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While recent statistical methods for disambiguation in natural language process-
ing have been very successful, earlier arguments for the position that fully successful
disambiguation requires reasoning to new conclusions from old facts still hold. We
explore ways of complementing statistical approaches with the use of ‘domain theo-
ries’, collections of facts and axioms that characterise the typical structure of some
task domain. In particular, we hypothesise that disambiguation decisions can sup-
ply tacit information about such theories, and that the theories can be in part
automatically induced from such data. We describe a pilot experiment in which a
partial domain theory for the domain of air travel information was induced from a
corpus of disambiguated example sentences, the resulting theory then being used
successfully in disambiguating other sentences from the same domain.
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1. Introduction

Ambiguity has played an important role in linguistics. The existence of some types
of ambiguity is in fact the clearest evidence that sentences have abstract structure
over and above a linear sequence of words:

1 a Flying planes can be dangerous
b He saw the man with the telescope

But the process of disambiguation itself has received relatively little attention within
linguistics, probably because of influential early work in linguistic semantics which
stressed the variety of non-linguistic knowledge needed for disambiguation and, by
implication, the difficulty of eliciting and encoding such knowledge so as to be able
to use it for this purpose:

For practically any item of information about the world, the reader
will find it a relatively easy matter to construct an ambiguous sentence
whose resolution requires the representation of that item (Katz & Fodor,
1964:489).
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In fact, it is not just having the relevant information available that is needed:
a wealth of examples seems to indicate that we have to go on to draw arbitrarily
complex inferences from that information to make disambiguation decisions:

2 Little John was looking for his toy box.
The box was in the pen.

Bar-Hillel’s famous example (Bar-Hillel, 1960) demonstrates that in order to
select the more plausible interpretation of ‘pen’ as ‘play pen’ rather than ‘fountain
pen’ we have to draw inferences about the context of the sentence itself. This
reasoning presumably proceeds along roughly the following lines. We locate the
referent for ‘the box’ as ‘the toy box’, and we find (let us assume) just the two
candidate meanings for ‘pen’. We know something about the relative sizes of these
objects and find that we can construct a picture consistent with these relative sizes
for the interpretation ‘box in play pen’ but not for ‘box in fountain pen’, and hence
we choose the former.

Other examples which have become equally well known suggest that the rea-
soning involved can draw on facts which require a subtle understanding of social or
political structures, rather than facts about the physical world:

3 The police refused the students permission to demonstrate
because they advocated/feared violence.

The decision as to whether ‘they’ refers to ‘the police’ or to ‘the students’ with
one or another of the alternative verbs, seems to be given by our assessment of the
relative plausibilities of the propositions ‘police/students advocate violence’ and
‘police/students fear violence’, and the likelihood that each of these propositions
could form a reason for the police withholding permission. But both here, and in
the earlier example, the decision involves judging the plausibility of a proposition
inferred from things already known, but itself novel: it is very unlikely that a hearer
has consciously or unconsciously worried on any previous occasion about whether
toy boxes can fit into fountain pens, or whether police fear violence more than
students do.

Observations like these have led to a widespread perception within the linguistics
and to some extent the computational linguistics communities that successful dis-
ambiguation in automatic natural language processing systems is something that
awaits the completion of the programme of traditional artificial intelligence: the
ability to represent and reason with the knowledge of the world available to the
average native speaker of a language. This is not a programme that is currently
regarded as feasible.

More recently, people have turned to statistical methods for resolving some types
of ambiguity, methods which appear to be relatively successful without involving
the kind of complex knowledge representation and reasoning schemes implied by
Katz and Fodor’s claim. Some of these methods (e.g. focus-based schemes for pro-
noun resolution) rely on the frequency of particular configurations of structural
properties, and thus do not even attempt to use anything like a domain theory in
the sense that we are using it. But others try to include some notion of content via

Article submitted to Royal Society



Statistical and Logical Reasoning in Disambiguation† 3

the inclusion of particular words or word-senses, for example, the ‘preference-based’
disambiguation schemes in the Core Language Engine (Alshawi & Carter, 1994),
or the lexical head and dependency based schemes of Collins (1998).

Some of this latter family of statistical techniques can be seen as ways of trying
to build a domain theory. The result of statistical training is a crude kind of theory
of the structure of the domain that allows us to make assessments of the relative
probabilities of competing propositions. For example, if we were able to train on a
large relevant corpus of English, annotated in the appropriate way, we might hope
that our preference measures would tell us that given sentences like:

4 a I blew up the safe with the dynamite
b I saw the man with the bicycle

the verb phrase attachment is preferred for (a) on the grounds that the simple
proposition ‘blow up with dynamite’ is more likely than ‘safe with dynamite’,
whereas the noun phrase attachment is preferred for (b), because ‘man with bi-
cycle’ is more likely than ‘see with bicycle’.

The problem with such schemes is that they are very dependent on the test-
ing data being sufficiently like the training data in all the ways relevant for the
disambiguation decision. A scheme for lexical disambiguation trained on a large
corpus of sentences of English, for example, would be very unlikely to make the
right decision for Bar-Hillel’s example, or for the demonstrators example, because
the information needed to trigger the decision is simply not present in the form
of the sentence: that was Bar Hillel’s point. It might be argued that this problem
could be solved by including more conditioning factors in the statistical model,
for example taking into account some of the properties of surrounding sentences,
which act as a context. The problem with this suggestion is that the corpus used
for training now has to be very much larger than before if a sufficient number of
relevant observations are to be found in it. It might also be argued that examples
like Bar Hillel’s are rare enough that for practical purposes failure with them does
not matter: this is a defensible engineering principle, but it still leaves us without
a scientific account of what this kind of disambiguation involves.

What is really needed is to find some way of combining some properties of statis-
tical approaches with theories that have sufficient deductive structure to allow them
to be used in reasoning to the appropriate conclusions even when these conclusions
are not directly reflected in any of the previously observed data. Some kinds of
automatic clustering and backoff schemes can be seen as a way of trying to add
some of this deductive structure to n-gram or other methods. But the types of infer-
ences that these extra mechanisms sanction are typically rather simple: essentially
‘isa’ hierarchies and other types of taxonomic reasoning. It is not likely that they
will extend to, say, reasoning involving logical connectives, complex predicates, or
quantifiers.

2. Building Domain Theories

The early pessimism about the possibility of building large scale monolithic theories
by hand is surely justified, although there have been some heroic (and expensive)
attempts. Moreover, it is not clear that a single ‘theory of the world’ is what is
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wanted: experience in using general linguistic classification schemes, such as Word-
Net (Fellbaum, 1998), suggests that in particular domains, word usage and rela-
tionships can be rather different from ‘general usage’, which is presumably based
on an abstraction from many such domains, not necessarily chosen systematically.
Domain specific hand-crafted theories have been developed from time to time: the
earliest was perhaps embodied in the ‘preference semantics’ of Wilks (1975), and
more recent attempts have been described by Hobbs et al. (1993). However, even
constructing such smaller theories is still an extremely labour intensive business.

What we need is some way of automatically, or semi-automatically, inducing
domain theories from data of some kind. But from what kind of data? Here, we can
perhaps go back to the original observation that in order to make a disambiguation
decision, we need a great deal of knowledge about the world. However, the observa-
tion that disambiguation decisions depend on knowledge of the world can be made
to cut both ways: just as we need a lot of knowledge of the world to make disam-
biguation decisions, so a given disambiguation decision can be interpreted as telling
us a lot about the way we view the structure of the world. Since in the general case
it is a much easier job to disambiguate sentences than to directly encode the theory
that we are drawing on in so doing, a better strategy for trying to build a domain
theory would be to try to capitalise on the information that is tacitly contained in
those disambiguation decisions.

In order to test this hypothesis and develop a method for learning such do-
main theories, a small pilot experiment was carried out aimed at constructing a
logically structured domain theory automatically from a disambiguated corpus. In
overview, the method was to use the disambiguated corpus to produce a set of log-
ical expressions representing linguistically possible interpretations of the sentences.
These interpretations can be assumed to describe both what is and is not possible
in the domain. Roughly speaking, the logical form representing the correct reading
of a sentence can be assumed to describe something possible in the domain (‘pos-
itive data’), whereas logical forms corresponding to impossible readings describe
something that cannot happen in the domain (‘negative data’). This is an oversim-
plification in several ways, of course: firstly the correct and incorrect logical forms
overlap in some of their components, and so the overlap must be factored out of
the negative data. Secondly, it may not be the case that the incorrect reading is
actually impossible rather than just unlikely in the context. The first simplification
must be remedied, but we will have to ignore the second, at least for the time being.

Having got the negative and positive data, we can then apply a machine learning
method to induce a theory that adequately predicts the positive and negative data,
ideally from a small and compact set of axioms. The method used was the ‘Inductive
Logic Programming’ (ILP) paradigm (Muggleton & De Raedt, 1994; Muggleton,
1995). Given a background theory B, and some evidence, E, the task of ILP is to
find a hypothesis H such that B & H |= E. This latter expression can be rearranged
as B & E |= H. For certain types of first order theory there will be some set of
ground literals ⊥ true in every model of B & E. Since H must also be true in
every such model, it follows that B &E |= ⊥ |= H. Then for any such H, it must
be the case that H |= ⊥. The set of candidates for H can be enumerated by
searching through the lattice of clauses which subsume ⊥, or variants of ⊥. The
CProgol system (Muggleton, 1995) searches this lattice to produce the candidate
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for H which explains E in the most economical way, that is, resulting in the smallest
number of clauses in the final theory.

The ILP paradigm was chosen for several reasons. Firstly, it is known to scale
up effectively to realistically sized problems. Secondly, the particular ILP algorithm
used is tolerant to noise or inconsistency in the data. Thirdly, the framework offers
the promise of being able to integrate logical theories with statistical modelling by
learning rules with probabilities associated with them (Muggleton, 1999).

In our case, the resulting set of clauses constitute the domain theory we are look-
ing for and can be used, in principle, to carry out the kind of disambiguation task
we are concerned with. Disambiguation itself can be carried out in several ways:
the most straightforward, but least efficient, is simply to find each interpretation in
turn and discard those that are inconsistent with the axioms of the domain theory.
The remaining interpretations are guaranteed to be possible ones, but some further
reasoning may still be required to select the preferred one (e.g. interpretations that
add no new information will be consistent but uninformative).

Step 1: Data Collection
To begin with, a set of 500 sentences from the Air Travel Information Service (ATIS)
corpus were collected by searching for those containing the words ‘flight’, ‘fare’, and
‘meal/dinner/breakfast’. The ATIS corpus was chosen because although it is real
data, the domain is very simple and constrained, and here constrained even further
by limiting ourselves to just a few types of sentence. However, it is worth pointing
out that even though the domain is simple it is representative of many types of
task domain that are suitable for practical commercial applications.

A simple unification grammar and parser using a formalism described in Pulman
(1996, 1999) was used to parse the sentences into a kind of ‘quasi-logical form’
(QLF). After adding the 30 or 40 most frequent missing vocabulary items to the
system, and in some cases simplifying the sentences in ways that were irrelevant to
the experiment (e.g. normalising airline and city names, dates, times etc.) about 200
sentences were obtained that parsed fully. 120 of the sentences were unambiguous,
and although such sentences contain useful information, for the experiment they
were ignored. The remaining 80 sentences were then partly disambiguated by adding
brackets to the sentence:

[i,would,like,[the,cheapest,flight,from,washington,to,atlanta]]
[can,i,[have,a,steak_dinner],on,the,flight]
[do,they,[serve,a,meal],on,[the,flight,from,san_francisco,to,atlanta]]
[i,would,like,[a,flight,from,boston,to,san_francisco,

[that,leaves,before,’8:00’]]]

Step 2: Creating a ‘QLF-bank’
The unbracketed sentences were parsed and the bracketing used to divide the re-
sulting QLFs automatically into good and bad. A good QLF is one deriving from a
parse that is consistent with the constituent structure indicated by the bracketing.
An example of a good QLF for the first sentence above, simplified to abstract away
from the particular notation used, is:
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5 λA.would(like(A,i,the(λB.flight(B) & from(B,washington)
& to(B,atlanta) & cheapest(B))))

An example of a bad QLF is:

6 λA.would(like(A,i,the(λB.flight(B) & from(B,washington)
& cheapest(B)) & to(A,atlanta)))

(Note that QLFs are treated as predicates of events and will be subject to the
relevant contextual resolutions.) In the first QLF, it is the flight, B, that is to
Atlanta, correctly, corresponding to the reading on which the prepositional phrases
are attached to the object noun phrase. In the bad QLF, it is the event argument of
the verb, A, that is to Atlanta, corresponding to the verb phrase attachment of that
prepositional phrase. Other QLFs for this sentence are essentially permutations of
these solutions.

Many sentences have more than one QLF that is consistent with the brack-
eting assigned, and thus get multiple QLFs characterised as good. This sentence,
for example, when the prepositional phrases modify the noun phrase only, has the
parse given where ‘cheapest’ scopes over the nominal phrase ‘flight’ and its mod-
ifiers ‘flight from...’, and also one where ‘cheapest flight’ is the nominal modified.
Given the oversimplified semantics we have assigned to ‘cheapest’ the result is to
get logically equivalent interpretations differing only in the orderings of the con-
juncts inside the meaning of the definite noun phrase.

Step 3: Turning to normal form
The ILP system used, CProgol (Muggleton, 1995), requires the evidence to be in the
form of first order clauses. Since the QLFs produced by the parser are intrinsically
higher-order logical expressions, they have to be transformed into first order near-
equivalents. This is achieved in the following way: firstly, the QLFs are resolved,
in a null context, using the system described in Pulman (1999). Resolution con-
sists of locating the interpretation of pronouns and definites, filling in any ellipses,
and so on. In the ATIS corpus there are actually very few contextually-dependent
constructs like this, since the corpus consists of single sentences rather than dia-
logues, and so resolution for our sentences is fairly simple. Essentially in our case it
amounts to predicating the event predicate of a new event discourse referent, trans-
lating determiners to quantifiers with as near as possible to their surface scope
ordering, and resolving all definites as existentials. We then transform these to ap-
proximately equivalent first order expressions by translating generalised quantifiers
to first order versions, where possible, and stripping out any higher order operators
(like ‘would’) that correspond to tense and aspect information:
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7 ∃A.flight(A) & from(A,washington) & to(A,atlanta)
& cheapest(A) & like(e73,i,A)

8 ∃A.flight(A) & from(A,washington) & cheapest(A)
& like(e75,i,A) & to(e75,atlanta)

Next we need to transform these first order expressions into the clausal forms
required by CProgol. This can be done by the usual procedures of skolemisation and
normalising to conjunctive normal form. Each of the resulting sets of disjunctions of
literals represents a clause. We also flatten the clauses by translating any functions
into extra predicates in a way illustrated by an artificial example:

a(b(c),d(e)) ⇒ a(1,2) & b′(1,c) & d′(2,e)

In clausal form our good and bad QLFs look like:

9 [[flight(sk80)],[from(sk80,washington)],[to(sk80,atlanta)],
[cheapest(sk80)],[like(e73,i,sk80)]]

10 [[flight(sk82)],[from(sk82,washington)],[cheapest(sk82)],
[like(e75,i,sk82)],[to(e75,atlanta)]]

Step 4: Separating negative and positive evidence
We now have to factor out the good and bad components of a bad QLF. As can
be seen from the previous example, the good and bad QLFs agree in some of their
components, reflecting the shared elements of the analyses of the original sentence,
but differ in the component that corresponds to the differing prepositional phrase
attachment. However, in going to a normal form the process of skolemisation has
made it a non-trivial exercise to automatically detect this overlap. In other cases,
the normal form process will produce still more radical differences between similar
QLFs: for example, some different prepositional phrase attachments will produce
different scoping behaviour leading to one literal being positive in one QLF but
negative in another. In fact, in going to CProgol form we ignore negations, whether
they arise from the original sentence or from the normal form process. This makes
the next step easier, but also has an intuitive motivation: a negative literal is denying
that some proposition is true in the domain. Under normal circumstances this will
be a proposition that nevertheless makes sense in the domain in question. There
are some circumstances in which negatives are about the structure of the domain:
‘My shoes don’t sing’, but more usually they are saying that something which is
possible happens not to be the case: ‘My shoes aren’t black’. Hence ignoring the
negation sign, although producing a clause that does not mean the same as the
original, is still producing valid data as input to the process of theory induction.

To find the overlap we search for a set of substitutions of arguments of the
predicates in the two clause sets which (a) preserves sort information as far as
possible (i.e. events map to events, flights to flights) (b) preserves the connections
between different clauses (i.e. literals with the same arguments in one clause set
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map to literals with the same arguments in the other clause set) (c) minimises
the difference between the two clause sets. When we have the best such set of
substitutions, which will be a set of pairs of arguments from the two clause sets,
any individual pairs in the set violating one or more of these conditions flag non-
overlapping components.

In the current example the difference is located in the two literals ‘to(sk80,atlanta)’
and ‘to(e75,atlanta)’. We can now apply the structure preserving components of the
substitution to make the two clause sets explicitly overlap, and represent the good
QLF as positive data and the non-overlapping component of the bad QLF as neg-
ative data. The data input to CProgol is:

% positive:
cheapest(sk80). flight(sk80).
from(sk80,washington). to(sk80,atlanta).
like(e73,i,sk80). event(e73).

% negative:
not(to(e73,atlanta)).

Notice that we add an explicit assertion that e73 is an event, since this necessary
type information is not otherwise explicitly represented.

The final data set derived from our 80 sentence disambiguated corpus contains
about 700 such clauses once duplicates are eliminated.

Step 5: Inducing a domain theory
To use the ILP system CProgol to induce a relevant theory we need to supply some
background information. In our case this consists of type information about the
various constants to be found in our evidence:

city(atlanta). airline(united).
date(’16/8’). day(tuesday).
time(’8:00’). breakfast(X) --> meal(X).
etc.

We also need to provide some information about what predicates we are trying to
learn the theory of. In this simple experiment we try to learn the theory describing
the possible uses of the four most frequently occurring prepositions in the training
corpus, since prepositional phrase attachment ambiguities are our focus:

:- modeh(1,on(+any,+any))? :- modeh(1,from(+any,+any))?
:- modeh(1,to(+any,+any))? :- modeh(1,at(+any,+any))?

These declarations say that predicates corresponding to the prepositions can
occur as the head of a clause that can succeed once, and that there is no restriction
on the types of the arguments to the predicates, although in other richer domains
we might well want to supply such information to narrow down the search.

We also need to supply analogous information about the predicates that can be
included in the body of a clause. In our case we let that be the remainder of the
logical form constants representing content word senses in the vocabulary of the
system, since we do not want to impose any a priori guesses on the theories to be
learned. Again, in a richer domain it might be sensible to incorporate some more
structure to restrict the hypothesis search space. In our domain the most important
predicates that actually figure in the theories learned are:
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:- modeb(1,city(+city))? :- modeb(1,flight(+flight))?
:- modeb(1,airline(+airline))? :- modeb(1,time(+time))?
:- modeb(1,day(+day))? :- modeb(1,meal(+meal))?
:- modeb(1,fare(+fare))? :- modeb(1,event(+event))?

3. Positive and negative theories

Having read all this information into the CProgol system we then ask it to ‘gener-
alise’ the various predicates that we have specified: namely, on/2, from/2, to/2,
and at/2. The resulting final theory for ‘on’ is:

on(e45,sk48). % I’d like a meal on flight..
on(e56,sk66). % I’ll have breakfast on flight..
on(e58,sk70). % ditto
on(v72,sk71). % what meal is on the flight?
on(sk295,sk296). % I want information on flight...
fare(A) --> on(A,B)
flight(A) & day(B) --> on(A,B)
flight(A) & airline(B) --> on(A,B)

These eight clauses completely predict all of the relevant positive evidence and
none of the negative evidence. However, we note that the first five clauses are from
the original evidence, suggesting that the algorithm was unable to find a clause that
generalised from them sufficiently. Inspection of the hypotheses considered showed
that candidates for specific clauses generated from the evidence included:

event(A) & flight(B) --> on(A,B)

which characterises the first three clauses adequately but also characterises a lot of
the negative data. The fourth piece of evidence gave rise to the specific clause:

meal(A) & flight(B) --> on(A,B)

which suffers from the same problem so is not further considered.
Something analogous happens with ‘at’, where the final theory is:

at(sk102,’14:00’). at(sk120,’15:24’).
at(sk143,’18:00’). at(sk147,’9:00’).
at(sk273,’17:00’).
fare(A) --> at(A,B)

and where the rule covering the first five cases is considered, but does not achieve
sufficient compression of the data:

flight(A) & time(B) --> at(A,B)

The remaining two theories are all but identical:

flight(A) --> from(A,B) fare(A) --> from(A,B)
flight(A) --> to(A,B) fare(A) --> to(A,B)

Article submitted to Royal Society



10 S. G. Pulman

Together, these clauses seem like a reasonable characterisation of the kinds of
things that are in the on/2, at/2, to/2, and from/2 relations in the simple do-
main represented by the corpus. The ground unit clauses are of course not going to
apply to any new sentences, so we must ignore them. Unfortunately we are unable
to proceed to use some of the remaining axioms directly to rule out impossible in-
terpretations of other sentences in the way we had envisaged. The original plan was
to use a theorem prover to check for consistency between the axioms and candidate
logical forms for sentences. However, the theorem prover we had implemented (the
Satchmo system, a simple and efficient Prolog-based system for full first order logic,
described in Manthey & Bry (1988)) has a requirement that all the clauses used
in it must be be ‘range restricted’, i.e. any variables occurring in the consequent of
an implication must also appear in the antecedent. The maximally compact set of
clauses discovered by CProgol as the theory of these four prepositions do not have
this property: in the clauses for ‘from’, for example, the variable B in the head does
not appear in the body.

To circumvent this problem, we take instead the more specific versions of the
offending clauses produced by CProgol during the search. Even though these specific
clauses will cover less data, they are all range-restricted and we can thus use them
directly in the manner originally envisaged:

% specific clauses from atis_training_data, positive and negative mixed
fare(A) & airline(B) --> on(A,B). flight(A) & day(B) --> on(A,B).
flight(A) & airline(B) --> on(A,B). meal(A) & flight(B) --> on(A,B).
event(A) & flight(B) --> on(A,B).
flight(A) & city(B) --> from(A,B). fare(A) & city(B) --> from(A,B).
flight(A) & city(B) --> to(A,B). fare(A) & city(B) --> to(A,B).
fare(A) & time(B) --> at(A,B). flight(A) & time(B) --> at(A,B).

This is a ‘positive’ theory: it describes what kind of thing happens in the ATIS
domain: meals are on flights; flights are on airlines; flights are to and from cities,
etc. Notice that we can also try to induce a ‘negative’ theory: a theory of what is not
possible in the domain. (As before ‘not possible’ needs attenuating for the general
case to ‘not plausible’.) To do this we abstract out the negative data, reverse its
polarity to make it all positive, and use CProgol in ‘positive data only’ mode to try
to learn a theory of this data.

It turns out that the maximally compact theory is actually of very little use,
because the negative data is very homogeneous, and these four clauses perfectly
account for it all:

on(A,B). from(A,B). to(A,B). at(A,B).

Among other things, this reminds us of the difficulty of learning from positive only
data, as the resulting theory is clearly over-general. Moreover, we cannot use these
clauses in our theorem prover, for they are not range restricted. Again, though, if
we take the more specific clauses considered during the search, we have axioms that
are both range restricted and at the right level of generality. We have of course to
reintroduce the negation:

% specific theory induced from negative part of atis_training_data
% treated as positive
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event(A) & airline(B) --> not(on(A,B)).
event(A) & city(B) --> not(from(A,B)).
event(A) & city(B) --> not(to(A,B)).
event(A) & time(B) --> not(at(A,B)).

4. Consistency checking for disambiguation

For consistency checking with Satchmo, expressions are represented in implicational
form, with atomic sentences occurring as the consequents of an implication whose
antecedent is ‘true’. Negatives are represented as implications whose consequent is
‘false’. Proving a theorem consists of adding the negation of it to the axioms and
attempting to build a model of the combined set of clauses, essentially by forward
chaining from atomic sentences. If every attempt to do so ends in ‘false’, there is no
model and so the clause set is not satisfiable, and thus the theorem follows from the
axioms. If a model can be built then this shows that the negation of the theorem
is consistent with the axioms and so the theorem does not follow.

In order to disambiguate sentences at run time using a domain theory, there are
several options we might pursue. A possible reading should be consistent with the
positive ATIS theory. However, the positive ATIS theory contains no negations, and
so the QLFs for bad examples, unless they happen to contain a relevant negation,
will also be consistent with this theory. The positive theory says what is possible:
it does not explicitly say what is impossible.

One way to use the positive theory to disambiguate would be to add a QLF to
it and see to what extent each component contributed to building a model for the
sentence. We would expect that in a good QLF all the components would contribute,
whereas in a bad QLF there would be at least one component that would not be
integrated. Alternatively, we could negate the positive theory by making all the
consequents negative, and then test QLFs for inconsistency. Good QLFs should be
inconsistent, whereas bad QLFs will be consistent (since the quasi-negative theory
only says that the things that really do happen don’t happen, whereas a bad QLF
says that the things that really don’t happen do happen).

However, an alternative which is more faithful to the intended interpretation of
these theories is to use the (real) negative ATIS theory to rule out bad QLFs. The
simplest way to do this is to add a QLF to the axioms and test for satisfiability. If
the QLF is a good one, the clause set will be satisfiable (since good QLFs are not
inconsistent with axioms which say what doesn’t happen). If the QLF is a bad one,
the clause set will not be satisfiable, because the QLF will be asserting something
that the axioms say does not happen.

To illustrate the disambiguation process, consider the set of axioms that Satchmo
will have if we load in the negative ATIS theory, and the background type informa-
tion. When transformed to the implicational form required by Satchmo these will
look like:

1 airline(A) & event(B) & on(B,A) → false
2 city(A) & event(B) & from(B,A) → false
3 city(A) & event(B) & to(B,A) → false
4 time(A) & event(B) & at(B,A) → false
5 true → city(washington)
6 true → city(atlanta)

Article submitted to Royal Society



12 S. G. Pulman

The implicational form of the good QLF for our example sentence ‘I would like the
cheapest flight from Washington to Atlanta’ is:

7 true → cheapest(sk0)
8 true → flight(sk0)
9 true → from(sk0,washington)
10 true → to(sk0,atlanta)
11 true → like(e0,i,sk0)
12 true → event(e0)

It will be clear that these clauses can be added to the axioms without making
‘false’ derivable. However, if we instead try to add the clause set representing the
bad QLF, which will be identical to 7-12 except for:

10 true → to(e0,atlanta)

we will immediately have a contradiction, since clauses 3, 6, 10, and 12, taken jointly
will allow us to conclude ‘false’, with A=atlanta, and B=e0.

The effectiveness of the induced theory for disambiguation was tested using
the standard regime of training and then testing on held-out data. There were 79
ambiguous sentences in the original corpus. 7 sentences were held out as test data
(every tenth one: the corpus was in the order derived from ATIS); the positive and
negative theories were derived from the data corresponding to the remaining 72
sentences, and the held out subset was then disambiguated against the negative
theory in the manner described. The derived theories were those above - i.e. no
different than for the whole corpus - and the results for disambiguation of the
testing set were as follows:

QLFs satisfiable unsatisfiable
good 12 0
bad 3 16

The errors are the 3 bad QLFs incorrectly found consistent with the negative theory.
These were due to the sentence ‘Can I have a steak dinner on that flight?’. The
bad QLFs have the ‘steak dinner on flight’ interpretation, whereas the correct one
is ‘On that flight, can I have a steak dinner?’ However, the negative theory (unlike
the positive) does not mention meals at all, and so no contradiction is found.

5. Conclusion

We have argued that successful disambiguation may require reasoning using a ‘do-
main theory’, reasoning that cannot always be approximated by statistical methods,
successful though these have been. Clearly the ideal would be to integrate these two
complementary approaches to disambiguation, to achieve a theory with sufficient
deductive structure to be able to account for cases perhaps quite distant from any-
thing seen in the training corpus, but with the robustness characteristic of statistical
methods.

It is unlikely that it will prove possible to construct the required domain the-
ories by hand. But disambiguation decisions contain a lot of implicit information
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about the domain theory governing those decisions. In this paper we have outlined
a method by which domain theories might in principle be deduced from such disam-
biguation decisions and shown that at least for small and simple domains it is indeed
possible in practice to automatically induce a logically structured domain theory
from a disambiguated corpus. Furthermore, this automatically learned theory can
be used to successfully disambiguate other sentences from the corpus.

While the work described here is no more than a pilot experiment - the corpus is
small and unrealistically homogeneous, and the theory that is learned has a rather
simple deductive structure - it nevertheless suggests that it is worth trying to scale
up to more complex domains and wider coverage grammars.

I am grateful to Stephen Muggleton for introducing me to the ILP paradigm and for
advice about the use of CProgol. James Cussens, Gerald Gazdar, Karen Spärck Jones,
and Yorick Wilks also gave me very helpful comments on the first draft of this paper.
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