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Abstract. In this paper, we propose a novel explicit 2D+t cyclic shape
model that extends the Point Distribution Model (PDM) to shapes like
myocardial contours with cyclic dynamics. We also propose an extension
to Procrustes alignment that removes pose and subject size variabil-
ity while maintaining dynamic effects. Our model draws on ideas from
Principal Component Analysis (PCA), Multidimensional Scaling (MDS)
and Kernel PCA (KPCA) and solves 3 shortcomings of previous implicit
models: 1) cardiac cycles in the data set do not each need to have the
same number of frames, 2) the required number of subjects for statisti-
cally significant results is substantially reduced and 3) the displacement
of contour points incorporates time as an explicit variable. We illustrate
our method by computing models of the myocardium in the 4 principal
planes of 2D+t echocardiography data.

1 Background

Principal Component Analysis (PCA) [1], also known as the Karhunen-Loève
transform, is one of the most popular methods in Statistics for modeling, di-
mensionality reduction and denoising, and widely employed in biomedical image
analysis. It was introduced into the computer vision literature as a dimension-
ality reduction method for face images [2]. PCA finds a basis of orthonormal
vectors that span the data set. The first vector is in the direction of maximum
variance of the data. The next component has the direction of maximum vari-
ance amongst those orthogonal to the first, and so on. Cootes et al. [3] proposed
computing a shape space by applying PCA to Procrustes aligned point configu-
rations, and called it the Point Distribution Model (PDM)

x = x̄ + V · b (1)
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where x̄ is the mean shape, V is the shape space matrix, and b is the coefficient
or Principal Components (PC) vector. In this model, x is a vector with the
Euclidean uv-coordinates of n/2 points or landmarks

x2D = [u(1), . . . , u(n/2), v(1), . . . , v(n/2)]⊤ (2)

One of the main applications of the PDM in medical imaging is to provide a
shape space on which segmentation boundaries can be constrained to physi-
ologically viable organs. In terms of statistical analysis, x is a vector with n
random variables. The model is learned from a training set of M examples
X = [x1, . . . , xM ]. The mean shape is x̄ = 1/M

∑M
i=1 xi. The eigenvectors

or loading vectors V = [v1, . . . , vM ] are computed using PCA; that is, as so-
lutions to the eigenproblem Sv = λv, where λ is an eigenvalue, and S is the
covariance matrix S = 1

M X̃X̃⊤ of the centered training set X̃ with elements
x̃i = xi − x̄.

This formulation is not restricted to 2D, and can be generalized to 3D or
higher dimensions. PCA has been used in computer vision to build 2D or 3D
deformable models with uncorrelated modes of variation, e.g. in Active Shape
Models (ASMs) [4] or Active Appearance Models (AAMs) [5, 6]. Some medical
imaging modalities, especially echocardiography, depend strongly on temporal
information, and implicit time extensions have been proposed to 2D and 3D
PCA models [7, 8]. Such models are implicit because instead of adding a time
variable, they are built from the concatenation of shape vectors

ximplicit 2D+t = [x1⊤
2D, x2⊤

2D, . . . , xF⊤

2D ]⊤ (3)

where xi
2D is the shape at time t(i). Then PCA is computed in the usual way.

This approach, which we call the implicit 2D+t model, has 3 important short-
comings. First, all cardiac cycles in the data set need to have the same number of
frames; considering the variability of heart rates in subjects and sampling rates
between studies, this is never going to be the case in practice. Thus, it becomes
necessary to interpolate the image data to a fixed number of frames, a hard and
computationally expensive problem that requires 2D+t volume registration and
can introduce new artifacts, e.g. double edges.

Second, even though linear models are relatively immune to the curse of
dimensionality problem, in order to start obtaining significant results with PCA,
the number of training samples M needs in principle to increase linearly with the
number of variables n [9]. When F frames are stacked together, the size of the
data set is reduced by a factor F , and the number of variables increases by the
same amount. That is, implicit 2D+t models require O(F 2) times more subjects
than simple 2D to approximate the data. With F ≈ 16 in typical studies, this
becomes effectively infeasible. A computational issue also arises, even if there is
enough data, as the matrices of the eigenproblem are very large.

Third, implicit 2D+t models assume that consecutively occurring positions of
the same landmark are separate independent variables, while it is more realistic
and informative to model the variability of each point as a 2-dimensional random
variable that changes with time.



The main contribution of this paper is to propose a novel explicit 2D+t
cyclic shape model that addresses the above shortcomings. We also propose an
extension to Procrustes alignment that removes pose and subject size variability
while maintaining dynamic effects. We illustrate our new method by computing
2D+t models from expert traced contours of the myocardium in the 4 principal
planes of 2D+t echocardiography data.

2 Method

It may seem that a 3D model [6] could be used for 2D+t, just by replacing the
third spatial coordinate by time. But because all the contour points in the same
frame share the same value of t, this is equivalent to concatenating the same
variable n times to the shape vector. It follows that the determinant |S| = 0,
and it is not so straightforward to solve the eigenproblem. To avoid this, we
propose an extended shape vector with a single time variable t ∈ [0, 1]

xexplicit 2D+t = [x⊤

2D, rt]⊤ (4)

where r is a scaling factor that will be discussed below. The vector in Eq. (4)
has important shortcomings of its own for cyclic dynamics. Fig. 1a illustrates the
typical horizontal displacement of a 2D contour point in the middle of the left
wall of a 2-chamber view. First, the horseshoe-like curve means that any linear
model such as PCA will poorly approximate the relationship between spatial
coordinates and time. Second, PCA is dual to linear Multidimensional Scaling
(MDS) [10], where the distance matrix is defined by the scalar products between
the training vectors, i.e. PCA tries to preserve Euclidean distances between
training vectors. In Fig. 1a, points near t = 0 and t = 1 are far apart according
to the Euclidean distance for the model; in reality, we know that they are close
in the cardiac cycle.

We contend that both the lack of linearity and the distance problem can be
tackled with Kernel PCA (KPCA) [11], a non-linear generalization of PCA. The
main idea that we borrow from KPCA is that shape+time vectors can be mapped
to a higher dimensional space in which the relations between variables are linear,
and then we can compute PCA in that space. We propose the transformation

xexplicit 2D+t = [x⊤

2D, rt1, rt2]
⊤ (5a)

t1 = cos(2πt) (5b)

t2 = sin(2πt) (5c)

To define r, it should be noted 1) that PCA searches not only for those direc-
tions in which relationships between variables are more linear, but also for those
with larger variance; and 2) that because there are many more shape than time
variables, the model tends to underestimate the temporal effect. We propose

r =

√

∑n/2

i=1 Var(u(i)) +
∑n/2

i=1 Var(v(i))

Var(t1) + Var(t2)
(6)
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(a) Linear time.

−1 −0.5 0 0.5 1
−1

0

1

28

29

30

31

32

33

t
2

t
1

ES

ho
riz

on
ta

l c
oo

rd
in

at
e

(b) Cyclic time. Dashed: projection on a hor-
izontal plane.

Fig. 1: Mean horizontal coordinate of a 2D contour point in the middle of the left wall
of a 2-chamber view (see point marked with a ‘◦’ in Fig. 3a). Curve computed as the
mean of 21 subjects. Time for the cardiac cycle has been normalized to t ∈ [0, 1], with
t = 0 end diastole. The arrow points to end systole (ES). Coordinate units are pixels.

so that the total variance contributed to the model by shape variables is the
same as that contributed by time variables, where the variance estimate Var is
computed over the sample of size M .

While KPCA usually maps the data to a much higher dimensional space and
uses MDS and the kernel trick to make computations tractable, Eq. (5) only
increases the dimensionality by 2, so it is possible to work directly in feature
space. Fig. 1b illustrates the advantages of the map in Eq. (5). First, the curve
and the manifold that contains it can be reasonably approximated by an ellipse
and a plane, respectively, which suggests a good linear approximation u ≈ α1t1+
α2t2 for some scalars α1, α2. And second, the points near t = 0 and t = 1 are
now close in Euclidean distance.

The PDM of Eq. (1) can now be expanded using Eq. (5). In centered block
matrix form we have

[

x̃
rt̃′

]

=

[

V1,1 V1,2

V2,1 V2,2

] [

b′

br

]

(7)

where t′ = [t1, t2]
⊤, b′ = [b1, b2]

⊤. An explicit relationship between shape and
time can be obtained noticing that

x̃ = V1,1b
′ + V1,2br (8a)

rt′ = V2,1b
′ + V2,2br (8b)



Substituting [b1, b2]
⊤ from Eq. (8b) in Eq. (8a), and uncentering x̃, the shape

model can be formulated as

x = c + Abbr + Att
′ (9a)

c = x̄ − Att̄
′ (9b)

At = rV1,1V
−1
2,1 (9c)

Ab = −
1

r
AtV2,2 + V1,2 (9d)

Finally, we propose an extension to Procrustes alignment for 2D+t data. Pro-
crustes alignment is used to remove pose and subject size variability from the
training set. But if it is applied to a stack of our 2D+t contours, then temporal
variability is removed too. Procrustes alignment could be applied to ximplicit 2D+t

vectors, as in AAMM, but then it would be necessary to interpolate each volume
to the same number of frames. Instead, we propose applying standard Procrustes
alignment (e.g. Least-Squares Fit Generalized Orthogonal Procrustes Analysis
[12]) to the mean shape x̄ of each cardiac cycle. Procrustes alignment computes a
similarity transformation for each mean shape (translation, scaling and rotation)
that can be applied to each frame of the corresponding volume. This method is
illustrated by Fig. 2.
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Fig. 2: Procrustes alignment for 2D+t data. Similarity transformations are composed
of a scaling s, a rotation h and a translation t.

3 Results

To illustrate our method, we computed 2D+t models using Eq. (9) on 21 con-
trast echocardiography studies at rest in the 4 standard planes: 2-, 3- and 4-
chamber (2C, 3C, 4C) and short axis (SAX). Contours for the endocardium and
epicardium were traced by 2 experts, who placed anatomical landmarks (6 in



apical, 2 in SAX). Pseudolandmarks were interpolated at equal arclengths (to a
total of 50 in apical, 30 in SAX), and aligned using the method in Fig. 2.

The time effect was studied making br = 0 and sampling t ∈ [0, 1] uniformly
at 11 instants. For the 2C plane all resulting contours were plotted together in
Fig. 3a. A point on the endocardium was selected and marked with a ‘◦’ to help
visualize its displacement. The modelled horizontal displacement of the 2C point
in Fig. 3b is a good approximation of the empirical one in Fig. 1a, and seems to
reflect the temporal effect sensibly, although with a limitation: the model does
not reflect the asymmetry of the data, so all points in the model show a small
phase shift ∆t = .07, with the end systole (ES) peak moving from tES = 0.33
to tES = 0.40. Different regions of the endocardium display different degrees
of excursion and larger than for the epicardium, as would be expected. Fig. 4
shows results for the other planes. Quite interestingly, the SAX plane model has
counterclockwise rotation in the endocardium and clockwise in the epicardium,
an indication of torsion.
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Fig. 3: Endocardium and epicardium in 2C plane cyclic time linear PCA model using
Eq. (9). Time variation with br = 0. The model was trained on the same data as
Fig. 1. (a) One cardiac cycle sampled at 11 instants in t ∈ [0, 1]. The ‘◦’ marks the
point selected to plot the horizontal displacement in (b).

The shape coefficients effect was studied by setting t = 0. Fig. 5 displays the
first 4 modes of variation for the 2C plane. For the i-th mode we plotted curves
for coefficient values in −3σi ≤ br(i) ≤ 3σi, to point out that extreme coefficient
values can generate spurious shapes. The results suggest that contractility dy-
namics have been largely removed from the shape coefficients, and are modelled
by the time variable.

The first coefficients appear to have a physiological interpretation: Mode 1
controls the elongation of the ventricle, while mode 2 controls the thickness of
the myocardium.



(a) 3C. (b) 4C. (c) SAX.

Fig. 4: Similar to Fig. 3a, for the other 3 principal echocardiography planes.

(a) Mode 1. (b) Mode 2.

(c) Mode 3. (d) Mode 4.

Fig. 5: 2C plane cyclic time linear PCA model using Eq. (9). Shape coefficient variation
±3σ in first frame (t = 0).



4 Discussion

In this paper we have presented a novel explicit 2D+t cyclic shape model that
we contend is better suited to cyclic dynamics than previous implicit models.
Our model is built on observations drawn from PCA, MDS and KPCA theory
to offer a linear approximation of cyclic data. A limitation of the model is that it
can not express asymmetries in the displacement of contour points well, and thus
suffers from a small phase shift. Future work will be finding a reparameterization
of the displacement curve to take into account said asymmetries. Otherwise, it
provides a sensible approximation to the expected dynamics of human hearts
adding just 2 time variable to shape vectors. We have also presented an extension
to Procrustes Analysis that maintains temporal effects in heart dynamics while
removing pose and subject size variability. Finally, while our presentation and
experiments have been limited to echocardiography 2D+t data, the model itself is
not limited in dimensionality or imaging modality, and could be easily extended
to 3D+t studies using 3D Procrustes Alignment [6], or applied to data extracted
from other modalities, e.g. MRI. It could also accommodate other cyclic effects,
e.g. respiration in liver imaging.
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