Anaphora and Ellipsis in Artificial Languages

Stephen G. Pulman
SRI International Cambridge Computer Science Research Centre’,
and University of Cambridge Computer Laboratory.

Abstract

Artificial languages for person-machine communication seldom display the
most characteristic properties of natural languages, such as the use of anaphoric
or other referring expressions, or ellipsis. The paper argues that useful use
could be made of such devices in artificial languages, and proposes a mecha-
nism for the resolution of ellipsis and anaphora in them using finite state trans-
duction techniques. This yields an interpretation system displaying many de-
sirable properties: easily implementable, efficient, incremental, and reversible.

Linguists in general, and computational linguists in particular, do well to
employ finite state devices wherever possible. They are theoretically ap-
pealing because they are computationally weak and best understood from a
mathematical point of view. They are computationally appealing because
they make for simple, elegant, and highly efficient implementations. In
this paper, I hope I have shown how they can be applied to a problem ...
which seems initially to require heavier machinery.

(Kay, [1987], p10)

1 Finite state languages

Since Chomsky [1957], most linguists have accepted that English, like other natural
languages, is not a finite state language. Exactly where it falls on the hierarchy of
languages defined by formal language theory is still a matter of debate, but there
is virtual unanimity that natural languages are at least context-free, and probably
mildly context-sensitive.

Although finite state languages and their associated processing algorithms are
very important in many areas of computer science, especially in compiler technol-
ogy (see, for example, Aho and Ullman [1977]) they have been largely neglected
by linguists. There are some exceptions to this: recently, people have been inter-
ested in some finite state techniques for phonological and morphological description
(Koskenniemi [1984]). Some computational linguists have also been interested in
restrictions on context free processing that yield finite state systems (Church [1980],
Pulman [1986], Pereira and Wright [1991]). But finite state languages in themselves
are not usually regarded as very interesting linguistically.

It is nevertheless the case that many languages used by humans are finite state.
For example, any panel by which some piece of consumer electronics is controlled

! Address for correspondence: SRI International, 23 Miller’s Yard, Mill Lane, Cambridge CB3
1RQ. Email: pulman@cam.sri.com

implicitly defines a finite state language consisting of the set of valid inputs. (Of
course, it would be possible for these control panels to define richer languages, but
in practice this is unlikely to be necessary.) On my microwave cooker, for example,
I can press ‘high; 1; 30" to cook something on high for a minute and a half. Pressing
these buttons in a different order will not achieve the same effect: perhaps no effect
at all. This is the same as saying that there is a valid syntax with accompanying
semantics which must be followed for communication to be successful. Video and
cassette recorders, televisions, cookers and many other household and industrial
devices define finite state languages of varying degrees of complexity in this way.

As cheap, small vocabulary speech recognition devices find their way into the
marketplace, the range and flexibility of such artificial languages may well increase.
It is not difficult to imagine many devices in the home or the workplace being
controlled by spoken ‘sentences’ composed from a vocabulary of between 50 and
100 words. Under these circumstances an explicit grammar and semantics will be
needed for successful use of this technology.

2 Reference, ellipsis and ambiguity

A characteristic of colloquial natural language is the frequent use of referring,
anaphoric and elliptical expressions. In a phrase like:

Play it again, Sam.
the pronoun ‘it’ refers to some contextually salient entity. In:
Sam played ‘As Time Goes By and then he played it again.

the pronouns ‘he’ and ‘it’ can be interpreted as anaphorically related to ‘Sam’
and ‘As Time Goes By’. In a context in which Sam has just played ‘As Time Goes
By’, an elliptical utterance like:

Again.

while not as quotable as the original, can be readily interpreted as meaning
something like ‘Play ‘As Time Goes By’ again, please’.

Even from these few examples it will be obvious what function is served by these
grammatical devices: the avoidance of repetition, and the ability to express a long
message in a few words. There is a consequent burden on the listener, who must
perform some operations to recover the contextually supplied part of the message,
but in the majority of cases this process is carried out effortlessly and accurately.
For example, it would, linguistically speaking, be perfectly possible to interpret ‘it’
as referring to the piano rather than to the song, but no-one does so.

A further phenomenon characteristic of natural language is lexical ambiguity
(and other types of ambiguity, of course, although we shall ignore them here). A
word like ‘play’, for example, has several different senses, even if we restrict ourselves
to its occurrences as a verb: to play a game; play a musical instrument; play a joke

2

or trick, etc. Again, with rare exceptions, this poses no problem for the listener as
either the linguistic or the non-linguistic context will disambiguate.

Artificial languages generally do not use anaphora, ellipsis, or lexical ambiguity,
and reference is usually achieved via the equivalent of proper names. This is because
such languages are usually designed with the requirement that they be explicit and
unambiguous, as well as easy to process. But there is no reason in principle not to
design languages that do use such features, and it is in fact rather easy to imagine
contexts in which they would lead to improved and more natural communication
between man and machine. Consider for example, some kind of CD or cassette tape
machine that is capable of selecting individual tracks, addressed by number. One
might press a sequence of buttons ‘play 2; play 4; play 9” in order to play those tracks.
It would be much more economical to be able to say instead ‘play 2; 4; 97, with the
same meaning. Clearly, this is exactly analogous to the kind of ellipsis that is found
in natural languages. As another example, we might have a sequence like: ‘play 2;
repeat’. ‘Repeat’ is a kind of anaphoric device here, a sentential proform meaning
‘play it again’, or, more generally, ‘perform the last command again’. Furthermore,
to cut down on the costs of producing the control panel, a manufacturer might well
want to make certain buttons perform different functions in different contexts: thus
a button marked > might, in our example, sometimes mean ‘forward’, as in ‘search
>’ and sometimes mean something like ‘and all the numbers up to’ as in ‘1 >
5’. This behaviour is exactly analogous to the kind of lexical ambiguity found in
natural language.

Other miniature languages that can easily be envisaged are illustrated in the
following imaginary scenarios:

(operating system)

print 2 copies of foo.txt
mail it to jones

archive in txt.95

(computer game or robot control)
start enginel

run it for 10secs

stop

Of course, just as in natural languages, using these anaphoric and elliptical
constructs might sometimes result in ambiguity. In the CD language, a sequence
like ‘play 2:; 5; repeat’ could be ambiguous between: ‘play 2; play 5; play 2; play
5" and ‘play 2; play 5; play 5’, depending on whether ‘repeat’ is taken to refer to
the shortest immediately preceding command, or the longest. I assume that the
designer of a language like this will weigh carefully the balance between efficiency
and ambiguity. Succinctness of expression is of no value if the result is a need for
extra interactions to resolve ambiguity.

3 Processing of finite state languages

To be able to use a natural language with a computer we need some mechanism for
parsing and interpreting the sentences of it. The process of parsing assigns syntactic
structures to the input, which are then used as the basis first for compositional (i.e.
context-neutral) semantics and then contextual interpretation. (See, for example,
Alshawi [1992] for a description of a current state of the art system built along these
lines.) Each of these stages is usually highly non-deterministic and difficult to carry
out efficiently, since both the natural and formal languages involved are complex.

Finite state languages, however, can be processed very efficiently. Any finite
state language can be described by a deterministic finite state automaton, or, often
more succinctly, by a non-deterministic finite state automaton. In the case where the
most succinet description is a non-deterministic one, algorithms exist for producing
an equivalent (though possibly much larger) deterministic automaton. Algorithms
also exist for transforming a deterministic automaton into the smallest possible
equivalent automaton. (See Aho and Ullman [1977], Chapter 3).

Parsing and semantic interpretation of a finite state language may conveniently
be thought of as a process of transduction between two finite state languages: the
first being the original language, and the second being a language representing the
context-neutral semantic interpretation of the input sentence. (In the case of the ap-
proach to NLP described in Alshawi [1992], this is the equivalent of the ‘quasi-logical
form’ level, in which the basic predicate argument structure of a sentence is rep-
resented, but contextually dependent aspects of interpretation (pronouns, definites,
ellipsis, tense etc. are left unresolved). Since the syntactic structure of finite state
languages is essentially trivial, once we know the sequence of states that is involved
in recognition we can proceed directly to the meaning of the input sentence.

Finite state transduction is again a well-understood technology (Aho and Ull-
man [1972]: p223; Kay [1984]; Ritchie et al. [1992]; Kaplan and Kay [1994]). A
transducer can be thought of either as a machine which reads two input tapes and
then makes state transitions depending on what is written there, or alternatively
as a machine which reads an input tape and writes an output tape depending on
the state transitions that are possible. However, for the designer of a language like
those we are talking about it is tedious in the extreme to have to write such low
level transducers directly. It is much better to be able to have a relatively high level
notation in which the properties of the language can be expressed at an appropriate
level of abstraction, and then produce the corresponding transducers by a process
of compilation.

There are various ways of achieving this. One way, developed originally for a
phonological notation, is to use an automatic compiler for a high-level rule formalism.
(See Ritchie et al. [1992], and Kaplan and Kay [1994]. Kaplan and Kay describe a
‘regular relations calculus’ which provides a set of tools for the rapid construction of
compilers for a range of such notations.). Another way, which we shall adopt here, is
to write the grammar for the language as a restricted form of push-down transducer
(the transducer equivalent of a context-free system, or recursive transition network:
Aho and Ullman [1972], p.227). This allows us to write succinct and natural gram-

mars, while the restrictions we shall impose will still ensure that the device remains
finite state in capacity. The simplest restriction that will ensure this is to require
that nesting of subnetworks (and hence recursion) is limited to some small depth.
For our example language this depth can be 2. Another notational convenience is
to allow an extra limited ‘memory’ for the output tape. The primary purpose of
this in our example language is to allow for alternative syntactic permutations to
be transduced into the same output. Provided this memory is limited in capacity
the device overall will remain a finite state one overall, and can be compiled out
automatically into something that is directly finite state (though much bigger).

4 An example language

To illustrate, assume that the language we are dealing with is that of a controller for

a music cassette or CD playing and copying system of some kind. The player can

locate tracks identified by number, play them, erase them, or copy them to an output

recording device. (Ignore the question of whether the example is commercially

realistic: it is probably not. However, it has been fully implemented, along with a

graphical ‘control panel” interface, and a simulation of the CD-like back end device.)
The system can be instructed by commands such as:

erase 1 >> 4 ; erase tracks 1 to 4

play 4 << 2 ; play tracks 4 to 2 in reverse order

search >> ; search forward

play 1 play 3 ; play track 1 then play track 3.

1 2 3 play ; play track 1, play track 2, play track 3.

play 1 3 repeat ; play track 1, play track 3, then repeat (both).

We shall assume that the syntax and compositional semantic interpretation of
this language can be given by the following grammar, which is written in a context-
free like notation but defines a finite-state language. In the following example,
non-terminal symbols are given in upper case, and terminals are lower case symbols,
numbers, and ‘;’, used as an end of sentence marker.

Alternative right hand side expansions of the non-terminal are indicated by the |.
The portion of the rule after “:” indicates the semantics assigned to the structure by
the rule. In this part of the rule a number refers to the interpretation of a daughter
consituent, referred to in left to right order. The interpretation of terminal symbols
is assumed to be the symbol itself. Thus for example rule 8 says that the nonterminal
‘DIRECTION’ can be expanded as either < or > and that the semantics assigned

by the rule is the interpretation of the first (only) daughter, whatever that is.

1 COMMAND — ACTION co 1

2 COMMAND — ACTION COMMAND o152
3 ACTION — repeat o1

4 ACTION — ACT TRACKS 12
5 ACTION — TRACKS ACT 21

6 ACTION — search DIRECTION 12
7T ACT — play| copy| erase co1

8 DIRECTION — <[> |

9 TRACKS — TRACK-SPEC co 1

10 TRACKS — TRACK-SPEC TRACKS : 1 ; action 2
11 TRACK-SPEC — NUM co 1

12 TRACK-SPEC — NUM DIRECTION NUM : 123
13 NUM 102345 L1

Some of these rules may need further explanation. Notice that rules 4 and 5 allow
for the same components to be expressed in different orders, but leading to the same
interpretation. It is for this kind of rule that the limited memory for the transducer
is used: although it would be possible to write a more complex transducer with no
memory to achieve this effect, a large number of extra states and transitions would
be required. It is simpler to just ‘store’ the interpretation of some constituents in
memory and recall them (in the same order) at the appropriate position.

Rule 10 inserts in the interpretation a marker ‘action” which can be thought of
either as a ‘proform’ (like ‘repeat’) or as a marker telling the contextual resolution
component that there is an ellipsis to be filled in here. (Many current linguistic
theories postulate entities like ‘empty pronouns’ for phenomena that are like ellipsis).
The DIRECTION terminal symbols are introduced into two different contexts, and
their interpretation will vary according to the context they are found in. This simple
example language then contains an instance of each of the devices characterised
above as typical of natural languages: anaphora, ellipsis, and lexical ambiguity.

The above grammar is given for illustration. The information it represents can
be equivalently, though less perspicuously, encoded in a finite state transducer, aug-
mented as described earlier. (Although this was not done in the implementation,
it would be possible to compile a grammar into such a transducer automatically,
and this is the envisaged mode of construction for such systems). An ordinary finite
state transducer is just like a finite state network except that transitions are labelled
with pairs of symbols, o/, representing the input and output tapes. We allow the
empty symbol, €, meaning that the input or output tape is not advanced at that
point. If a single terminal symbol labels a transition the interpretation is that the
output is the same as the input, i.e. a single terminal symbol « is interpreted as
afa.

Our simple augmentations can be achieved by adding several new kinds of tran-
sition. One kind of transition from a state S; to S;y1, labelled with the name of a
subnetwork, will have the obvious interpretation that things proceed as if S; was
the initial state of the subnetwork and the final states of that subnetwork lead back
to Siy1. A transition between states labelled ‘store’ will have the effect of starting
to write the output tape to a ‘memory’ and a transition labelled ‘nostore’” will stop

this happening. A transition labelled ‘recall” will write the contents of the memory
onto the output tape, and clear the memory. It should be clear that provided calling
of subnetworks is restricted, such a transducer is just a more convenient notational
equivalent of a simple finite state transducer.

Given these notational conventions the language defined by the grammar above
can be equivalently represented by the following transducer. The CMD network
corresponds to rules 1 and 2; ACTION corresponds to rules 3-6; ACT and DIR to
rules 7 and 8 respectively; TRK to rules 9 and 10; T-SP to rules 11 and 12 and
NUM to rule 13. In each network the initial state is the leftmost.

< '> ACTION

M
ACTION

DIRECTION

search Q

repeat

T

ACT Q TRACKS ©
store O /7“ecall

Q TRACKS ACT
\,O nostore /

/\E/action
O O
N ©JTSPEC

Some representative inputs and outputs will be:
play 1 repeat = play 1 ; repeat ;

play 1 2 = play 1 ; action 2 ;
12 3 play = play 1 ; action 2 ; action 3 ;
search > = search > ;

erase 2 > 4 = erase 2 > 4 ;

5 Contextual resolution

Now we turn to the process of contextual resolution of the sentences of our artificial
language. The transducer just given carries out the equivalent for our language of
syntactic and compositional semantic analysis, giving us a meaning representation
that is independent of the context of the sentence. That representation contains

various constructs representing the meaning of contextually dependent items: in
particular, ‘repeat’ and ‘action’, and some whose interpretation depends on the
linguistic context, such as ‘<’ and “>’.

We shall assume that the process of contextual resolution of a sentence containing
one or more of these constructs consists of transducing it to another sentence in
which no such constructs appear and which can thus be interpreted directly. In
this respect our language probably differs quite significantly from natural language:
it is an open question whether every sentence of a language like English can be
easily paraphrased by others containing no referential or elliptical devices (except
perhaps for names), but there is some evidence that the answer is in the negative.
For example, elliptical comparative constructions like ‘Paris is nearer to London
than Rome’ can be paraphrased into a pair of non-elliptical sentences conjoined by
some comparative marker: ‘Paris is near to London fto a greater extent than Paris
is near to Rome’, and ‘Paris is near to London to a greater extent than Rome is
near to London’, but some apparently similar sentences like: ‘Show me a company
with higher profits than IBM’ do not seem able to be paraphrased into smaller non-
elliptical complete sentences in this way: ‘777Show me a company with profits to a
greater extent than IBM is with profits’. Analogous examples with pronouns are well
known: ‘the boy who deserves it will get the prize he wants’ cannot be paraphrased
so as to eliminate all pronouns or other anaphoric devices. It is thus reasonably
clear that the techniques described here would not extend to other than simplified
fragments of a natural language, and they are not offered as an account of ‘real’
anaphora and ellipsis processing.

The fact that we can characterise our resolution task as one which takes an
input sentence (containing certain constructs) and gives another output sentence
(with various kinds of replacements for these constructs) means that we can regard
it as another type of finite state transduction operation. However, things are a
little more complex than they have been so far, for we need to take account not
just of an input sentence, but also of a context. To keep things simple, we shall
assume that our notion of context can be adequately modelled by a sentence of our
language, one containing no unresolved items and which, we shall assume, represents
the contextually resolved interpretation of the last command processed. We use the
sentence boundary marker ‘;’ (which is introduced by the analysis transducer) to
reset the context to the last contextually resolved atomic command, where an atomic
command is one delimited by this marker. Other choices for the scope of the context
are possible and richer notions of context can be modelled by sets of such sentences,
with an extension to the basic mechanism, but we shall keep things simple for the
purposes of illustration.

We shall need to model the contribution of each particular context-dependent el-
ement. We shall assume that the rules governing the interpretation of such elements
can be expressed as instructions to carry out a certain type of transduction. These
transducers will be slightly more complex than the previous type because of the
need to take into account two inputs in order to produce an output: the unresolved
sentence and the context sentence. We need a multi-tape transducer, therefore.

Multi-tape transducers were introduced into computational linguistics by Kay

10

[1987]. They are the obvious extension to simple transducers, allowing multiple input
tapes and one output tape. The acceptance conditions for multitape transducers
are analogous to those for ordinary transducers (see Kaplan and Kay [1994]). For
a transduction to be successful we must have exhausted all input tapes and be in a
final state. We can describe them informally in the usual diagrammatic way, except
that transitions will now be labelled with n-tuples (here, triples) of symbols instead
of pairs.

The strategy we shall adopt is to model contextual resolution as a transduction
from the unresolved sentence and the context to a resolved sentence. We will write
specialised multitape transducers for each different type of item requiring resolution.
(We assume that some higher level notation undergoing compilation would actually
be used.) These transducers will then be combined by disjoining them into one large
transducer.

To illustrate, we give a transducer which, given an input sentence like ‘action 1’
and a context like ‘play 3’ will resolve the ‘action’ construct to ‘play’, producing as
output ‘play 1.

¢/1/1, T # ‘action’ C/e/e, C not in {play,copy,erase}

>

¢ /action /e @

Clefe

C/e/C, C in {play,copy,erase}

o

There are just three states to this transducer. Transitions are labelled Con-
text/Input/Output, with variables over symbols and associated conditions, for read-
ability. (These can all be expanded out to atomic symbols in a real implementation.)

In state 1, the initial state, the looping transition labelled ¢ /I /I simply echoes the
input tape to the output tape, while not advancing the context tape. This allows for
those symbols that do not need resolving (by this transducer) to be simply echoed
to the output tape, and analogous transitions will be needed on all our resolution
trandsucers. When the symbol ‘action’ is encountered on the input tape, neither the
context nor the output tapes are advanced, but we move to the second state of the
transducer via the transition labelled ¢ /action/e. In this state, the looping transition
labelled C/e /e moves through the context tape without advancing either of the other
two tapes, until a candidate for ‘action’ is encountered. This allows the transition
labelled C/¢/C to be taken, which writes the referent of ‘action’ on the output tape,

11

and returns us to state 1. Now the earlier looping transition can be taken to copy the
remainder of the input tape to the output. Any remaining context can be consumed
by the other looping transition labelled C/¢/c. The remaining transition is triggered
by the end marker, taking us to the final state.

¢/1/1, T # ‘repeat’

C/e/C
e
/6/;/;

This second transducer illustrates the interpretation of a proform. It replaces a
command consisting of ‘repeat’ with the contents of the context tape. The looping
transition in the initial state 1 ignores any other input. If ‘repeat’ is encountered
we move to state 2, and the looping transition there copies the context tape to the
output. The remaining transition picks up the end marker and goes to the final
state.

The next transducer is rather similar to the first. It resolves the lexically am-
biguous words < and > to the symbols ‘backward’ and ‘forward’ respectively when
they occur in the context of ‘search’. However, no important reference is made to
the context tape, since this resolution depends entirely on the input sentence itself.
In this respect, this example is perhaps not well chosen, as the same effect could be
achieved by writing the initial parsing transducer in the appropriate way. However,
some simple extensions of the language would require real ambiguity resolution: con-
sider if we allowed a symbol like > to appear alone. Then it might be interpreted
as something like ‘(search) forward” in a context preceded by ‘search backward’,
or as ‘(play) 3" when following ‘play 2’. Admittedly, this is perhaps beginning to
cross the boundary between ambiguity resolution and reference resolution: in ‘real’
English the boundary is similarly often rather unclear. For example, the process of
interpreting ‘have’ (as in ‘have no money, or ‘have measles’) is more akin to pronoun
resolution than to sense disambiguation.

12

¢/1/1, 1 # ‘search’

O ENNe
\“—’//
¢/> [forward

¢/< [backward

The final transducer that we shall consider interprets > when it occurs between

numbers.

i
i
i

¢/action €/3;
P SN N TS

3/3

action ¢/action ¢/2 ;

2/2

State 1 is initial. Again the context tape is irrelevant and in the interests of
readability it, and one or two extra transitions it requires, are omitted.

Here the ‘action’ label stands for any of the actions: separate versions of this
transducer will be needed for each of them. The operation of the transducer is as
follows: when a sequence like ‘play 1 > 4’ is encountered, the obvious sequence of
transitions for ‘play’ and ‘1’ are taken. Then the transition for > emits a boundary
symbol and takes us into a state where an empty symbol for the input tape is paired

13

with another ‘play’ on the output tape. Then the next number in the sequence is
produced on the output tape. This can happen in either of two ways. If the next
symbol on the input tape is that number, the transition labelled 2/2 can be taken,
leading directly to the final state of the transducer. Otherwise, an empty symbol
on the input tape is paired with a 2 on the output tape, immediately followed by
another empty symbol on the input tape paired with a boundary symbol. (In the
diagram this sequence has been compressed into one transition labelled ‘¢/2 ;’ for
reasons of space.) We then go into a state where this sequence of events is repeated
for the next number in the sequence. The dotted lines indicate that other states
and transitions in the sequence should be assumed.

With this transducer, our input ‘play 1 > 4’ will be resolved as ‘play 1; play 2;
play 3; play 4’. Transducers for the interpretation of < will be analogous except
that the numbers will be in the reverse order.

6 Composition of transducers

The transducers we have just sketched collectively cover all the cases of contextual
resolution that occur in our artificial language. We can use them to effect this
resolution by combining them into one large transducer, which will take the output
of the parser and produce the contextually resolved forms. The parallel (disjunctive)
composition operation is simple, and is essentially the same as that given in Aho
and Ullman [1977], p.96 for union of finite automata. First we identify all the start
states of the original transducers. Then, from all the final states of the original
transducers we create a transition labelled ¢/¢ to a single new final state. Although
transducers containing e are not closed under complementation and intersection,
finite stateness is preserved under this operation.

It is not decidable whether two non-deterministic finite state transducers are
equivalent (Aho and Ullman [1972], p.237) so in the general case it is not possible to
adapt the familiar algorithm for minimisation of automata (Aho and Ullman [1977],
p.101) to shrink the resulting machine. Nor is it always possible to determinise
a non-deterministic transducer. Nevertheless, some obvious simple techniques like
eliminating duplicated transitions, or identifying adjacent states connected only by a
transition labelled ¢/e will serve to simplify the resulting automaton to a significant
extent.

A final step is to compose the transducer we use for parsing with that we have
now obtained for resolution. In order to do this we first need to transform the
convenient notation we used earlier, which involved subnetworks and a memory,
into the lower level direct transducer notation we have been using for the resolution
component. This transformation is simply achieved by the following (ordered) rules:

1. Starting with the basic network, recursively replace each transition
labelled with the name of a subnetwork by a copy of that subnetwork.
In most cases this can be simply done: given a transition from A to C la-
belled B, we identify the start state of subnetwork B with state A and its
final states with state C. But if there are transitions leaving a final state

14

of subnetwork B, or other transitions entering C, it is necessary instead
to add transitions labelled ¢/e from those states to state C, otherwise
the language accepted will be changed.

2. For each sequence of states begun by ‘store’” and ended by ‘nostore’,
replace transitions labelled oo/ by transitions labelled a/¢. Remove the
‘store’ and ‘nostore’ transitions, and rename states appropriately.

3. Replace each corresponding ‘recall’” transition by a sequence of tran-
sitions and states labelled ¢/, where the values of 3 are as in rule 2.

Rules 2 and 3 can be illustrated by considering a set of states and transitions as

follows:
From Label To
1 store 2
2 a/a 3
3 b/b 4
4 nostore 5
5 c/c 6
6 recall 7

This transducer maps ‘abc’ to ‘cab’. By applying rules 2 and 3 the resulting
compiled transducer will be:

From Label To

2 aje 3
3 b/e 4
4 c/c 6
6 €/a 6.1

6.1 e/b 7

This acce]éts exactly the same input and output language as the original.

Now we can compose the parsing transducer with the resolution transducer. First
we will define serial composition of ordinary transducers: the operation we need is
a simple variant of this. The serial composition operation proceeds as follows (Kay
[1984], p.112). It assumes that the output language of the first transducer is identical
to the input language of the second transducer. The states of the new transducer will
be a subset of the product of the states of the two transducers, labelled accordingly.

Beginning with the initial states of the two transducers, A; and By, recursively
construct new states and transitions according to the following rules:

if there is a transition from A; to A; labelled /3, and one from B; to
B; labelled 3/~, then make a new transition labelled o/~ from (A;,B;)
to (4;.B;).

if there is a transition from A; to A; labelled a/¢, and one from B; to
B; labelled (3/v, then make a new transition labelled a/e from (A;,B;)
to <A],BZ>

if there is a transition from A; to A; labelled /3, and one from B; to
B; labelled ¢/v, then make a new transition labelled €/~ from (A;,B;) to
<AZ;BJ>

15

Transitions from constructed states (A,,B,,) are derived from the transitions
leaving the component states according the above rules. New states (A,,B,,) are
final if and only A, and B,, are final.

In our case we are composing an ordinary transducer with one input tape of a
multitape transducer. Other than something to keep track of the symbols on the
context input tape, the same technique can be used.

To illustrate this process we give first of all two input transducers. The first
is a simplified version of part of the transducer given earlier and the second is a
simplified version of the multi-tape resolution transducer for the ‘action’ construct.
The third transducer is the result of the serial composition of the first and second.
The output tape of the first transducer is composed with the sentence input tape of
the second transducer.

¢/action

plaY/ play 1/1

O OZERE
erase/erase \/

¢/1/1, 1 # ‘action’ C/e/e, C # ‘play’ or ‘erase’

O ¢/action /e
— 0
Q C/e/C, C = ‘play’ or ‘erase’

Clefe

Cle/e C/efe Clefe Y/e/e

O (), O (5
/““’\

6/ play/ play
_/

¢/erase/erase

In this transducer, X must not be ‘play’ or ‘erase’, and Y must be one of them. Notice
that the ‘action’ construct has disappeared completely in the operation which led
to the transition between C1 and B2. (This transition could in fact be eliminated,
merging Cl and B2. Also, the looping transitions in A1l and B1 will never be used
and could be eliminated. In general the results of composition may well be capable
of being simplified considerably by the various methods described earlier.)

7 Conclusions

We have now outlined the steps by which a system for the compositional and con-
textual interpretation of certain types of artificial language can be constructed. The
resulting system consists of a multitape transducer with two input tapes and one
output tape. One input tape represents the current context, and the other the cur-
rent input sentence. The output tape represents the interpretation of the sentence
in that particular context.

There are several practical advantages to this approach to contextual interpre-
tation, apart from its conceptual clarity.

First, composing into one large transducer automatically gives us a large measure
of what is often called ‘incremental interpretation’. That is to say, semantic and
contextual effects are computed as the input is being processed, rather than waiting
for the sentence to be completed and submitted to subsequent stages, as is usually
the case in full-blown NLP systems. This means that it is possible to take actions or
give informative feedback to the user before the input is complete. Some qualification
to this has to be made for local non-determinism which may be present, some of
which can arise from the compiling out of the limited ‘memory’ used in the high
level notation.

Second, composition into one transducer also means that it is trivial to compute
possible continuations of incomplete messages. This also can give useful feedback to
the user, or in cases where speed of response is of the essence, useful forewarnings
to back end systems.

17

Third, and for the same reason, it is simple to suggest corrections or repairs for
messages that are not within the finite state language defined by the system.

Fourth, it is easy to associate probabilities with transitions. In the case where a
sentence is ambiguous, either inherently or because multiple resolutions are possible,
the most likely reading can be signalled as such. It is simple to assign probabilities
automatically given a corpus of examples, or allow them to be adjusted dynamically
for a particular user over time.

Fifth, transducers are reversible, allowing for context-dependent generation of
messages to be achieved with no further effort. (However, it should be remembered
that non-determinism can be an issue here. A transducer may be deterministic in
one direction, but not in another. A transducer that is highly non-deterministic
may not be very efficient.)

Lastly, but by no means least, finite state transducers can be implemented very
simply and efficiently. In the case of consumer devices, where simplicity and robust-
ness are paramount, this is a great advantage.

Although the language used here for illustration is extremely simple, leading to
transducers with only a few dozen states, the technique would scale up to somewhat
more complex examples. Provided that a suitable high level notation is used, the
size of the transducers themselves is unlikely to be a limiting factor, within reason:
experience with transducers in computational morphology has shown that ‘natural’
systems do not approach the worst case of time and space behaviour that complex-
ity results would suggest (Kartunen, Kaplan and Zaenen [1992]; Koskenniemi and
Church [1988]).

There remain a few further things to explore. The example system described
above (a version of which has been fully implemented) can only deal with one con-
textually sensitive item per atomic sentence, because the resolution transducers are
composed in parallel with each other rather than in series. The grammar is defined
so as to ensure that this limitation is always observed. But it is easy to imagine
circumstances in which this would become tedious. If the limitation is to be relaxed
there are two options which could be taken. Firstly, one could simply keep parsing
and resolution separate and reapply the resolution transducers until all contextually
sensitive elements in the input had been resolved. However, this would lose some
of the benefits of serial composition of parsing and resolution, namely reversibility
and incrementality.

The second alternative would be to produce a serial composition for each ordering
of each subset of the resolution transducers, putting these in parallel composition
and then serially composing the parser with the resulting (presumably rather large)
resolution transducer. It remains to be seen whether in realistic applications this
procedure would result in final transducers of manageable size. But when considering
what is a ‘manageable size” we should perhaps bear in mind that there is no practical
reason for transducers with many millions of states not to be part of your toaster
or coffee machine, even at the current state of the art.

18

8 Acknowledgements

The work reported here was supported at SRI by a contract from Philips Research
and the IPO, Eindhoven. I am grateful to Don Bouwhuis, David Carter, Kees van
Deemter and Reinder Haakma for their comments on an earlier draft, and to my
referees for suggesting improvements in the paper.

References

[1992] Alshawi, H. (ed.) 1992. The Core Language Engine, MIT Press: Boston,
Mass.

[1972] Aho, A. V. and Ullman, J. D. 1972. The Theory of Parsing, Translation, and
Compiling, Prentice Hall: Englewood Cliffs, N. J.

[1977] Aho, A. V. and Ullman, J. D. 1977. Principles of Compiler Design, Addison
Wesley: Reading, Mass.

[1957] Chomsky, N. 1957. Syntactic Structures, Mouton: The Hague.

[1980] Church, K. 1980. On Memory Limitations in Natural Language Processing,
Technical Report, MIT: LCS/Tr-245.

[1994] Kaplan, R. and Kay, M. 1994. Regular Models of Phonological Rule Systems,
Computational Linguistics 20:3, pp. 331-378.

[1992] Karttunen, L., Kaplan, R., and Zaenen, A. 1992. Two-Level Morphology with
Composition, in COLING-92, Proceedings of the 14th International Conference
on Computational Linguistics, pp. 141-148.

[1984] Kay, M. 1984. When meta-rules are not meta-rules, in K. Sparck Jones and
Y. Wilks (eds.) Automatic Natural Language Parsing, Ellis Horwood: Chichester,
pp- 94-116.

[1987] Kay, M. 1987. Nonconcatenative Finite State Morphology, Proceeedings of
the Third European Conference of the Assoctation for Computational Linguistics,
ACL: Copenhagen, pp. 2-10.

[1984] Koskenniemi, K. 1984. A general computational model for word-form recog-
nition and production, in COLING-84, Proceedings of the 10th International Con-
ference on Computational Linguistics, pp. 178-181.

[1988] Koskenniemi, K. and Church, K. 1988. Complexity, Two-Level Morphology,
and Finnish, in COLING-88, Proceedings of the 12th International Conference on
Computational Linguistics, pp. 335-340.

[1991] Pereira, F. C. N. and Wright, R. N. 1991 Finite State Approximations of
Phrase Structure Grammars, in Proceedings of the 29th Annual Meeting of the
Assoctation for Computational Linguistics, ACL: Berkeley.

19

[1986] Pulman, S. G. 1986 Grammars, Parsers and Memory Limitations, in Lan-
guage and Cognitive Processes, Vol 1, 3: pp. 197-225.

[1992] Ritchie, G. D., Black, A. W., Russell, G. J. and Pulman, S. G. 1992, Com-
putational Morphology, MIT Press: Boston, Mass.

20

