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Abstract. Hausdorff and Gromov distances are introduced and treated in
the context of categories enriched over a commutative unital quantale V. The
Hausdorff functor which, for every V-category X, provides the powerset of
X with a suitable V-category structure, is part of a monad on V-Cat whose
Eilenberg-Moore algebras are order-complete. The Gromov construction may
be pursued for any endofunctor K of V-Cat. In order to define the Gromov
“distance” between V-categories X and Y we use V-modules between X and Y ,
rather than V-category structures on the disjoint union of X and Y . Hence,
we first provide a general extension theorem which, for any K, yields a lax
extension K̃ to the category V-Mod of V-categories, with V-modules as mor-
phisms.

1. Introduction

The Hausdorff metric for (closed) subsets of a (compact) metric space has been
recognized for a long time as an important concept in many branches of math-
ematics, and its origins reach back even beyond Hausdorff [9], to Pompeiu [13];
for a modern account, see [2]. It has gained renewed interest through Gromov’s
work [8]. The Gromov-Hausdorff distance of two (compact) metric spaces is the
infimum of their Hausdorff distances after having been isometrically embedded into
any common larger space. There is therefore a notion of convergence for (isometry
classes of compact) metric spaces which has not only become an important tool
in analysis and geometry, but which has also provided the key instrument for the
proof of Gromov’s existence theorem for a nilpotent subgroup of finite index in
every finitely-generated group of polynomial growth [7].

By interpreting the (non-negative) distances d(x, y) as hom(x, y) and, hence, by
rewriting the conditions

0 ≥ d(x, x), d(x, y) + d(y, z) ≥ d(x, z) (∗)
as

k → hom(x, x), hom(x, y)⊗ hom(y, z) → hom(x, z),
Lawvere [12] described metric spaces as categories enriched over the (small and
“thin”) symmetric monoidal-closed category P+ = (([0,∞],≥),+, 0), and in the
Foreword of the electronic “reprint” of [12] he suggested that the Hausdorff and
Gromov metrics should be developed for an arbitrary symmetric monoidal-closed
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category (V,⊗, k). In this paper we present notions of Hausdorff and Gromov dis-
tance for the case that V is “thin”. Hence, we replace P+ by a commutative and
unital quantale V, that is: by a complete lattice which is also a commutative monoid
(V,⊗, k) such that the binary operation ⊗ preserves suprema in each variable. Put
differently, we try to give answers to questions of the type: which structure and
properties of the (extended) non-negative real half-line allow for a meaningful treat-
ment of Hausdorff and Gromov distances, and which are their appropriate carrier
sets? We find that the guidance provided by enriched category theory [11] is almost
indispensable for finding satisfactory answers, and that so-called (bi-)modules (or
distributors) between V-categories provide an elegant tool for the theory which may
easily be overlooked without the categorical environment. Hence, our primary mo-
tivation for this work is the desire for a better understanding of the true essentials
of the classical metric theory and its applications, rather than the desire for giving
merely a more general framework which, however, may prove to be useful as well.

Since (∗) isolates precisely those conditions of a metric which lend themselves
naturally to the hom interpretation, a discussion of the others seems to be necessary
at this point; these are:

− d(x, y) = d(y, x) (symmetry),
− x = y whenever d(x, y) = 0 = d(y, x) (separation),
− d(x, y) < ∞ (finiteness).

With the distance of a point x to a subset B of the metric space X = (X, d) be
given by d(x,B) = infy∈B d(x, y), the non-symmetric Hausdorff distance from a
subset A to B is defined by

Hd(A, B) = sup
x∈A

d(x,B),

from which one obtains the classical Hausdorff distance

Hsd(A,B) = max{Hd(A,B), Hd(B, A)}
by enforced symmetrization. But not only symmetry, but also separation and finite-
ness get lost under the rather natural passage from d to Hd. (If one thinks of d(x,B)
as the travel time from x to B, then Hd(A,B) may be thought of as the time needed
to evacuate everyone living in the area A to the area B.) In order to save them one
usually restricts the carrier set from the entire powerset PX to the closed subsets
of X (which makes Hsd separated), or even to the non-empty compact subsets
(which guarantees also finiteness). As in [10] we call a P+-category an L-metric
space, that is a set X equipped with a function d : X ×X → [0,∞] satisfying (∗);
a P+-functor f : (X, d) → (X ′, d′) is a non-expansive map, e.g. a map f : X → X ′

satisfying d′(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X. That the underlying-set functor
makes the resulting category Met topological over Set (see [5]) provides furthe! r
evidence that properties (∗) are fundamental and are better considered separately
from the others, even though symmetry (as a coreflective property) would not ob-
struct topologicity. But inclusion of (the reflective property of) separation would,
and inclusion of (the neither reflective nor coreflective property of) finiteness would
make for an even poorer categorical environment.

While symmetry seems to be artificially superimposed on the Hausdorff metric,
it plays a crucial role for the Gromov distance, which becomes evident already
when we look at the most elementary examples. Initially nothing prevents us from
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considering arbitrary L-metric spaces X,Y and putting

GH(X, Y ) = inf
Z

HdZ(X, Y ),

where Z runs through all L-metric spaces Z into which both X and Y are isomet-
rically embedded. But for X = {p} a singleton set and Y = {x, y, z} three equidis-
tant points, with all distances 1, say, for every ε > 0 we can make Z = X t Y
a (proper) metric space, with d(p, x) = d(x, p) = ε and all other non-zero dis-
tances 1. Then HdZ(X, Y ) = ε, and GH(X, Y ) = 0 follows. One has also
GH(Y, X) = 0 but here one needs non-symmetric (but still separated) structures:
put d(x, p) = d(y, p) = d(z, p) = ε, but let the reverse distances be 1. Hence, even a
posteriori symmetrization leads to a trivial distance between non-isomorphic spaces.
However, there are two ways of a priori symmetrization which both yield the in-
tuitively desired result 1

2 for the Gromov distance in this example: One way is by
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restricting the range of the infimum in the definition of GH(X, Y ) to symmetric
L-metric spaces, which seems to be natural when X and Y are symmetric. (Indeed,
if for our example spaces one assumes HdZ(Y, X) < 1

2 with dZ symmetric, then
the triangle inequality would be violated: 1 ≤ d(x, p)+ d(p, y) < 1

2 + 1
2 .) The other

way “works” also for non-symmetric X and Y ; one simply puts

GHs(X, Y ) = inf
Z

HsdZ(X,Y ),

with Z running as in GH(X, Y ). (When HdZ(Y,X) ≤ 1
2 , then

1
2

= 1− 1
2
≤ min{d(p, x), d(p, y), d(p, z)} = HdZ(X, Y ) ≤ HsdZ(X, Y ),

and when HdZ(Y, X) ≥ 1
2 , then trivially 1

2 ≤ HsdZ(X,Y ).)
Having recognized H (and Hs) as endofunctors of Met, these considerations

suggest that G is an “operator” on such endofunctors. But in order to “compute”
its values, one needs to “control” the spaces Z in their defining formula, and here
is where modules come in. (A module between L-metric spaces generalizes a non-
expansive map just like a relation generalizes a mapping between sets.) A module
from X to Y corresponds to an L-metric that one may impose on the disjoint union
X t Y . To take advantage of this viewpoint, it is necessary to extend H from non-
expansive maps to modules (leaving its operation on objects unchanged) to become
a lax functor H̃. Hence, GH(X,Y ) may then be more compactly defined using an
infimum that ranges just over the hom-set of modules from X to Y .

In Section 2 we give a brief overview of the needed tools from enriched category
theory, in the highly simplified context of a quantale V. The purpose of Section
3 is to establish a general extension theorem for endofunctors of V-Cat, so that



4 ANDREI AKHVLEDIANI, MARIA MANUEL CLEMENTINO, AND WALTER THOLEN

they can act on V-modules rather than just on V-functors. In Sections 4 and 5 we
consider the Hausdorff monad of V-Cat and its lax extension to V-modules, and we
determine the Eilenberg-Moore category in both cases. The Gromov “distance” is
considered for a fairly general range of endofunctors of V-Cat in Section 6, and the
resulting Gromov “space” of isomorphism classes of V-categories is presented as a
large colimit. For the endofunctor H, in Section 7 this large “space” is shown to
carry internal monoid structures in the monoidal category V-CAT which allow us to
consider H as an internal homomorphism. The effects of symmetrization and the
status of separation are discussed in Sections 8 and 9. The fundamental question
of transfer of (Cauchy-)completeness from X to HX, as well as the question of
completeness of suitable subspaces of the Gromov “space” will be considered in the
second part of this paper.

The reader is reminded that, since P+ carries the natural ≥ as its order, in the
context of a general quantale V the natural infima and suprema of P+ appear as joins
(
∨

) and meets (
∧

) in V. While this may appear to be irritating initially, it reflects in
fact the logical viewpoint dictated by the elementary case V = 2 = ({⊥ < >},∧,>),
and it translates back well even in the metric case. (For example, if we write the
sup-metric d of the real function space C(X) as d(f, g) =

∧

x∈X

|f(x) − g(x)|, then

the statement

d(f, g) = 0 ⇐⇒ for all x ∈ X : f(x) = g(x)

seems to read off the defining formula more directly.)

Acknowledgments While the work presented in this paper first began to take shape
when, aimed with her knowledge of the treatment of the Hausdorff metric in [3],
the second-named author visited the third in the Spring of 2008, which then gave
rise to a much more comprehensive study by the first-named author in his Master’s
thesis [1] that contains many elements of the current work, precursors of it go in
fact back to a visit by Richard Wood to the third-named author in 2001. However,
the attempt to work immediately with a (non-thin) symmetric monoidal-closed
category proved to be too difficult at the time. The second- and third-named
authors also acknowledge encouragement and fertile pointers given by Bill Lawvere
over the years, especially after a talk of the third-named author at the Royal Flemish
Academy of Sciences in October 2008. This talk also led to a most interesting
exchange with Isar Stubbe who meanwhile has carried the theme of this paper into
the more general context whereby the quantale V is traded for a quantaloid Q (see
[14]), a clear indication that the categorical study of the Hausdorff and Gromov
metric may still be in its infancy.

2. Quantale-enriched categories

Throughout this paper, V is a commutative, unital quantale. Hence, V is a
complete lattice with a commutative, associative binary operation ⊗ and a ⊗-
neutral element k, such that ⊗ preserves arbitrary suprema in each variable. Our
paradigmatic examples

2 =
({⊥ < >},∧,>)

and P+ =
(
([0,∞],≥), +, 0

)

were already considered by Lawvere [12]; they serve to provide both an order-
theoretic and a metric intuition for the theory.
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A V-relation r from a set X to a set Y , written as r : X −→7 Y , is simply a
function r : X × Y → V. Its composition with s : Y −→7 Z is given by

(
s · r)(x, z) =

∨

y∈Y

r(x, y)⊗ s(y, z).

This defines a category V-Rel, and there is an obvious functor Set → V-Rel which
assigns to a mapping f : X → Y its V-graph f◦ : X −→7 Y with f◦(x, y) = k
if f(x) = y, and f◦(x, y) = ⊥ otherwise. This functor is faithful only if k > ⊥,
which we will assume henceforth, writing just f for f◦. There is an involution ( )◦ :
V-Relop → V-Rel which sends r : X −→7 Y to r◦ : Y −→7 X with r◦(y, x) = r(x, y).
With the pointwise order of its hom-sets, V-Rel becomes order-enriched, e.g. a
2-category, and mappings f : X → Y become maps in the 2-categorical sense:

1X ≤ f◦ · f, f · f◦ ≤ 1Y .

A V-category X = (X, a) is a set X with a V-relation a : X −→7 X satisfying
1X ≤ a and a · a ≤ a; elementwise this means

k ≤ a(x, x) and a(x, y)⊗ a(y, z) ≤ a(x, z).

A V-functor f : (X, a) → (Y, b) is a map f : X → Y with f ·a ≤ b ·f , or equivalently

a(x, y) ≤ b
(
f(x), f(y)

)

for all x, y ∈ X. The resulting category V-Cat yields the category Ord of (pre)ordered
sets and monotone maps for V = 2 and the category Met of L-metric spaces for
V = P+.
V-Cat has a symmetric monoidal-closed structure, given by

(X, a)⊗ (Y, b) = (X × Y, a⊗ b), X–◦Y =
(V-Cat(X, Y ), c

)

with
a⊗ b

(
(x, y), (x′, y′)

)
= a(x, x′)⊗ b(y, y′),

c(f, g) =
∧

x∈X

b
(
f(x), g(x)

)
.

Note that X ⊗ Y must be distinguished from the Cartesian product X × Y whose
structure is a× b with

a× b
(
(x, y), (x′, y′)

)
= a(x, x′) ∧ b(y, y′).

V itself is a V-category with its “internal hom”–◦, given by

z ≤ x–◦y ⇐⇒ z ⊗ x ≤ y

for all x, y, z ∈ V. The morphism 2 → V of quantales has a right adjoint V → 2
that sends v ∈ V to > precisely when v ≥ k. Hence, there is an induced functor

V-Cat → Ord

which provides a V-category with the order

x ≤ y ⇐⇒ k ≤ a(x, y).

Since
V-Rel(X, Y ) = VX×Y = (X × Y )–◦V
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is a V-category (as a product of (X×Y )-many copies of V, or as a “function space”
with X, Y discrete), it is easy to show that V-Rel is

(V-Cat
)
-enriched, e.g.

E → V-Rel(X,X), V-Rel(X, Y )⊗ V-Rel(Y,Z) → V-Rel(X, Z)
∗ 7→ 1X , (r, s) 7→ s · r

are V-functors (where E = ({∗}, k) is the ⊗-unit in V-Cat).

3. Modules, Extension Theorem

For V-categories X = (X, a), Y = (Y, b) a V-(bi)module (also: V-distributor, V-
profunctor) ϕ from X to Y , written as ϕ : X −→◦ Y , is a V-relation ϕ : X −→7 Y
with ϕ · a ≤ ϕ and b · ϕ ≤ ϕ, that is

a(x′, x)⊗ ϕ(x, y) ≤ ϕ(x′, y) and ϕ(x, y)⊗ b(y, y′) ≤ ϕ(x, y′)

for all x, x′ ∈ X, y, y′ ∈ Y . For ϕ : X −→◦ Y one actually has ϕ · a = ϕ = b · ϕ,
so that 1∗X := a plays the role of the identity morphism in the category V-Mod of
V-categories (as objects) and V-modules (as morphisms). It is easy to show that a
V-relation ϕ : X −→◦ Y is a V-module if, and only if, ϕ : Xop⊗Y → V is a V-functor
(see [4]); here Xop = (X, a◦) for X = (X, a). Hence,

V-Mod(X, Y ) =
(
Xop ⊗ Y

)
–◦V.

In particular V-Mod is (like V-Rel) V-Cat-enriched. Also, V-Mod inherits the 2-
categorical structure from V-Rel, just via pointwise order.

Every V-functor f : X → Y induces adjoint V-modules

f∗ a f∗ : Y −→◦ X

with f∗ := b · f , f∗ := f◦ · b (in V-Rel). Hence, there are functors

(−)∗ : V-Cat → V-Mod, (−)∗ : V-Catop → V-Mod

which map objects identically. V-Cat becomes order-enriched (a 2-category) via

f ≤ g ⇐⇒ f∗ ≤ g∗ ⇐⇒ ∀x : f(x) ≤ g(x).

The V-functor f : X → Y is fully faithful if f∗ · f∗ = 1∗X ; equivalently, if a(x, x′) =
b
(
f(x), f(x′)

)
for all x, x′ ∈ X.

Via

ϕ : X −→◦ Y

Xop ⊗ Y → V
yϕ : Y → (Xop–◦V) =: X̂,

every V-module ϕ corresponds to its Yoneda mate yϕ in V-Cat. In particular,
a = 1∗X corresponds to the Yoneda functor

yX = y1∗X : X → X̂.

For every V-functor f : Xop → V and x ∈ X one has

1∗
X̂

(yX(x), f) = f(x) (Yoneda Lemma).

In particular, 1∗
X̂

(
yX(x), yX(x′)

)
= a(x, x′), i.e. yX is fully faithful.

The correspondence between ϕ and yϕ gives:
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Proposition 1. (−)∗ :
(V-Cat

)op → V-Mod has a left adjoint ˆ(−), given by

ϕ̂(s)(x) =
∨

y∈Y

ϕ(x, y)⊗ s(y)

for all ϕ : X −→◦ Y , s ∈ Ŷ , x ∈ X.

Proof. Under the correspondence

ϕ : X −→◦ Y

Φ : Y → X̂

given by ϕ(x, y) = Φ(y)(x), Φ = 1X̂ gives the unit ηX : X −→◦ X̂ of the adjunction,
with

ηX(x, t) = t(x)

for all x ∈ X, t ∈ X̂. Note that one has ηX = (yX)∗, by the Yoneda Lemma. We
must confirm that yϕ is indeed the unique V-functor Φ : Y → X̂ with Φ∗ · ηX = ϕ.
But any such Φ must satisfy

ϕ(x, y) =
(
Φ∗ · (yX)∗

)
(x, y)

=
∨

t∈X̂

1∗
X̂

(
yX(x), t)⊗ 1∗

X̂

(
t,Φ(y)

)

≤
∨

t∈X̂

1∗
X̂

(
yX(x), Φ(y)

)

≤ Φ(y)(x)
≤ 1∗

X̂

(
yX(x), yX(x)

)⊗ 1∗
X̂

(
yX(x), Φ(y)

)

≤ (
Φ∗ · (yX)∗

)
(x, y)

= ϕ(x, y)

for all x ∈ X, y ∈ Y . Hence, necessarily Φ = yϕ, and the same calculation shows
ϕ = (yϕ)∗ · ηX . Now, ϕ̂ : Ŷ → X̂ is the V-functor corresponding to ηY · ϕ, hence

ϕ̂(s)(x) = (ηY · ϕ)(x, s) =
∨

y∈Y

ϕ(x, y)⊗ s(y),

for all s ∈ Ŷ , x ∈ X. ¤

Remarks 1. (1) For ϕ : X −→◦ Y , the V-functor ϕ̂ may also be described as the
left Kan extension of yϕ : Y → X̂ along yY : Y → Ŷ .

(2) The adjunction of Proposition 1 is in fact 2-categorical. It therefore induces
a 2-monad PV = (PV , y , m) on V-Cat, with

PVX = X̂ = X–◦V, PVf = f̂∗ : X̂ → Ŷ

for f : X → Y = (Y, b), where

f̂∗(t)(y) =
∨

x∈X

b
(
y, f(x)

)⊗ t(x)

for t ∈ X̂, y ∈ Y . This monad is of Kock-Zöberlein type, i.e. one has

ŷ∗X ≤ yX̂ : X̂ → ˆ̂
X.
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In fact, for all x, y ∈ X = (X, a), and t, s ∈ X̂ one has a(x, y) ≤ s(x)–◦s(y),
hence

t(y)⊗ (
t(y)–◦a(x, y)

)⊗ s(x) ≤ a(x, y)⊗ s(x) ≤ s(y),

which gives

ŷ∗X(s)(t) =
∨
x

y∗X(t, x)⊗ s(x)

=
∨
x

∧
y

(
t(y)–◦a(x, y)

)⊗ s(x)

≤
∧
y

t(y)–◦s(y) = yX̂(s)(t).

(3) The adjunction of Proposition 1 induces also a monad on V-Mod which we
will not consider further in this paper. But see Section 5 below.

(4) Because of (2), the Eilenberg-Moore category

(V-Cat)PV

has V-categories X as objects which come equipped with a V-functor α :
X̂ → X with α · yX = 1X and 1X̂ ≤ yX · α, e.g V-categories X for which
yX has a left adjoint. These are known to be the V-categories that have
all weighted colimits (see [11]), with α providing a choice of such colimits.
Morphisms in (V-Cat)PV must preserve the (chosen) weighted colimits.

(5) In case V = 2, PVX can be identified with the set P↓X of down-closed
subsets of the (pre)ordered set X, and the Yoneda functor X → P↓X sends
x to its down-closure ↓ x. Note that P↓X is the ordinary power set PX

of X when X is discrete. OrdP↓ has complete ordered sets as objects, and
its morphisms must preserve suprema. Hence, this is the category Sup of
so-called sup-lattices (with no anti-symmetry condition).

Next we prove a general extension theorem for endofunctors of V-Cat. While
maintaining its effect on objects, we wish extend any functor K defined for V-
functors to V-modules. To this end we observe that for a V-module ϕ : X −→◦ Y ,
the left triangle of

Ŷ
ϕ̂

ÂÂ>
>>

>>
>>

Ŷ
ϕ̂

ÂÂ>
>>

>>
>>

Y

yY

@@¡¡¡¡¡¡¡¡
yϕ

// X̂ Z

yψ

@@¡¡¡¡¡¡¡¡
yψ·ϕ

// X̂

commutes, since yY is the counit of the adjunction of Proposition 1. More generally,
the right triangle commutes for every ψ : Y −→◦ Z.

Theorem 1 (Extension Theorem). For every functor K : V-Cat → V-Cat,

K̃ϕ :=
(

KX ◦
(KyX)∗// KX̂ ◦

(Kyϕ)∗// KY
)
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defines a lax functor K̃ : V-Mod → V-Mod which coincides with K on objects.
Moreover, if K preserves full fidelity of V-functors, the diagram

V-Mod
K̃ // V-Mod

(V-Cat)op

(−)∗

OO

Kop
// (V-Cat)op

(−)∗

OO

commutes.

Proof. Lax functoriality of K̃ follows from

K̃(1∗X) = (KyX)∗ · (KyX)∗ ≥ 1∗KX ,

K̃(ψ · ϕ) = (Kyψ·ϕ)∗ · (KyX)∗
= (Kyψ)∗ · (Kϕ̂)∗ · (KyX)∗
≥ (Kyψ)∗ · (KyY )∗ · (Kyϕ)∗ · (KyX)∗
= K̃ψ · K̃ϕ,

since yϕ = ϕ̂ · yY implies (Kyϕ)∗ = (KyY )∗ · (Kϕ̂)∗, hence (Kϕ̂)∗ ≥ (KyY )∗ · (Kyϕ)∗

by adjunction.
For a V-functor f : X → Y , the triangle

Y
yY

ÃÃ@
@@

@@
@@

X

f
??ÄÄÄÄÄÄÄÄ
yf∗

// Ŷ .

commutes, so that

K̃(f∗) = (Kyf∗)∗ · (KyY )∗ = (Kf)∗(KyY )∗(KyY )∗ ≥ (Kf)∗,

and one even has K̃(f∗) = (Kf)∗ if K preserves the full fidelity of yY . ¤

4. The Hausdorff Monad on V-Cat

Let X = (X, a) be a V-category. Then X̂ = (Xop –◦V) = PVX is closed under
suprema formed in the product VX ; hence, like V it is a sup-lattice. Consequently,
the Yoneda functor yX : X → X̂ factors uniquely through the free sup-lattice PX,
by a sup-preserving map YX : PX → PVX:

X
{−} //

yX !!DD
DD

DD
DD

PX

YX

²²

B_

²²
PVX a(−, B)

where
a(x,B) =

∨

y∈B

a(x, y)

for all x ∈ X, B ⊆ X. We can provide the set PX with a V-category structure hX

which it inherits from PVX (since the forgetful functor V-Cat → Set is a fibration,
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even a topological functor, see [5]). Hence, for subsets A,B ⊆ X one puts

hX(A,B) =
∧

z∈X

a(z, A)–◦a(z,B).

Lemma 1.
hX(A,B) =

∧

x∈A

∨

y∈B

a(x, y).

Proof. From k ≤ a(x, A) for all x ∈ A one obtains

hX(A, B) ≤
∧

x∈A

a(x,A)–◦a(x,B) ≤
∧

x∈A

k–◦a(x,B) =
∧

x∈A

a(x,B).

Conversely, with v :=
∧

x∈A

∨

y∈B

a(x, y), we must show v ≤ a(z, A) –◦a(z, B) for all

z ∈ X. But since for every x ∈ A

a(z, x)⊗ v ≤ a(z, x)⊗
∨

y∈B

a(x, y) =
∨

y∈B

a(z, x)⊗ a(x, y) ≤ a(z, B),

one concludes a(z, A)⊗ v ≤ a(z, B), as desired. ¤

For a V-functor f : X → Y = (Y, b) one now concludes easily

hX(A,B) ≤
∧

x∈A

∨

y∈B

b
(
f(x), f(y)

)
= hY

(
f(A), f(B)

)

for all A, B ⊆ X. Consequently, with

HX = (PX, hX), Hf : HX → HY, A 7→ f(A),

one obtains a (2-)functor H which makes the diagram

V-Cat
H //

²²

V-Cat

²²
Set

P // Set

commute. Actually, one has the following theorem:

Theorem 2. The powerset monad P = (P, {−}, ⋃) can be lifted along the forgetful
functor V-Cat → Set to a monad H of V-Cat of Kock-Zöberlein type.

Proof. For a V-category X, x 7→ {x} gives a fully faithful V-functor {−} : X →
HX. In order to show that⋃

: HHX → HX, A 7→
⋃
A,

is a V-functor, it suffices to verify that for all x ∈ A ∈ A ∈ HHX and B ∈ HHX
one has

hHX(A,B) ≤ a(x,
⋃
B).

But for all B ∈ B we have

hX(A,B) ≤ a(x,B) ≤ a(x,
⋃
B),

so that
hHX(A,B) ≤

∨

B∈B
hX(A, B) ≤ a(x,

⋃
B).
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The induced order of HX is given by

A ≤ B ⇐⇒ ∀x ∈ A : k ≤ a(x,B),

and that of HHX by

A ≤ B ⇐⇒ ∀A ∈ A : k ≤
∨

B∈B
hX(A, B).

Hence, from k ≤ a(x,A) = hX({x}, A) for all A ∈ HX one obtains{{x} | x ∈ A
} ≤ {A}

in HHX, which means H{−}X ≤ {−}HX , i.e., H is Kock-Zöberlein. ¤

Remarks 2. (1) By definition, hX(A,B) depends only on a(−, A), a(−, B).
Hence, if we put

⇓X B :=
{
x ∈ X | {x} ≤ B

}
= {x ∈ X | ↓ x ≤ B}

= {x ∈ X | k ≤ a(x, B)},
from B ⊆⇓X B one trivially has a(z, B) ≤ a(z,⇓X B) for all z ∈ X, but
also

a(z,⇓X B) =
∨

x∈⇓XB

a(z, x)⊗ k

≤
∨

z∈⇓XB

∨

y∈B

a(z, x)⊗ a(x, y) ≤ a(z,B).

Consequently,

hX(A,B) = hX(⇓X A,⇓X B).

This equation also implies ⇓X⇓X B =⇓X B.
(2) ⇓X B of (1) must not be confused with the down-closure ↓X B of B in X

w.r.t the induced order of X, e.g. with

↓X B = {x ∈ X | ∃y ∈ B x ≤ y} = {x ∈ X | ∃y ∈ B (k ≤ a(x, y))}.
In general, B ⊆↓X B ⊆⇓X B. While ↓X B =⇓X B for V = 2, the two sets
are generally distinct even for V = P+.

(3) In the induced order of HX one has

A ≤ B ⇐⇒ A ⊆⇓X B.

Hence, if we restrict HX to

H⇓X := {B ⊆ X | B =⇓X B},
the induced order of H⇓X is simply the inclusion order. H⇓ becomes a
functor H⇓ : V-Cat → V-Cat with

(H⇓f)(A) =⇓Y f(A)

for all A ∈ H⇓X, and there is a lax natural transformation ι : H⇓ → H
given by inclusion functions. Like H, also H⇓ carries a monad structure,
given by

X → H⇓X, x 7→↓X x =⇓X x,

H⇓H⇓X → H⇓X, B 7→⇓X (
⋃
B).

In this way ι : H⇓ → H becomes a lax monad morphism.
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(4) By definition, yX is fully faithful. Hence, HX carries the largest V-category
structure making yX : HX → PVX a V-functor. Equivalently, this is the
largest V-category structure making

δX : X −→◦ HX

with δ(x,B) = a(x,B) a V-module.
(5) YX : HX → PVX defines a morphism H→ PV of monads. Indeed, the left

diagram of

X
{−}

}}{{
{{

{{
{{ yX

!!DD
DD

DD
DD

HHX
⋃

²²

HYX // HPVX
YX̂ // PVPVX

mX

²²
HX YX

// PVX HX YX

// PVX

commutes trivially, and for the right one first observes that mX : ˆ̂
X → X̂

is defined by

mX(τ)(x) = η̂X(τ)(x) =
∨

t∈X̂

t(x)⊗ τ(t)

for all τ ∈ ˆ̂
X, x ∈ X. Hence, for B ∈ HHX we have:

(mX · YX̂ ·HYX)(B)(x) =
∨

t∈X̂

t(x)⊗ YX̂

(
YX(B)

)

=
∨

t∈X̂

t(x)⊗ 1∗
X̂

(
t, YX(B)

)

=
∨

t∈X̂

∨

B∈B
t(x)⊗ ( ∧

x′∈X

t(x′)–◦a(x′, B)
)

≤
∨

B∈B

∨

t∈X̂

t(x)⊗ (
t(x)–◦a(x,B)

)

=
∨

B∈B
a(x,B)

= YX(
⋃
B)(x)

≤ a(x, x)⊗
∨

B∈B
1∗

X̂

(
yX(x), a(−, B)

)

≤
∨

t∈X̂

t(x)⊗ 1∗
X̂

(
t, YX(B)

)

= (mX · YX̂ ·HYX)(B)(x).

Consequently, there is an induced algebraic functor

(V-Cat)H → (V-Cat)PV

of the respective Eilenberg-Moore categories.

We briefly describe the Eilenberg-Moore category

(V-Cat)H
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where objects X ∈ V-Cat come equipped with a V-functor α : HX → X satisfying
α · {−} = 1X and 1HX ≤ {−} · α (since H is Kock-Zöberlein). Hence, α({x}) = x
for all x ∈ X, and A ≤ {α(A)} for A ∈ HX, that is:

k ≤ hX(A, {α(A)}) =
∧

x∈A

a
(
x, α(A)

)
.

Consequently, α(A) is an upper bound of A in the induced order of X, and for any
other upper bound y of A in X = (X, a) one has

k ≤
∧

x∈A

a(x, y) = hX(A, {y}) ≤ a
(
α(A), α({y})) = a

(
α(A), y

)

since α is a V-functor. Hence, α(A) gives (a choice of) a supremum of A in X.
Moreover, the last computation shows

(∗) a(
∨

A, y) =
∧

x∈A

a(x, y)

for all y ∈ X,A ∈ HX (since “≤” holds trivially). Conversely, any V-category
X = (X, a) which is complete in its induced order and satisfies (∗) is easily seen to
be an object of (V-Cat)H.

Corollary 1. The Eilenberg-Moore category of H has order-complete V-categories
X = (X, a) satisfying (∗) as its objects, and morphisms are V-functors preserving
(the chosen) suprema.

5. The lax Hausdorff monad on V-Mod

When applying Theorem 1 to the Hausdorff functor H : V-Cat → V-Cat of
Theorem 2 we obtain a lax functor H̃ : V-Mod → V-Mod whose value on a V-
module ϕ : X −→◦ Y may be easily computed:

Lemma 2.

H̃ϕ(A,B) =
∧

x∈A

∨

y∈B

ϕ(x, y)

for all subsets A ⊆ X, B ⊆ Y .
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Proof.

H̃ϕ(A,B) =
∨

D∈HX̂

(HyX)∗(A, D)⊗ (Hyϕ)∗(D, B)

=
∨

D∈HX̂

hX̂

(
yX(A), D

)⊗ hX̂

(
D, yϕ(B)

)

≤ hX̂

(
yX(A), yϕ(B)

)

=
∧

x∈A

∨

y∈B

1∗
X̂

(
yX(x), yϕ(y)

)

=
∧

x∈A

∨

y∈B

ϕ(x, y) (Y oneda)

= hX̂

(
yX(A), yϕ(B)

)

≤ hX̂

(
yX(A), yX(A)

)⊗ hX̂

(
yX(A), yϕ(B)

)

≤
∨

D∈HX̂

hX̂

(
yX(A), D

)⊗ hX̂

(
D, yϕ(B)

)

= H̃ϕ(A, B).

¤

We now prove that H̃ carries a lax monad structure.

Theorem 3. H̃ belongs to a lax monad H̃ = (H̃, δ, ν) of V-Mod such that H of
Theorem 2 is a lifting of H̃ along (−)∗ : V-Cat → V-Mod.

Proof. Let us first note that H is a lifting of H̃ along (−)∗, in the sense that

V-Cat
H //

(−)∗
²²

V-Cat

(−)∗
²²

V-Mod
H̃ // V-Mod

commutes. Indeed, for f : X → Y = (Y, b) in V-Cat and A ∈ HX, B ∈ HY one
has

H̃(f∗)(A,B) =
∧

x∈A

∨

y∈B

b
(
f(x), y

)
= hY

(
f(A), B)

)
= (Hf)∗(A,B).

The unit of H̃, δ : 1 → H̃, is defined by

δX = {−}∗ : X −→◦ HX, δX(x,B) = hX({x}, B) = a(x,B),

for X = (X, a), x ∈ X, B ∈ HX (see also Remarks 2 (2)), and the multiplication
ν : H̃H̃ → H̃ can be given by

νX =
⋃

∗ : HHX −→◦ HX, νX(A, B) = hX(
⋃
A, B) =

∧

A∈A
hX(A,B),

for A ∈ HHX, B ∈ HX. The monad conditions hold strictly for H̃, because they
hold strictly for H. For example, ν · H̃δ = 1 follows from

νX · H̃δX =
⋃

∗ · H̃({−}∗) =
⋃

∗ · (H{−})∗ = (
⋃
·H{−})∗ = 1∗X .
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Surprisingly though, also the naturality squares for both δX and νX commute
strictly. Indeed, for ϕ : X −→◦ Y = (Y, b), x ∈ X, B ∈ HY and A ∈ HHX one has:

(H̃ϕ · δX)(x, B) =
∨

A∈HX

δX(x,A)⊗ H̃ϕ(A,B)

=
∨

A∈HX

hX({x}, A)⊗ H̃ϕ(A,B)

= H̃ϕ({x}, B)

=
∨

y∈B

ϕ(x, y)

=
∨

y∈B

∨

z∈Y

ϕ(x, z)⊗ b(z, y)

=
∨

z∈Y

ϕ(x, z)⊗ ( ∨

y∈B

b(z, y)
)

=
∨

z∈Y

ϕ(x, z)⊗ δY (z,B)

= (δY · ϕ)(x,B),

(H̃ϕ · νX)(A, B) =
∨

A∈HX

νX(A, A)⊗ H̃ϕ(A,B)

=
∨

A∈HX

hX(
⋃
A, A)⊗ H̃ϕ(A,B)

= H̃ϕ(
⋃
A, B)

≤ ( ∧

A∈A

∨

B′∈HB

H̃ϕ(A,B′)
)⊗

∧

B′∈HB

hY (B′, B)

(since k ≤ hY (B′, B) for B′ ∈ HB)

≤
∨

B∈HHY

( ∧

A∈A

∨

B′∈B
H̃ϕ(A,B′)

)⊗ ( ∧

B′∈B
hY (B′, B)

)

= (νY · H̃H̃ϕ)(A, B)

=
∨

B∈HHY

H̃H̃ϕ(A,B)⊗ νY (B, B)

≤
∨

B∈HHY

∧

A∈A
H̃ϕ(A,

⋃
B)⊗ hY (

⋃
B, B)

≤
∧

A∈A
H̃ϕ(A,B)

= (H̃ϕ · νX)(A, B).

¤

Remarks 3. (1) We emphasize that, while H̃ is only a lax functor, this is in
fact the only defect that prevents H̃ from being a monad in the strict sense.

(2) In addition to the commutativity of the diagram given in the Proof of
Theorem 3, since H obviously preserves full fidelity of V-functors, from
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Theorem 1 we obtain also the commutativity of

(V-Cat)op Hop
//

(−)∗

²²

(V-Cat)op

(−)∗

²²
V-Mod

H̃ // V-Mod

(3) If V is constructively completely distributive (see [15], [3]), then H̃ϕ for
ϕ : X −→◦ Y may be rewritten as

H̃ϕ(A,B) =
∨
{v ∈ V | ∀x ∈ A ∃y ∈ B : v ≤ ϕ(x, y)}

In this form the lax functor H̃ was first considered in [3]. In the presence
of the Axiom of Choice, so that V is completely distributive in the ordinary
(non-constructive) sense, one can then Skolemize the last formula to become

H̃ϕ(A, B) =
∨

f :A→B

∧

x∈A

ϕ(x, f(x));

here the supremum ranges over arbitrary set mappings f : A → B. Hence,
the

∧∨
-formula of Lemma 2 has been transcribed rather compactly in∨∧

-form.

For the sake of completeness we determine the Eilenberg-Moore algebras of H̃,
i.e., those V-categories X = (X, a) which come equipped with a V-module α :
HX −→◦ X satisfying

α · δX = 1∗X(= a)(†)
α · νX = α · H̃α(‡)

The left-hand sides of those equations are easily computed as

(α · δX)(x, y) =
∨

B∈HX

δX(x,B)⊗ α(B, y)

=
∨

B∈HX

hX({x}, B)⊗ α(B, y)

= α({x}, y),

(α · νX)(A, y) =
∨

B∈HX

νX(A, B)⊗ α(B, y)

=
∨

B∈HX

hX(
⋃
A, B)⊗ α(B, y)

= α(
⋃
A, y),
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for all x, y ∈ X, A ∈ HHX. Furthermore, if k ≤ α({x}, x), for all x ∈ X, then

α(
⋃
A, y) ≤

∧

A∈A
α(A, y)

= H̃α(A, {y})⊗ k

≤ H̃α(A, {y})⊗ α({y}, y)

≤
∨

B∈HX

H̃α(A, B)⊗ α(B, y)

= α · H̃α(A, y).

Consequently, (†) and (‡) imply α({x}, y) = a(x, y) and then

α(A, y) = α
( ⋃ {{x} | x ∈ A

}
, y

)

=
∧

x∈A

α({x}, y)

= hX(A, {y}) = {−}∗(A, y)

for all A ∈ HX, y ∈ X. Hence, necessarily α = {−}∗; conversely, this choice for α
satisfies (†) and (‡).
Corollary 2. The category of strict H̃-algebras and lax homomorphisms is the
category V-Mod itself.

Proof. A lax homomorphism is, by definition, a V-module ϕ : X −→◦ Y with ϕ ·α ≤
β ·H̃ϕ (where α, β denote the uniquely determined structures of X, Y , respectively).
A straightforward calculation shows that every V-module satisfies this inequality.

¤

6. The Gromov structure for V-categories

With H̃ as in Section 5, one defines

GH(X,Y ) :=
∨

ϕ:X−→◦ Y

H̃ϕ(X, Y )

for all V-categories X and Y . Since for V-functors f : X ′ → X and g : Y ′ → Y one
has

(g∗ · ϕ · f∗)(x′, y′) = ϕ
(
f(x′), g(y′)

)

for all x′ ∈ X, y′ ∈ Y , with Lemma 2 one obtains immediately

GH(X, Y ) = GH(X ′, Y ′)

whenever f , g are isomorphisms.

Proposition 2. GH is a V-category structure for isomorphism classes of V-categories.

Proof. Clearly

k ≤ 1∗HX(X, X) ≤ H̃1∗X(X, X) ≤ GH(X, X),
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and

GH(X,Y )⊗GH(Y, Z) =
∨

ϕ:X−→◦ Y,ψ:Y−→◦ Z

H̃ϕ(X, Y )⊗ H̃ψ(Y,Z)

≤
∨

ϕ,ψ

∨

B∈HY

H̃ϕ(X, B)⊗ H̃ψ(B,Z)

≤
∨

ϕ,ψ

(H̃ψ · H̃ϕ)(X, Z)

≤
∨

ϕ,ψ

H̃(ψ · ϕ)(X,Z)

≤
∨

χ:X−→◦ Z

H̃χ(X, Z)

= GH(X, Z).

¤

We observe that the proof relies on the lax functoriality of H̃, but not on the
actual definition of H̃ or H. Hence, instead of H we may consider any sublifting
K : V-Cat → V-Cat of the powerset functor, by which we mean an endofunctor K
with X ∈ KX ⊆ HX such that the inclusion functions

ιX : KX → HX

form a lax natural transformation, e.g., they are V-functors such that

f(A) = (Hf)(A) ≤ (Kf)(A)

in HY , for all V-functors f : X → Y and A ∈ KX. (We have encountered an
example of this situation in Remarks 2(3), with K = H⇓.) In this situation we
may replace H by K in the proof of Proposition 2 except that for the invariance
under isomorphism we invoked in Lemma 2. But this reference may be avoided:
one easily shows that the diagrams

X ′ yX′ //

f

²²

X̂ ′

f̂∗

²²

X̂ ′ Y ′yg∗·ϕ·f∗oo

g

²²
X yX

// X̂ X̂

f̂∗

OO

Yyϕ

oo

commute, so that

K̃(g∗ · ϕ · f∗) = (Kyg∗·ϕ·f∗)
∗ · (KyX′)∗

= (Kg)∗ · (Kyϕ)∗ · (Kf̂∗)∗ · (KyX′)∗,

while

(Kg)∗ · K̃ϕ · (Kf)∗ = (Kg)∗ · (Kyϕ)∗ · (KyX)∗ · (Kf)∗

= (Kg)∗ · (Kyϕ)∗ · (Kf̂∗)∗ · (KyX′)∗.

When f is an isomorphism, one has f−1
∗ = f∗. Consequently, in this case (Kf̂∗)∗ =

(Kf̂∗)∗, and then
K̃(g∗ · ϕ · f∗) = (Kg)∗ · K̃ϕ · (Kf)∗.
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Hence, when for any sublifting K of P we put

GK(X, Y ) :=
∨

ϕ:X−→◦ Y

K̃ϕ(X,Y ),

we may formulate Proposition 2 more generally as:

Theorem 4. GK makes G := ob(V-Cat)/ ∼= a (large) V-category, for every sub-
lifting K : V-Cat → V-Cat of the powerset functor.

The resulting V-category
GK := (G, GK)

may, with slightly stronger assumptions on K, be characterized as a colimit. For
that purpose we first prove:

Lemma 3. If K : V-Cat → V-Cat is a 2-functor, then

K̃(g∗ · ϕ · f∗) = (Kg)∗ · K̃ϕ · (Kf)∗
for all f, g, ϕ as above.

Proof. It suffices to prove (Kf̂∗)∗ = (Kf̂∗)∗ for all V-functors f : X ′ → X. But
since both K and the (contravariant) ˆ(−) preserve the order of hom-sets, from
f∗ a f∗ in V-Mod we obtain Kf̂∗ a Kf̂∗ in V-Cat. Now, since for any pair of
V-functors one has

h a g ⇐⇒ g∗ a h∗ ⇐⇒ g∗ = h∗,

the desired identity follows with h = Kf̂∗ and g = Kf̂∗. ¤
Proposition 3. For any sublifting K of the powerset functor preserving the order
of hom-sets and full fidelity of V-functors one has

GK(X, Y ) =
∨

X↪→Z←↩Y

1∗KZ(X, Y ) =
∨

X↪→(XtY,c)←↩Y

K̃c(X,Y )

for all V-categories X and Y .

Here the first join ranges over all V-categories Z into which X and Y may be
fully embedded, and the second one ranges over all V-category structures c on the
disjoint union X t Y such that X and Y become full V-subcategories.

Proof. Denoting the two joins by v, w, respectively, we trivially have w ≤ v, so
that v ≤ GK(X, Y ) ≤ w remains to be shown. Considering any full embeddings

X
Â Ä jX // Z Y?

_jYoo

and putting ϕ := j∗Y · (jX)∗ = j∗Y · 1∗Z · (jX)∗, because of K’s 2-functoriality and
preservation of full fidelity we obtain from Lemma 3 and Theorem 1

K̃ϕ = (KjY )∗ · K̃1∗Z · (KjX)∗ = j∗KY · 1∗KZ · (jKX)∗
and therefore

1∗KZ(X, Y ) = K̃ϕ(X, Y ) ≤ GK(X, Y ).
Considering any ϕ : X −→◦ Y , one may define a V-category structure c on X tY by

c(z, w) :=





1∗X(z, w) if z, w ∈ X;
ϕ(z, w) if z ∈ X, w ∈ Y ;
⊥ if z ∈ Y,w ∈ X;
1∗Y (z, w) if z, w ∈ Y .
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Then, with Z := (X t Y, c), we again have ϕ = j∗Y · (jX)∗ and obtain

K̃ϕ(X, Y ) = K̃c(X, Y ) ≤ w.

¤

Theorem 5. For K as in Proposition 3, GK is a colimit of the diagram

V-Catemb
// V-Cat

K // V-Cat
Â Ä // V-CAT .

Here V-Catemb is the category of small V-categories with full embeddings as
morphisms, and V-CAT is the category of (possibly large) V-categories.

Proof. The colimit injection κX : KX → GK sends A ⊆ X to (the isomorphism
class of) A, considered as a V-category in its own right. Since for A, B ∈ KX one
has full embeddings A ↪→ X, B ↪→ X, trivially

1∗KX ≤ GK(A, B).

Hence κX is a V-functor, and κ = (κX)X forms a cocone. Any cocone given by
V-functors αX : KX → (J , J) allows us to define a V-functor F : GK → J by
FX = αX(X). Indeed, given V-categories X,Y we may consider any Z into which
X, Y may be fully embedded (for example, their coproduct in V-Cat) and obtain

1∗KZ(X,Y ) ≤ J
(
αZ(X), αZ(Y )

)

≤ J
(
αX(X), αY (Y )

)

= J(FX, FY ).

Hence, F is indeed a V-functor with FκX = αX for all X, and it is obviously the
only such V-functor. ¤

For the sake of completeness we remark that the assignment

K 7→ GK

is monotone (=functorial): if we order subliftings of the powerset functor by

K ≤ L ⇐⇒ there is a nat. tr. α : K → L given by inclusion functions,

while V-category structures on G = ob(V-Cat)/ ∼= carry the pointwise order (as
V-modules), then

G : SubH → V-CAT(G)

becomes monotone. Indeed, for every V-module ϕ : Z −→◦ Y , naturality of α gives

α∗Y · L̃ϕ · (αX)∗ = α∗Y · (Lyϕ)∗ · (LyX)∗ · (αX)∗
= (Kyϕ)∗ · α∗

X̂
· (αX̂)∗ · (KyX)∗

≥ (Kyϕ)∗ · (KyX)∗ = K̃ϕ.

Consequently,

K̃ϕ(X, Y ) ≤ (α∗Y · L̃ϕ · (αX)∗)(X, Y )

= L̃ϕ(αX(X), αY (Y ))

= L̃ϕ(X, Y ),

which gives GK(X,Y ) ≤ GL(X, Y ), for all V-categories X, Y .
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7. Operations on the Gromov-Hausdorff V-category

Proposition 4. With the binary operation (X, Y ) 7→ X ⊗ Y the V-category GH
becomes a monoid in the monoidal category V-CAT.

Proof. All we need to show is that

⊗ : GH ⊗ GH → GH

is a V-functor. But for any V-modules ϕ : X −→◦ X ′, ψ : Y −→◦ Y ′ and all x ∈ X,
y ∈ Y one trivially has

H̃ϕ(X, X ′)⊗ H̃ψ(Y, Y ′) ≤
∨

x′∈X′,y′∈Y ′
ϕ(x, x′)⊗ ψ(y, y′),

hence
H̃ϕ(X, X ′)⊗ H̃ψ(Y, Y ′) ≤ H̃(ϕ⊗ ψ)(X ⊗ Y,X ′ ⊗ Y ′),

with the V-module ϕ⊗ ψ : X ⊗ Y −→◦ X ′ ⊗ Y ′ given by

(ϕ⊗ ψ)((x, y), (x′, y′)) = ϕ(x, x′)⊗ ψ(y, y′).

Consequently,

GH ⊗GH((X,Y ), (X ′, Y ′)) = GH(X, X ′)⊗GH(Y, Y ′)

=
∨

ϕ,ψ

H̃ϕ(X, X ′)⊗ H̃ψ(Y, Y ′)

≤
∨

χ:X⊗Y−→◦ X′⊗Y ′
H̃χ(X ⊗ Y, X ′ ⊗ Y ′)

= GH(X ⊗ Y, X ′ ⊗ Y ′).

¤

We note that when the ⊗-neutral element k of V is its top element >, then
v⊗w ≤ v ∧w for all v, w ∈ V (since v⊗w ≤ v⊗ k = v); conversely, this inequality
implies k = > (since > = >⊗ k ≤ > ∧ k = k).

Proposition 5. If k = > in V, then GH becomes a monoid in the monoidal
category V-CAT with the binary operation given either by product or by coproduct.

Proof. We need to show that

× : GH ⊗ GH → GH and + : GH ⊗ GH → GH

are both V-functors. Similarly to the proof of Proposition 4, for the V-functoriality
of × it suffices to show

(§) H̃ϕ(X, X ′)⊗ H̃ψ(Y, Y ′) ≤ H̃(ϕ× ψ)(X × Y, X ′ × Y ′)

for all V-modules ϕ : X −→◦ X ′, ψ : Y −→◦ Y ′, where ϕ × ψ : X × Y → X ′ × Y ′ is
defined by

(ϕ× ψ)((x, y), (x′, y′)) = ϕ(x, x′) ∧ ψ(y, y′).
(Note that, in this notation, 1∗X × 1∗Y is the V-category structure of the product
X ×Y in V-Cat. The verification that ϕ×ψ is indeed a V-module is easy.) But (§)
follows just like in Proposition 4 since k = >.

For the V-functoriality of + it suffices to establish the inequality

(¶) H̃ϕ(X, X ′)⊗ H̃ψ(Y, Y ′) ≤ H̃(ϕ + ψ)(X + Y,X ′ + Y ′),
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with ϕ + ψ : X + Y −→◦ X ′ + Y ′ defined by

(ϕ + ψ)(z, z′) =





ϕ(z, z′) if z ∈ X, z′ ∈ X ′,
ψ(z, z′) if z ∈ Y, z′ ∈ Y ′,
⊥ else.

(Again, 1∗X + 1∗Y is precisely the V-category structure of the coproduct X + Y in
V-Cat, and the verification of the V-module property of ϕ + ψ is easy.) To verify
(¶) we consider z ∈ X + Y ; then, for z ∈ X, say, we have

H̃ϕ(X,X ′)⊗ H̃ψ(Y, Y ′) ≤ H̃ϕ(X, X ′) ∧ H̃ψ(Y, Y ′)

≤ H̃ϕ(X, X ′)

≤
∨

x′∈X′
ϕ(z, x′)

≤
∨

z′∈X′+Y ′
(ϕ + ψ)(z, z′),

and (¶) follows. ¤

The previous proof shows that, without the assumption k = >, one has that
+ : GH ×GH → GH is a V-functor, e.g. that (GH, +) is a monoid in the Cartesian
category V-CAT, but here we will continue to consider the monoidal structure of
V-CAT.

Theorem 6. If k = > in V, then the Hausdorff functor H : V-Cat → V-Cat
induces a homomorphism H : (GH, +) → (GH,×) of monoids in the monoidal
category V-CAT.

Proof. Let us first show that the object-part of the functor H : V-Cat → V-Cat
defines indeed a V-functor H : GH → GH, so that GH(X,Y ) ≤ GH(HX,HY ) for
all V-categories X,Y . But for every V-module ϕ : X −→◦ Y and all A ⊆ X one has

H̃ϕ(X,Y ) ≤ H̃ϕ(A, Y ) ≤
∨

B⊆Y

H̃ϕ(A,B),

which implies
H̃ϕ(X, Y ) ≤ H̃(H̃ϕ)(HX,HY )

and then the desired inequality.
In order to identify H as a homomorphism, we first note that, as an empty meet,

h∅(∅,∅) is the top element in V, so that H∅ ∼= 1 is terminal in V-Cat, e.g. neutral
in (GH,×). The bijective map

+ : HX ×HY → H(X + Y )

needs to be identified as an isomorphism in V-Cat, e.g. we must show

(hX × hY )((A,B), (A′, B′)) = hX+Y (A + B, A′ + B′)

for all A,A′ ⊆ X, B, B′ ⊆ Y . With a = 1∗X and b = 1∗Y , in the notation of the
proof of Proposition 5 one has

∨

z′∈A′+B′
(a + b)(x, z′) =

∨

x′∈A′
a(x, x′)
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for all x ∈ A (since (a + b)(x, z′) = ⊥ when z′ ∈ B′). Consequently,

hX+Y (A + B, A′ + B′) = (
∧

x∈A

∨

z′∈A′+B′
(a + b)(x, z′)) ∧ (

∧

y∈B

∨

z′∈A′+B′
(a + b)(y, z′))

= (
∧

x∈A

∨

x′∈A′
a(x, x′)) ∧ (

∧

y∈B

∨

y′∈B′
b(y, y′))

= hX(A,A′) ∧ hY (B, B′),

as desired. ¤

Remarks 4. (1) The (V-Cat)-isomorphism

HX ×HY ∼= H(X + Y )

exhibited in the proof of Theorem 6 easily extends to the infinite case:
∏

i

HXi
∼= H(

∑

i

Xi).

(2) Since there is no general concept of a (covariant!) functor transforming
coproducts into products, a more enlightening explanation for the formula
just encountered seems to be in order, as follows. Since V-Cat is an exten-
sive category (see [6]), for every (small) family (Xi)i∈I of V-categories the
functor

Σ :
∏

i

V-Cat/Xi → V-Cat/
∑

i

Xi

is an equivalence of categories. Now, the (isomorphism classes of a) comma
category V-Cat/X can be made into a (large) V-category when we define
the V-category structure c by

c(f, g) =
∧

x∈A

∨

y∈B

1∗X(f(x), g(y)) = hX(f(A), g(B)),

for all f : A → X, g : B → X in V-Cat. In this way the equivalence
Σ has become an isomorphism of V-categories, and since HX is just a
V-subcategory of V-Cat/X, the (V-Cat)-isomorphism of (1) is simply a re-
striction of the isomorphism Σ:

∏
i V-Cat/Xi

∑
// V-Cat/

∑
i Xi

∏
i HXi

?Â

OO

∼ // H(
∑

i Xi)
?Â

OO

8. Symmetrization

A V-category X, or just its structure a = 1∗X , is symmetric when a = a◦. This
defines the full subcategory V-Cats of V-Cat which is coreflective: the coreflector
sends an arbitrary X to Xs = (X, as) with as = a × a◦, that is: as(x, y) =
a(x, y) ∧ a(y, x) for all x, y ∈ X. By

HsX = (HX)s = (PX, hs
X)



24 ANDREI AKHVLEDIANI, MARIA MANUEL CLEMENTINO, AND WALTER THOLEN

one can define a sublifting Hs : V-Cat → V-Cat of the powerset functor which (like
H) preserves full fidelity, but which (unlike H) fails to be a 2-functor. However its
restriction

Hs : V-Cats → V-Cats

is a 2-functor.

Remarks 5. (1) HsX must not be confused with H(Xs). For example, for V =
2 and a set X provided with a separated (=antisymmetric) order, Xs carries
the discrete order. Hence, while in HsX one has (A ≤ B ⇐⇒ A ⊆↓ B
and B ⊆↓ A ⇐⇒ ↓ A =↓ B), in H(Xs) one has (A ≤ B ⇐⇒ A ⊆ B).

(2) Even after its restriction to V-Cats there is no easy way of evaluating
H̃sϕ(A,B) for a V-module ϕ : X −→◦ Y and A ⊆ X, B ⊆ Y , since the com-
putation leading to the easy formula of Lemma 2 does not carry through
when H is replaced by Hs.

(3) The following addendum to Proposition 3 suggests how to overcome the
difficulty mentioned in (2) when trying to define a non-trivial symmetric
Gromov structure: V-category structures c on the disjoint union X t Y
such that the V-categories X, Y become full V-subcategories correspond
bijectively to pairs of V-modules ϕ : X −→◦ Y , ϕ′ : Y −→◦ X with

ϕ′ · ϕ ≤ 1∗X , ϕ · ϕ′ ≤ 1∗Y ;

we write
ϕ : X ◦ // Y : ϕ′◦oo

for such a pair. Under the hypotheses of Proposition 3 we can now write

GK(X, Y ) =
∨

ϕ : X ◦ // Y : ϕ′◦oo

K̃ϕ(X,Y ).

Hence, for any sublifting K of P we put

GsK(X,Y ) :=
∨

ϕ : X ◦ // Y : ϕ′◦oo

K̃ϕ(X, Y ) ∧ K̃ϕ′(Y, X)

and obtain easily:

Corollary 3. For any sublifting K of the powerset functor,

GsK = (G, GsK)

is a large symmetric V-category, and when K is a 2-functor preserving full fidelity
of V-functors, then

GsK(X, Y ) =
∨

X↪→Z←↩Y

1∗KZ(X, Y )∧1∗KZ(Y, X) =
∨

X↪→(XtY,c)←↩Y

K̃c(X, Y )∧K̃c(Y,X)

for all V-categories X,Y .

Proof. Revisiting the proof of Proposition 2, we just note that

ϕ : X ◦ // Y : ϕ′◦oo , ψ : Y ◦ // Z : ψ′◦oo implies ψ · ϕ : X ◦ // Z : ϕ′ · ψ′◦oo .

A slight adaption of the computation given in Proposition 2 now shows that GsK
is indeed a V-category structure on G = obV-Cat/ ∼=. The given formulae follow as
in the proof of Proposition 3. ¤
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Corollary 4. GsH(X, Y ) = G(Hs)(X, Y ), for all V-categories X, Y .

Extending the notion of symmetry from V-categories to V-modules, we call a
V-module ϕ : X −→◦ Y symmetric if X, Y are symmetric with ϕ◦ · ϕ ≤ 1∗X and
ϕ · ϕ◦ ≤ 1∗Y ; we write

ϕ : X ◦ // Y : ϕ◦◦oo

in this situation and define

GsK(X, Y ) :=
∨

ϕ : X ◦ // Y : ϕ◦◦oo

K̃ϕ(X,Y )

for every sublifting K of P . Since symmetric V-modules compose, similarly to
Corollary 3 one obtains:

Corollary 5. For any sublifting K of the powerset functor,

GsK := (obV-Cats/ ∼=, GsK)

is a large V-category, and when K is a 2-functor preserving full fidelity of V-
functors, then

GsK(X,Y ) =
∨

X↪→Z←↩Y
Z symmetric

1∗KZ(X,Y ) =
∨

X↪→(XtY,c)←↩Y
c symmetric

K̃c(X, Y )

for all symmetric V-categories X, Y . ¤

Remarks 6. (1) It is important to note that GsK is not symmetric, even when
K = H. For V = P+, X a singleton and Y 3 equidistant points, we already
saw in the Introduction that GsH(X, Y ) = 0 while GsH(Y, X) = 1

2 . Hence
it is natural to consider the symmetrization (GsK)s of GsK:

(GsK)s(X,Y ) = GsK(X, Y ) ∧GsK(X,Y ).

The same example spaces of the Introduction show that, while (GH)s(X, Y ) =
max{GH(X, Y ), GH(Y, X)} = 0, one has

(GsH)s(X,Y ) = max{GsH(X,Y ), GsH(Y,X)} =
1
2
.

(2) When the symmetric V-categories X, Y are fully embedded into some V-
category Z, they are also fully embedded into Zs. This fact gives

GsH(X, Y ) ≤ GsH(X, Y )

which, by symmetry of GsH, gives

GsH(X, Y ) ≤ (GsH)s(X,Y ).

(3) Instead of the coreflector X 7→ Xs one may consider the monoidal sym-
metrization Xsym = (X, asym) with asym = a ⊗ a◦, that is: asym(x, y) =
a(x, y)⊗a(y, x). Hence, replacing ∧ by ⊗ one can define HsymX and GsymK
in complete analogy to HsX and GsX, respectively. Corollary 3 remains
valid when s is traded for sym and ∧ for ⊗.
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9. Separation

A V-category X, or just its structure a = 1∗X , is separated when k ≤ a(x, y) ∧
a(y, x) implies x = y for all x, y ∈ X. It was shown in [10] (and it is easy to
verify) that the separated V-categories form an epireflective subcategory of V-Cat:
the image of X under the Yoneda functor yX : X → X̂ serves as the reflector. Fur-
thermore, there is a closure operator which describes separation of X equivalently
by the closedness of the diagonal in X×X. (This description is not needed in what
follows, but it further confirms the naturality of the concept.)

In Remarks 2 we already presented a sublifting H⇓ of the powerset functor,
and it is easy to check that H̃⇓ϕ(A, B) may be computed as H̃ϕ(A, B) in Lemma
2, e.g. the two values coincide, because of the formula proved in Remarks 2(1).
Furthermore, H⇓ is like H a 2-functor which preserves full fidelity of V-functors.
Hence, Proposition 3 is applicable to H⇓ and may in fact be sharpened to:

Corollary 6. For all separated V-categories X, Y one has

GH(X, Y ) = GH⇓(X, Y ) =
∨

X↪→Z←↩Y
Z separated

hZ(X,Y ) =
∨

X↪→(XtY,c)←↩Y
c separated

H̃c(X,Y ).

Proof. The structure c constructed from a V-module ϕ as in the proof of Proposition
3 is separated. ¤

Remarks 7. (1) From Corollary 3 one obtains

GsH(X, Y ) = GsH⇓(X, Y ) =
∨

X↪→Z←↩Y

hZ(X,Y ) ∧ hZ(Y, X)

=
∨

X↪→(XtY,c)←↩Y

H̃c(X,Y ) ∧ H̃c(Y,X).

However, here it is not possible to restrict the last join to separated struc-
tures c: consider the trivial case when V = 2 and X, Y are singleton sets.

(2) V-category structures c on X t Y that are both symmetric and separated
correspond bijectively to symmetric modules ϕ : X −→◦ Y with k 6≤ ϕ(x, y)
for all x ∈ X, y ∈ Y , provided that X and Y are both symmetric and
separated. For V = 2, X, Y are necessarily discrete, and the only structure
c is discrete as well.

(3) The structure GH on G is not separated, even if we consider only isomor-
phism classes of separated V-categories: for V = 2, the order on G given by
GH is chaotic! Likewise when G is traded for Gs.
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