
Maintaining Invariants Through Object Coupling Mechanisms

Eric Kerfoot Steve McKeever
Oxford University Computing Laboratory

{eric.kerfoot, steve.mckeever}@comlab.ox.ac.uk

Abstract
Object invariants are critical components to the specification of
object-oriented systems, which define valid states for objects and
how they may be interrelated. A complex problem is created when
an invariant relies on objects that are externally aliased and mod-
ified, since the invariant’s class cannot ensure that modification to
these objects preserves the invariant. This paper informally intro-
duces a method of coupling objects called the Colleague Tech-
nique, which creates strong relationships between objects whose
invariants rely on one another and defines additional conditions to
ensure these invariants. The technique builds on the classical tech-
nique by providing a method of ensuring object-dependent invari-
ants are maintained by the operations of an object-oriented system.
We demonstrate our technique using the Java programming lan-
guage and the JML specification language.

1. Introduction
An object’s invariant is a predicate stating conditions for its mem-
bers which defines the valid states of the object. This predicate is
expected to be maintained by the object’s operations if their con-
tracts are met, and by clients if members are modified directly.
This leads to the expectation that well-formed conditions would
ensure this soundness property in the Design-by-Contract (DbC)
technique [14]. However sources of unsoundness are present even
with well-defined conditions, one primary cause being the situa-
tion where an invariant relies on an object for its condition that is
aliased outside the invariant’s object. The implication of this situa-
tion is that this dependee object could be modified by another in a
valid way, but which may still invalidate the invariant that depends
upon it.

Figure 1. The Indirect Invariant Effect

To illustrate the example, consider Figure 1 that illustrates the
object a whose invariant depends on object b. If b were modified
by object c this could invalidate a’s invariant without violating any
of a’s method contracts. The problem was first identified in [14]
where it is described as the Indirect Invariant Effect. Invariants that
experience the effect are dependent on instances of another object
type, which are said to be vulnerable to such an invariant.

Although the problem is simply stated, it is found in many
common design patterns and idioms in object-oriented systems
where it can be a significant source of error. In these situations the
assumption of soundness, which is that an invariant will be satisfied

if method contracts are met, no longer holds. This is a result of the
fact that objects can be modified in ways that satisfy their contracts,
and so also their invariants, but break the invariants of other objects
that depend on them.

For example, a set of iterators depend on the collection over
which they iterate for their invariant conditions, such that if the
collection were to have too many objects removed, an iterator
may refer to a position in the collection that no longer exists. The
problem also occurs in self-referential classes whose invariants rely
on instances of themselves. An example is a person class with
a spouse attribute and an invariant which states that the spouse’s
spouse must be the current this object. In this case it may occur
that one spouse is assigned a new spouse and so breaks the old
spouse’s invariant. Any additional invariant that such a class may
have would rely on the assumption of marriage being an exclusive
bidirectional relationship between two objects.

The effect is addressed in [11] which presents a solution as an
axiomatic verification methodology. The verification methodology
is stated in terms of Hoare logic and concludes with a scheme of
proof obligations for invariants and method conditions. The added
obligations are complex and cumbersome, requiring a degree of
global reasoning. This is a result of the need to globally verify that
all vulnerable objects do not at any point invalidate invariants that
depend on them.

Another solution to the problem of objects being vulnerable to
an invariant is found in confined type and object ownership mod-
els [2, 4, 5, 10], where the type system prevents objects from being
aliased outside of their creator object. Such a method may result
in runtime systems organized into hierarchical series of references
with upper level objects owning those below. An object’s invariant
may only depend on objects that are owned, which are safe from
third part modification, thus preventing the Indirect Invariant Ef-
fect. This condition on invariants and the required confined/owned
properties can be statically checked, such as in the Universe type
system [7, 15] that encodes object ownership as special reference
types.

What ownership requires is that the invariant of an object can
only rely on owned objects, which only the invariant’s object may
reference and directly modify. This ensures that an object’s invari-
ant cannot be broken when objects it depends on are modified, since
the conditions of the object’s methods ensure that any modification
is always valid.

The hierarchical nature of object organization that ownership
creates has certain limitations in how objects may be related. For
example, straight-forward ownership disallows iterators whose in-
variants depend on data structures that they do not own, recursive
data structures such as linked lists, or recursive types like the per-
son class where a person cannot own its spouse. Different own-
ership techniques address these issues, such as the visibility tech-
nique [16] that weakens the ownership requirements at the cost of
greater proof obligations, but which again add to the complexity of
verifying correctness.



The solution [3] used in the Boogie methodology is quite similar
to the proposed solution in this paper. Using special language
constructs, objects can relate themselves to “friend” objects that
share responsibility for their friend’s invariant. This builds on the
Boogie methodology described in [17] that partially addresses the
issue with a form of ownership. However this methodology relies
on these specialized constructs, additional auxiliary variables, and
specialized assertion statements, thus is more difficult to apply in
a more general DbC approach. A more preferable approach would
define a method that can be used with existing DbC analysis and
verification approaches.

The root problem with the Indirect Invariant Effect is that in-
variants reliant on other objects create dependency relationships
that are weakly represented, and so a method of defining these
relationships more concretely would lead to a solution. Our Col-
league Technique addresses this dependency problem by provid-
ing a mechanism of coupling objects whose invariants rely on one
another, and defining additional invariant conditions which ensure
that no modification to either object invalidates the other’s invari-
ant. The disadvantage of this method is reduced software reuse
that’s a consequence of close coupling, however this is outweighed
by the ability to soundly predicate invariants on external objects.
What the technique does not provide is an encapsulation mecha-
nism, which can be provided using an ownership methodology that
prevents the internal representation of an object from being exter-
nally aliased.

Collegiality is defined as an additional technique that is used
with classical DbC methods, such that if a specification is correct
classically then applying the Colleague Technique will result in a
correct specification. This resulting specification will also use in-
variants and conditions as defined in the classical technique, and
so allows existing analysis, verification, and code generation tech-
niques to be applied in conjunction with collegiality. The technique
is described using Java [9] and JML [12] as the specification lan-
guage which it extends with a new annotation. Thus existing tools
and analysis techniques developed for JML can be used in conjunc-
tion with the technique.

This section has discussed the Indirect Invariant Effect and its
consequences. The remainder of this paper will discuss the Col-
league Technique as a solution to this problem. Firstly, the tech-
nique will be defined as an additional concept to classical DbC
constructs. Object types that are suitable as colleague types must
meet certain requirements that are discussed next. This is followed
by a description of how additional invariant conditions are formu-
lated which protect invariants from being invalidated by operations
on dependee objects. Finally the technique will be applied to the
Iterator and Person examples discussed in this section.

2. The Colleague Technique
The previous section has outlined the Indirect Invariant Effect prob-
lem and how it introduces unsoundness in the classical invariant
technique. This section will describe the Colleague Technique and
how it creates strong relationships between objects whose invari-
ants rely on one another. These relationships are used to define ad-
ditional conditions on the invariants of both objects such that mod-
ification to one will not invalidate the invariant of the other.

2.1 Definition
The relationship between objects used by the Colleague Technique
is defined by stating that each object type has an attribute that refers
to an instance of the other type, or is a set of such references. These
two attributes are declared as being each other’s colleague, and the
types they reside in as colleague types. The Colleague Technique
is thus an additional specification concept with specific semantic

requirements that solves the problem of predicating invariants on
other objects.

The Indirect Invariant Effect is caused when an invariant is al-
lowed to rely on any arbitrary object. With the Colleague Technique
an invariant may rely on an object if it is referred to by one of the
object’s colleague attributes. This restriction limits which objects
an invariant may rely on, and adds the knowledge to the specifica-
tion of a colleague type that its instances may be relied upon by
the invariants of other objects. With this knowledge the invariant
of a colleague type can be augmented with additional conditions
that prevent modifications which would invalidate their colleague’s
invariant.

Definition Two object types A and B are colleague types if A has
an attribute bb which is a single or a set of B references, and B
has an attribute aa which is a single or a set of A references, and
aa is defined as being collegial with A.bb and bb as collegial with
B.aa. The invariants of A and B may only rely on objects referred
to in these attributes, owned objects, and primitive values.

An instance of A, a, and one of B, b, are collegial if a reference
to B is stored in a.bb and a reference to a is stored in b.aa. This is
illustrated in Figure 2. Both a and b are responsible for maintaining
that the relationship holds by ensuring the cross referencing and
removing references when the relationship is established between
them or when either object is removed from the system.

Figure 2. The Collegial Solution

This concept of explicit relationships between the attributes of
two object types is similar to that used by the object-based Booster
specification language [6]. Booster is descendent from Z [18] and
the B Method [1], but is a domain-specific language that targets
database systems. The explicit relationships are used as a means
of maintaining associations between data, and through the use of
Weakest Precondition [8] methods to auto-generate conditions that
ensure the relationship.

This bidirectional binding between objects creates ad-hoc con-
texts [5] that are similar to ownership contexts, except that there is
no owner/owned relationship, but a partnership between objects. If
a collegial attribute is a reference value then that object may have
only one colleague of that type, and if it is a set then it can have
multiple colleagues.

The purpose of having this bidirectional relationship is so that
an assumption about responsibility can be made by both collegial
partners. If an object has a reference to a colleague object, then
it can be assumed that the colleague will reference it as well.
Thus an object’s specification can assume that these colleagues will
not allow any modification to themselves that breaks the invariant
conditions that depend on them.

Figure 2 illustrates how a depends on b since its invariant
includes the predicate P(bb) and bb stores a reference to b. The
specification for type A can safely define such an invariant since
the assumption exists that b’s attribute aa will alias a, and that B’s
invariant will include a condition on aa that prevents modifications
that would invalidate P. Thus the bidirectional property of the
relationship is critical to the technique, and so certain requirements
and facilities must be present to ensure that the relationship is



created and broken correctly. These requirements are discussed in
the next section.

2.2 Requirements
The colleague relationship imposes requirements on the invariants
and methods of object types that must be met for them to be
used as colleague types. These requirements are necessary for the
technique to correctly guarantee invariants:

• A colleague object type can only have one collegial attribute
for any colleague object type. For example, an object type A
cannot define two attributes to both be collegial with attributes
of object type B, even if the attributes are different. Otherwise
an object type can be defined to be collegial with any number
of other object types.
This restriction prevents situations where a contradiction may
arise between two conjuncts of an object’s invariant. If an object
type A were allowed to have two attributes that were collegial
with two attributes of B, then instances of A and B could become
double collegial through these two means of association. It
would then be possible for invariant conditions to be placed on
the collegial attributes that would be contradictory if they were
asserted for the same object. This also eliminates the possibility
of circular dependency of invariants between two objects.

• Each invariant is responsible in maintaining its colleagues’ in-
variant, and so colleagues must be defined in a way such that
they and parts of their invariants are visible to one another. This
may require that the invariants be declared as publicly visible
and only rely on public members.
This is needed since an invariant of an object will be augmented
with added conditions that reflect the invariants of colleagues.
If the colleague objects’ invariants were not public, that is they
were not publicly visible or relied on non-public members, then
these added conditions could not be formulated or would be
required to access non-public members.

• Both invariants may only rely on objects that are colleagues of
their objects or this.

• They may also only rely on the members of these objects – but
not members of members – which do not evaluate to regular
reference types nor depend on regular reference types for their
values. This restricts how complex invariants can be, but any de-
gree of complexity can be created by classes providing appro-
priate methods that return useful information. Such methods,
for example, may calculate values that can be used in specifica-
tions that requires other objects.
The purpose of this restriction is to limit which objects are de-
pendees of an invariant. If an invariant were allowed to state a
condition dependent on regular objects, even if they were ref-
erenced by attributes of a colleague object, then this would re-
introduce the Indirect Invariant Effect. This prevents the situ-
ation where, if an invariant includes a predicate of the form
“P(this.x.y.foo())” where the value of foo is of interest, both ob-
jects x and y become dependees. In this situation x will not have
sufficient invariant conditions to prevent invalidating modifica-
tions to y, since y is accessed directly and not through a method
of x, which would be able to perform an invariant check which
would prevent invalidating modifications to y.

• If a method is used in an invariant, this requires that the
method’s return value depend only on colleague objects, prim-
itive values, or other methods of same object that are similarly
restricted. These methods must also be pure, that is they are
side-effect free.

This technique has limitations in that each colleague must be
pre-defined to be part of a collegial relationship, as opposed to own-
ership where any arbitrary object can be owned by another. Greater
coupling between objects reduces reusability, however invariants
that rely on other objects already create this coupling, which the
Colleague Technique formalizes.

Collegiality provides a method to closely couple two object
types, whose instances may be aliased in different parts of a system,
in a way that wouldn’t be permitted with ownership. From the
perspective of a software module, it allows an object that relies on
the module’s internal state to be passed over the module’s public
interface boundary to the client. This object is used to provide
some functionality of the module, but since it relies on the internal
structure it must be defined in a way that does not adversely affect
this state but also allows it to be aliased by the modules’s client
objects. The Colleague Technique aims to provide a method of
specifying such objects so that this can be achieved.

Constructing and breaking the collegial relationship is impor-
tant since the cross referencing must be maintained. If one object
was collegial with another, then it relies on that colleague object
to alias it and so prevent operations that would break its invariant.
If the relationship between two objects was malformed in that it
became unidirectional, then the assumption about invariant respon-
sibility breaks down.

What this implies is that creating and breaking the relationship
are specific operations that the code of an object type should not
be responsible for. Although the technique can be defined purely as
a specification, it is helpful to describe these operations in terms
of helper methods that define the criteria for determining when
two objects are collegial and managing the relationship between
colleagues:

• To access collegial references, an accessor is defined for each
collegial attribute that returns the reference value if the type is a
singleton or an iterator if the type is a set. This accessor is called
‘getY()’ for an attribute named Y, eg. an attribute named ‘foo’
is accessed by ‘getfoo()’.

• A colleague type must have a boolean-returning method
‘isAssociated’ for every type X that it is collegial with, which
takes a reference of type X and determines if it is an object that
is a colleague of the current object.

• Determining if an association relationship can be formed is
performed by a method called ‘isAssociable’ that accepts the
colleague candidate as an argument.

• A colleague type must have a void-returning method
‘associate’ for every type X that it is collegial with. This
method takes as the single argument a reference of type X which
it adds to the collegial attribute. The method ‘associate’
is then called on the argument object, passing this as the
argument.

• A fourth method for a collegial type called ‘disassociate’
is defined for every collegial type X which has the corollary
effect of disengaging two objects from a collegial relationship,
by assigning null to singleton types or removing the given
reference from the collegial set type.

Thus a set of requirements are defined that an object type must
meet so as to be useable as a colleague type, and a set of helper
methods are described which are essential to the operation of the
technique. These methods need not be concrete but may be abstract
methods in a specification, however if colleague relationships need
to be concrete in the implementation of the system then these
methods would need to be as well. The next section will build on



the collegial relationship and discuss how this is used to construct
new invariant conditions that ensure invariant soundness.

2.3 Invariant Conditions
The purpose of entering two objects into a collegial relationship
is to allow one or both to predicate their invariants on the other,
such that each object’s specification has the information to ensure
the object’s methods do not violate the others invariant. This is
achieved by adding extra conditions to an object’s invariant that
ensure the properties its colleagues require of it.

These extra conditions are derived from the part of the object’s
invariant predicated on the colleague attribute, which are then ex-
pressed in terms of the colleague object itself. Taking a condition
placed on a member of a colleague attribute and replacing the name
of the attribute with this restates the condition from the perspec-
tive of the colleague object itself. This new condition, which states
the same property but from the perspective of the other colleague
object, can then be used as the needed additional condition.

Given the object types A and B from the above discussion and
their respective invariants IA and IB, the part of IA predicated on
bb is denoted by P which must be in a form where every member
access must explicitly begin with ‘this.’ (called normal form in
this context):

IA = ...P(bb)... – if bb is a singleton type
IA = ...∀ i : bb | S • P(i)... – if bb is a set type, given S
IA = ...∃ i : bb | S • P(i)... – if bb is a set type, given S

These three forms of the invariant for A relate members of
bb, either attributes or values returned from pure method calls, to
members of A or constant values. P is stated in the perspective from
A to B, and so to reverse the perspective and produce an invariant
for B, the roles of this and bb must be reversed. This takes P and
produces a mirror Pm stated in terms of aa.

If aa is a singleton attribute then there are two forms of the
mirror Pm predicate:

Pm(aa) == P[this, this.aa/this.bb, this]

– if bb is a singleton

Pm(aa) == S[this, this.aa/i, this] ⇒ P[this, this.aa/i, this]

– if bb is a set

If aa is a set attribute then the two forms are quantified over the
elements of the set:

Pm(aa) == ∀ i : this.aa • P[this, i/this.bb, this]

– if bb is a singleton

Pm(aa) == ∀ i : this.aa | S[this, i/i, this] • P[this, i/i, this]

– if bb is a set

Therefore the invariant of B has the additional requirement of
maintaining the predicate Pm(aa):

IB = ... ∧ Pm(aa)

The predicate P states relationships between the members of the
classes A and B, and Pm states the same relationships but from
the perspective of the other colleague type. This has the effect of
swapping collegial references with this wherever they occur in P
and reverses the direction of the predicate.

If, for example, P represented the expression ‘this.bb.m<10’,
then the mirror Pm would equal ‘this.m<10’, which would ensure
that the required property of m would be maintained. For a more

complex example take P to represent ‘this.bb.m==this.n()’ for
some method n, then the mirror Pm is ‘this.m==this.aa.n()’.

There is another possible original form of the invariant other
than the three given above. If bb is a singleton which may be set
to null (that is it is nullable in JML terms) then the P predicate
would be false when this occurs, thus an implication relation is
used to guard against this possibility:

IA = ...bb 6= null ⇒ P(bb)...

The mirror invariant of this form is derived by taking P and
applying the above transformation. If aa is a set type then this
Pm becomes the resulting invariant, but if it is a singleton that is
nullable then a guard implication is used in this instance as well:

IB = ...aa 6= null ⇒ Pm(aa)...

In the presence of inheritance where an object type can inherit or
implement a colleague type, it is not difficult to see that behaviour
subtyping [13] is necessary for the technique to work. If this were
not the case then an object type may inherit from a collegial type
and not be responsible for the inherited mirror invariant, thus even
if it remains internally consistent the invariants of dependent ob-
jects may be invalidated.

2.4 Results
The Colleague Technique as described is used to make explicit the
relationships created by invariant dependencies. The purpose in do-
ing so is to develop a means of preventing the Indirect Invariant
Effect from allowing invariants to become invalidated without con-
tractual violations. The additional conditions that are added to the
invariants of colleague types achieve this, and are dependent upon
the fact that only their colleague types will depend on them for their
invariants.

To understand how the technique provides this guarantee, con-
sider the conditions that the classical DbC technique places on a
method call. The precondition and invariant of an object must hold
before a method begins, and since the mirror invariant must also
be asserted here then the object is guaranteed to be in a state that
does not break the invariant of another. When a method exits, the
postcondition and invariant is asserted which again makes the valid
state guarantee. By encoding the reciprocal responsibilities that col-
legial objects have to one another as invariant conditions, the Col-
league Technique uses existing DbC methodologies to safeguard
object-dependent invariants. Thus the Colleague Technique does
not require additional proof obligations in addition to those used in
a pre-existing verification methodology.

An implementation, in Java and using JML, of the iterator prob-
lem discussed previously demonstrates how the technique prevents
an instance of unsoundness in the classical DbC approach. An addi-
tional “collegial” annotation is used to declare those attributes that
are collegial with which other object type, and with what attribute.

Figure 3 lists the code for this example. It states that the at-
tribute iterators of List is collegial with List or ListIterator. The
invariant of ListIterator that relies on the instance of List it iterators
over states that its size must not be less than what it was when the
iterator was instantiated:

this.list.size()>=this.last

To ensure that this does not happen, List must have an invariant
that ensures its size is never less than the last attribute of any
associated iterators:

(\forall ListIterator i; this.iterators.contains(i);
this.size()>=i.last)

Since the associate method constructs the relationship correctly,
this additional invariant prevents the removal of enough elements



from an instance of List to break an associated iterator’s invari-
ant. To allow the removal of elements again from a List instance,
it would be required to disassociate collegial iterators, which oc-
curs when they are no longer needed and are removed from the
system. Thus collegiality forces coordination between iterators and
collections, which is implicitly required by the fact that iterators
are dependent on their collection’s state.

This invariant was generated using a prototype Java tool that
has been successfully used with this example and the Person ex-
ample in described below. The tool analyzes the invariants of in-
put Java classes, generates mirror invariants using the methodology
outlined in this paper, and outputs the classes again with the mirror
invariants and helper methods added. The resulting classes can be
compiled into standard Java using the Common JML Tools1, which
adds runtime assertion checks to the compiled bytecode. The re-
sultant classes have been analyzed through testing and successfully
provide runtime checks that prevent the Indirect Invariant Effect.

This tool demonstrates how the described technique can be used
in conjunction with existing DbC techniques to close the unsound-
ness gap created by object-dependent invariants. With only the ad-
ditional collegial annotation augmenting standard JML, the tool
produces resulting code that has only standard JML annotations
and standard Java code, such that other tools that analyze and trans-
form JML-annotated Java code can be subsequently used. A more
sophisticated tool may be able to identify attributes of classes that
need to be collegial without the additional collegial annotation,
thus without adding significantly new specification constructs or
methodologies that other solutions require, the Colleague Tech-
nique effectively addresses the problem of object-dependent invari-
ants and can be employed with a relatively simple code-generating
tool.

The second discussed example involved self-referential types,
such as the spouse example in Figure 4. The invariant of the class
requires that one’s spouse be married to one’s self. The method by
which associate operates, which ensures the cross-referencing
of colleague objects, would guarantee that this invariant would
always be true if the spouse parameter was collegial as the code
defines. Invariants that state conditions on members of colleagues
can also be used in this instance, but would still require additional
conditions stating the same property for the local attributes.

3. Conclusion
This paper has described the Colleague Technique, and its associ-
ated ownership technique, that is stated as a solution for the Indirect
Invariant Effect. The effect is a critical problem with the classical
DbC invariant technique since many common design patterns and
programming idioms rely on the aliasing of objects within a sys-
tem.

This technique defines a method of correctly constructing a rela-
tionship between objects whose invariants depend on one another,
and how additional conditions ensure that operations on either will
not invalidate the other’s invariant. This discussion has been done
in terms of concrete Java methods and attributes, however the tech-
nique can be defined in terms of abstract model variables entirely
in some cases and without the concrete helper methods. Either as
a concrete or abstract component of a specification, the purpose
of the technique is to make explicit the relationship between ob-
jects that are created when an invariant relies on other objects for
its conditions. What the technique does not provide is a method
of guaranteed encapsulation, which is best accomplished using a
lightweight method of ownership.

The net result of this technique is to close the unsoundness
gap created in the classical DbC technique cause by invariants

1 http://sourceforge.net/projects/jmlspecs/

class List {
private /*@ spec_public @*/

ArrayList items = new ArrayList();
private /*@ collegial ListIterator.list; @*/

Set iterators = new LinkedHashSet();

// The mirror invariant derived from ListIterator
//@ invariant (\forall ListIterator i;
//@ this.iterators.contains(i); this.size()>=i.last);

//@ requires o != null;
//@ ensures this.items.contains(o);
public void add(Object o) { this.items.add(o); }

//@ requires i>=0 && i<this.size();
//@ ensures \result == this.items.get(i);
public /*@ pure @*/ Object get(int i)

{ return this.items.get(i); }

//@ ensures: \result == this.items.length();
public /*@ pure @*/ int size()

{ return this.items.length(); }

//@ requires i >= 0 && i < this.size();
//@ ensures !this.items.contains(
//@ \old(this.items.get(i)));
public void remove(int i) { this.items.remove(i); }

public ListIterator iterator()
{ return new ListIterator(this);}

}

class ListIterator {
private /*@ nullable collegial List.iterators; @*/

List list;
private /*@ spec_public @*/ int position=0, last;

//@ invariant this.position<=this.last;

// The invariant dependent on the colleague object
//@ invariant this.list!=null ==>
//@ this.list.size()>=this.last;

//@ requires this.isAssociable(l);
//@ ensures this.isAssociated(l);
public ListIterator(List l){ this.associate(l);

this.last=l.size(); }

//@ requires this.list != null;
//@ ensures \result == this.position<this.last;
public /*@ pure @*/ boolean hasNext()

{ return position<=last; }

//@ requires this.hasNext();
//@ ensures this.position==\old(this.position)+1;
//@ ensures \result==this.list.get(\old(this.position));
public Object next(){ this.position++;

return this.list.get(this.position-1); }

protected void finalize()
{ this.disassociate(this.list); }

}

Figure 3. Iterator Collegial Example



class Person {
private /*@ nullable collegial Person.spouse @*/

Person spouse;

//@ invariant this.spouse != null ==>
//@ this.spouse.spouse == this;
...

}

Figure 4. Marriage Example

relying on externally aliased objects. Allowing invariants to be
predicated on objects is an important component when specifying
complex layered object structures, and so a method that ensures the
soundness of the technique, i.e. if the conditions of operations are
met then the invariants will remain valid, contributes significantly
to the correctness and applicability of this formal method to real-
world complex software engineering challenges.

This paper has informally defined and discussed the Colleague
Technique by examining the problem and the proposed solution.
Future work with the technique will elaborate on how it can be
integrated with JML and be used as an abstract or concrete specifi-
cation technique. Proving the property that colleague specifications
derived from correct specifications are themselves correct, and that
it does solve the problem of soundness with object-dependent in-
variants, is also part of future research with the technique. Through
induction on the method of creating mirror invariants from origi-
nal invariants, the proof must show that the mirror invariants are
well-formed, well-typed, and do not represent new restrictions on
the system. To prove that the technique does solve the soundness
problem, it will be necessary to formally express an invariant’s de-
pendence on objects, and use this to demonstrate that the technique
correctly guards against invalidating modifications. The develop-
ment of tool support is also planned, whose objective is to analyze
and possibly prove the correctness of programs that use the tech-
nique.

References
[1] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings.

Cambridge University Press, August 1992.

[2] Paulo Sérgio Almeida. Balloon types: Controlling sharing of state in
data types. Lecture Notes in Computer Science, 1241:32, 1997.

[3] Mike Barnett and David Naumann. Friends need a bit more: Maintain-
ing invariants over shared state. In Dexter Kozen and Carron Shank-
land, editors, Mathematics of Program Construction, 7th International
Conference, MPC 2004, Stirling, Scotland, UK, July 12-14, 2004, Pro-
ceedings, volume 3125 of Lecture Notes in Computer Science, pages
54–84. Springer, 2004.

[4] Boris Bokowski and Jan Vitek. Confined types. Technical report,
1999.

[5] David G. Clarke, John M. Potter, and James Noble. Ownership types
for flexible alias protection. In Proceedings of the 13th Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA-98), volume 33:10 of ACM SIGPLAN Notices, pages 48–
64, New York, October 18–22 1998. ACM Press.

[6] Jim Davies, Charles Crichton, Edward Crichton, David Neilson, and
Ib Holm Sørensen. Formality, evolution, and model-driven software
engineering. In Proceedings of the Brazilian Symposium on Formal
Methods (SBMF 2004), volume 130 of Electronic Notes in Theoretical
Computer Science, pages 39–55, May 2005.

[7] W. Dietl and P. Müller. Universes: Lightweight ownership for JML.
Journal of Object Technology (JOT), 4(8):5–32, October 2005.

[8] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 18(8):453–457, 1975.

[9] James Gosling et al. The Java Language Specification. GOTOP
Information Inc.

[10] John Hogg. Islands: aliasing protection in object-oriented languages.
In OOPSLA ’91: Conference proceedings on Object-oriented pro-
gramming systems, languages, and applications, pages 271–285, New
York, NY, USA, 1991. ACM Press.

[11] Kees Huizing and Ruurd Kuiper. Verification of object oriented pro-
grams using class invariants. In FASE ’00: Proceedings of the Third
Internationsl Conference on Fundamental Approaches to Software En-
gineering, pages 208–221, London, UK, 2000. Springer-Verlag.

[12] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation
for detailed design. In Haim Kilov, Bernhard Rumpe, and Ian Sim-
monds, editors, Behavioral Specifications of Businesses and Systems,
pages 175–188. Kluwer Academic Publishers, 1999.

[13] B. Liskov and J. Wing. Behavioral subtyping using invariants and
constraints, 1999.

[14] Bertrand Meyer. Object-Oriented Software Construction. Prentice-
Hall, second edition, 1997.

[15] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias
and dependency control. Technical Report 279, Fernuniversität Hagen,
2001.

[16] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular
invariants for layered object structures. Technical Report 424, ETH
Zurich, March 2005.

[17] K. Rustan, M. Leino, and P. uller. Object invariants in dynamic
contexts, 2004.

[18] J. M. Spivey. The Z Notation: A Reference Manual. International
Series in Computer Science. Prentice Hall, 2 edition, 1992.


	Introduction
	The Colleague Technique
	Definition
	Requirements
	Invariant Conditions
	Results

	Conclusion

