inequal-
ities:

[

Ξ ⊢ x ⊞ hV P
]

≤
[

Ξ ⊢ s
]

·
[

Ξ, s ⊢ x ⊞ hV P
]

(17)
[

Ξ ⊢ x ⊞ hV P
]

≤
[

Ξ ⊢ z ⊞ hV P
]

·
[

Ξ, z ⊞ hV P ⊢ x ⊞ hV P
]

(18)

But this is easily shown by case analysis, using Lemma 4.2,
since according to Lemma 4.1(a) it suffices to consider the
subsetsΞ of

{

s, a, w, x, z, z ⊞ hV P
}

. �

Proposition 4.4
{

{x⊛κhV P

}
}

guards x ⊞ hV P

within E(x)

Proof. The claim is that eachΞ ⊆ E(x) satisfies
[

Ξ ⊢ x ⊞ hV P
]

≤
[

Ξ ⊢ x⊛κhV P ]

·
[

Ξ, x⊛κhV P

⊢ x ⊞ hV P
]

(19)

Lemma 4.1(b) says that suffices to considerΞ ⊆
{s, a, w}. But the pseudo-randomness assumption implies
that

[

Ξ ⊢ x ⊞ hV P
]

= 2−ℓ wheneverΞ is a proper sub-
set. So (19) holds trivially. ForΞ = {s, a, w}, using
Prop. 3.10 and Lemma 4.2, we have

[

Ξ ⊢ x ⊞ hV P
]

=
[

Ξ ⊢ x⊛κhV P ]

= 2|κhV P |−ℓ and on the other hand
[

Ξ, x⊛κhV P

⊢ x ⊞ hV P
]

= 1. Hence (19).

�

4.2 Bounds on undesired runs

We are now ready to compute the probability that the
Attacker can authentication, or that the response can be
Earlier than the challenge. By Proposition 4.3, for a givenx,
the probability that anAttacker can violate authentication is
bounded above by

[

Φ ⊢ s
]

·
[

Φ, s ⊢ x ⊞ hV P
]

or by
[

Φ ⊢ z ⊞ hV P
]

·
[

Φ, z ⊞ hV P ⊢ x ⊞ hV P
]

whereΦ = {a, w, x, z, z ⊞ hV P }

By Proposition 4.4, the probability that Peggy can respond
Early, again for a givenx, is bounded above by
[

s, a, w ⊢ x⊛κhV P ]

·
[

s, a, w, x⊛κhV P

⊢ x ⊞ H(s, a, w)
]

Note that in the attack runA, theAttacker cannot learnx
until after she has createdz. The distribution ofz is thus
independent from that ofx.

Proposition 4.5 Suppose that Victor’s challengex ∈ Z
ℓ
2

is chosen randomly, according to the uniform distribu-
tion; and that theAttacker, before receivingx, can pick
her own challengez ∈ Z

ℓ
2 and obtain a single response

z ⊞ hV P . Then the expected probabilityProb(V | A) that
theAttacker can guess the correct responsex ⊞ hV P , and
deceive Victor is

∫

x∈Zℓ

2

[

x, z, z ⊞ hV P ⊢ x ⊞ hV P
]

=

(

3

4

)ℓ

Proof. SinceProb(x ∈ Z
ℓ
2) = 2−ℓ by assumption, and

[

x, z, z ⊞ hV P ⊢ x ⊞ hV P
]

by (10), it follows that

∫

x∈Zℓ

2

[

x, z, z ⊞ hV P ⊢ x ⊞ hV P
]

=

∑

x∈Zℓ

2

2−ℓ
[

x, z, z ⊞ hV P ⊢ x ⊞ hV P
]

=

2−ℓ ·
ℓ

∑

i=0

(

ℓ

i

)

2−i = 2−ℓ ·
3ℓ

2ℓ
=

(

3

4

)ℓ

�
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Proposition 4.6 Suppose that Victor’s challengex ∈ Z
ℓ
2

and his random noncew ∈ Z
m
2 (announced prior to

the challenge-response exchange) are chosen independently
and according to the uniform distribution. The expected
probability that Peggy can guess and send her response
x ⊞ hV P , wherehV P = H(s.a.w), before she receives the
challengex is

∫

x∈Zℓ

2

[

s, a, w ⊢ x ⊞ hV P
]

=

(

3

4

)ℓ

Proof. Since
[

s, a, w⊥ x
]

holds by assumption,
[

s, a, w ⊢ x ⊞ hV P
]

=
[

hV P ⊢ x ⊞ hV P
]

follows, since
s, a, w can only be useful to derivehV P = H(s.a.w). But
Prop. 3.10(a) then implies that

[

s, a, w ⊢ x⊞hV P
]

= 2i−ℓ,
where i = |κhV P |. SinceH is assumed to be a pseu-
dorandom function, because ofw ∈ Z

ℓ
2, Peggy cannot

distinguishhV P = H(s.a.w) from a random variable
η ∈ Z

2ℓ
2 . The expected value that she will guessx ⊞ hV P

must therefore be averaged over the possible values ofη,
and hence

∫

η∈Z2ℓ

2

∫

x∈Zℓ

2

[

η ⊢ x ⊞ η
]

=

∑

η∈Z
ℓ

2

∑

x∈Z
ℓ

2

2−ℓ
[

η ⊢ x ⊞ η
]

=

2−ℓ ·
ℓ

∑

i

(

ℓ

i

)

2i−ℓ = 2−2ℓ · 3ℓ =

(

3

4

)ℓ

�

Theorem 4.7 Suppose that it is assured that

• Prob(A), Prob(E) < C1 < 1, i.e. not every response
is from theAttacker, and not every response is too
Early;

• Prob(V) > C2 > 0, i.e. Victor does not always reject.

Then the probability that the Hancke-Kuhn protocol imple-
ments(crp) satisfies

Prob(crp) ≥ 1 −
2C1

C2

(

3

4

)ℓ

Proof. As explained in the beginning of this section,
Prob(crp) is the conditional probabilityProb(O | V),
whereO is a desired run andV Victor’s observation, as de-
fined in (13-14). Since the undesired runs¬O decompose
into a disjoint union ofA andE , it follows that

Prob(crp) = 1 − Prob(A | V) − Prob(E | V) (20)

Since Bayes’ Theorem gives

Prob(A | V) =
Prob(V | A) · Prob(A)

Prob(V)

we derive from Prop. 4.5 and the hypothesis

Prob(V | A) · Prob(A)

Prob(V)
≤

C1

C2

(

3

4

)ℓ

(21)

Similarly, from Prop. 4.6 and the hypothesis we derive

Prob(V | E) · Prob(E)

Prob(V)
≤

C1

C2

(

3

4

)ℓ

(22)

The result follows by substituting (21) and (22) into (20).�

Remark. The presented analysis suggests a strategy for
reducing attackers’ chances to break freshness. If Victor
and Peggy agree to abort if the kernel size ofhV P is over a
certain threshold, then guessingx ⊞ hV P without knowing
x becomes harder.

5 Conclusion

In this paper we have given a structured probabilistic proof
of the security of the Hancke-Kuhn distance bounding pro-
tocol. It not only provides a proof of security of Hancke-
Kuhn in particular, but provides a template for reasoning
about probabilistic challenge-response in general:

• Determine all messages that can be sent before the re-
sponse.

• Compute the probability of deriving the response from
each subset of the set of messages computed in the first
step.

• Use the results of the second step to derive the guards
relation for both challenge and and secret key.

• Use the results of the second and third step to de-
rive the probability that a protocol satisfies the desired
challenge-response template.

One advantage of our methodology is that it can teach us
things about a protocol beyond the main security results we
start out to prove. For example, we were able to show that,
on the advantage, that an outside attacker gains no advan-
tage in guessing the response from knowing Victor’s chal-
lenge. Comparing Propositions 3.11 and 4.5 we see that
both probabilities are on the average the same. All the at-
tacker obtains from knowing the challenge is the knowledge
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of how successful her guess is likely to be in a given in-
stance. The ability to detect such subtle interplay between
different types of guessing can be very useful when analyz-
ing protocols like these.

But the main contribution of this paper is that it gives a
methodology that can be applied to complex probabilistic
functions that cannot easily be reasoned about in an al-
gebraic model. We expect it to have applications beyond
timed challenge and response; for example, another class of
pervasive protocols that employshuman-verifiable channels
[16, 11] relies upon weak hash functions that satisfy prob-
abilistic security guarantees, and are currently working on
applying our framework there. Finally, our ultimate goal is
the develop aprobabilistic Protocol Derivation Logic that
could be used to reason formally about protocols with these
types of probabilistic guarantees. This paper represents the
first step in that direction.
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