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1. Introduction

Consider the oscillatory integral

I[f ] =
∫ b

a
f(x)eiωg(x) dx,

where f and g are C∞[Ω] and g′ does not approach zero in Ω, where Ω = cl (a, b). We

construct a new method QMn [f ] with the following properties:

(1) The method achieves the asymptotic order

I[f ]−QMn [f ] = O
(
ω−n−1

)
, ω →∞;

(2) For sufficiently large ω, the method is guaranteed to converge as n→∞ for a large class

of analytic functions f and g, based on the growth of f(g−1(t))
g′(g−1(t))

in the complex plane

(though g−1 is not needed in the algorithm itself);

(3) For fixed n, QMn [f ] is numerically stable for sufficiently large ω;

(4) QMn [f ] can be applied to integrals over unbounded intervals;

(5) If f = reikp and p′ does not approach zero in Ω, then the error remains small as k

increases, without needing to know the form of p or r;

(6) The method is still accurate when ω is complex.

Many advances have been made recently for the computation of I[f ]; for example, Filon-

type methods [5], moment-free Filon-type methods [11], Levin-type methods [10] and nu-

merical steepest descent [4]. Each of these methods achieves the first property whilst none of

these methods achieve the fifth property. Moreover, Filon-type methods are only applicable

for certain oscillators, in particular oscillators for which the moments

∫ b

a
xkeiωg(x) dx

are known. A numerical stable algorithm for computing a Filon-type method is only known

for g(x) = x. Moment-free Filon-type methods avoid computation of moments, but they are

not numerically stable as constructed in [11]. We know that Filon-type methods converge due

to the uniform convergence of polynomial interpolation at Chebyshev points [12]. Whether

this holds true for moment-free Filon-type methods is unknown. Because these methods

are based on polynomial interpolation, they can not be applied to integrals over unbounded

intervals. Though a numerically stable algorithm exists for computing the Levin collocation

method [6], it cannot be used to achieve high asymptotic orders, which requires solving an

ill-conditioned collocation system.
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Numerical steepest descent is stable, and achieves a higher asymptotic order than any

other method using the same amount of information. Unfortunately, it requires deforming

the path of integration into the complex plane, which is not always possible, and even

when it is possible, complications arising from singularities, branch cuts, and supergeometric

growth in the complex plane can prevent convergence, or be a logistical nightmare to resolve.

Furthermore, for a fixed number of sample points, the error blows up as ω → 0, so an

alternative quadrature scheme is necessary in the nonoscillatory regime.

Suppose v ∈ C∞[Ω] is a particular solution to the Levin differential equation

Lv = f, for L = D + iωg′. (1.1)

Finding a solution to this differential equation allows us to evaluate the integral as

I[f ] =
∫ b

a
eiωgLv dx =

∫ b

a
(veiωg)′ dx = v(b)eiωg(b) − v(a)eiωg(a).

Thus approximating a solution to (1.1) allows us to approximate I[f ]. The Levin collocation

method solves (1.1) using a collocation system without boundary conditions [7], and Levin-

type methods used derivative information at the endpoints to achieve higher asymptotic

orders [10].

As an alternative, we will use gmres on the differential operator to compute the solution

(1.1), a process which we refer to as diffferential gmres. Define the Krylov subspace

Kn[L, f ] = span
{
f,Lf,L2f, . . . ,Ln−1f

}
.

Given a semi-inner product 〈·, ·〉, the gmres algorithm finds a function vLn ∈ Kn[L, f ] which

minimizes the residual
∥∥∥f − LvLn ∥∥∥, where ‖·‖ =

√
〈·, ·〉. We can then approximate I[f ] by

QLn [f ] = vLn (b)eiωg(b) − vLn (a)eiωg(a).

Remark : Unless otherwise stated, 〈·, ·〉 denotes a general semi-inner product (independent

of ω) on some vector space V with seminorm ‖·‖ =
√
〈·, ·〉, 〈·, ·〉2 is the L2 inner product over

Ω with Legendre weight and ‖·‖p is the Lp norm with Legendre weight, or, when applied to

a vector, the `p vector norm. For a complex set S, we use the notation ‖·‖S to denote the

supremum norm over S, thus ‖·‖Ω and ‖·‖∞ are equivalent. We also use the semi-norm

〈〈q, r〉〉m =
m∑

k=1

wkq(xk)r̄(xk),

where the weights are nonzero, x1 = a and xm = b. In the examples, we use either 〈·, ·〉2 or

〈〈·, ·〉〉m with Clenshaw–Curtis weights and nodes when Ω is bounded. When a is finite and
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b is infinite, we use the Laguerre inner product

〈f, g〉L =
∫ ∞
a

fḡe−x dx.

Note that Kn[L, f ] = Kn

[
D, feiωg

]
e−iωg, and the method just described is equivalent to

the differential gmres method from [13], where gmres was applied to the differentiation

operator D. In that paper it was observed that differential gmres has an asymptotic order

I[f ]−QLn [f ] = O
(
ω−n−1

)
, ω →∞,

when the kernel of oscillations is a standard Fourier oscillator (g(x) = x). In this paper we

will show that the same convergence rate can be obtained for more general oscillators g by

using preconditioning. Define the operator

M = L 1

g′
= D 1

g′
+ iω.

Note that ∫ b

a
eiωgMv dx =

∫ b

a
eiωgL v

g′
dx =

v(b)

g′(b)
eiωg(b) − v(a)

g′(a)
eiωg(a);

hence solving Mv = f also allows us to compute I[f ]. Let vMn ∈ Kn[M, f ] be the function

produced by gmres which minimizes the seminorm of the residual
∥∥∥f −MvMn

∥∥∥. We then

obtain the following approximation to I[f ]:

QMn [f ] =
vMn (b)

g′(b)
eiωg(b) − vMn (a)

g′(a)
eiωg(a).

To ensure this definition makes sense, we assume throughout the paper that p(b)
g′(b)eiωg(b) and

p(a)
g′(a)eiωg(a) exist for all p ∈ Kn[M, f ], where if a or b is infinite they are defined by a limit.

This condition is always true if a and b are both finite. When we use 〈〈·, ·〉〉m as our semi-inner

product, we denote vMn and QMn [f ] as vMm,n and QMm,n[f ], respectively.

In addition to the properties of QMn [f ] already mentioned, we will prove the following

facts:

(1) If 〈·, ·〉 is an inner product and Arnoldi iteration fails, then I[f ] = QMn [f ] except at

finitely many choices of ω;

(2) If Arnoldi iteration succeeds, then

I[f ]−QMn [f ] = O
(
ω−n−1

)
, ω →∞;
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(3) If Arnoldi iteration fails after r steps, then

I[f ]−QMm,n[f ] = O
(
ω−r−2

)
, ω →∞.

Though a theory for Krylov subspace methods applied to bounded operators has been

developed [9], it does not apply to unbounded, differential operators. Thus developing a

theory for first order differential operators seems interesting in its own right. gmres ap-

plied to the simplest such operator, the differentiation operator, was analyzed in [13], and

this paper is a continuation of that one. Some other recent advances in applying matrix

algorithms to functions include [14], which adapts Householder triangularization to orthogo-

nalize a quasimatrix (i.e., a row vector whose columns are functions). Though in this paper

we differentiate functions symbolically, a more numerical approach would be to utilize the

chebfun system [2], which represents functions as Chebyshev polynomials of adaptive order.

Indeed, the gmres algorithm is built into chebfun, which makes implementation of QMn [f ]

trivial.

In Section 2, we explain the details of the differential gmres algorithm. In fact, a simple

modification will allow us to reuse the Arnoldi process to compute QMn [f ] for additional

values of ω; hence we only need to solve a finite-dimensional least squares problem with an

Hessenberg matrix for each ω. Furthermore, we show that all condition numbers of this least

squares problem converge to one as ω →∞. We define a class of functions in Section 3 such

that differential gmres converges. Then, in Section 4, we prove the asymptotic properties

of the method. Finally, we present some additional numerical results in Section 5. Here,

we consider the case where f itself oscillates and we compute the Airy function along the

negative real axis.

2. Algorithm

To simplify notation and reusability, we present many of the results in a general frame-

work, replacing C∞[Ω] by a general vector space V with semi-inner product 〈·, ·〉, and

L : V → V is a linear operator. We then use Mω to denote an operator of the form

P + iω, where P : V → V is a linear operator independent of ω. In our case L, M and

P are differential operators, hence they are not bounded, thus we use the following, weaker

definition for boundedness:

Definition 2.1 For a linear operator L : V → V and seminorm ‖·‖ on V , Bn[L, ‖·‖] is the

set of f ∈ V such that ‖f‖ , ‖Lf‖ ,
∥∥∥L2f

∥∥∥ , . . . , ∥∥∥Ln−1f
∥∥∥ < ∞. We write Bn[L] when the

seminorm is implied by context.

This set satisfies the following properties:
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• Bn[L, ‖·‖] is a subspace of V ;

• If L is bounded, then Bn[L] = V for all n;

• For a second seminorm |‖ · ‖|, Bn[L, ‖·‖+ |‖ · ‖|] = Bn[L, ‖·‖] ∩ Bn[L, |‖ · ‖|];

• For a second linear operator P : V → V , Bn[L+ P , ‖·‖] = Bn[L, ‖·‖] ∩ Bn[P , ‖·‖];

• If Ω is a bounded interval and ‖·‖ is either ‖·‖1, ‖·‖2, ‖·‖∞ or |‖ · ‖|m, then, for any

L : C∞[a, b]→ C∞[a, b], Bn[L, ‖·‖] = C∞[a, b] for all n.

The algorithm for computing vLn developed in [13] is virtually the same as the finite

dimensional version of gmres, the only difference being that a continuous semi-inner product

〈·, ·〉 is used in place of the vector dot product. This algorithm depends on Arnoldi iteration,

which determines a quasimatrix (or a row vector whose entries are elements of V ) qn+1 =

(q1, . . . , qn+1) whose columns are orthonormal, and an (n + 1) × n Hessenberg matrix Hn

such that
Lqn = qn+1Hn.

We define the algorithm recursively as follows. (In practice, we can save memory by using

only one function u for each ui,j , though we write the subscripts explicitly as they will be

used in the proofs below.)

Algorithm 2.2 Arnoldi iteration

Given f ∈ Bn+1[L], compute qn+1 and Hn as follows:

1: If ‖f‖ = 0, then set qn+1 and Hn both identically zero and return; otherwise,

2: q1 = f
‖f‖ ;

3: For k = 1, 2, . . . , n:

1: u1,k = Lqk;

2: For j = 1, . . . , k: hj,k =
〈
uj,k, qj

〉
and uj+1,k = uj,k − hj,kqj ;

3: hk+1,k =
∥∥∥uk+1,k1

∥∥∥;
4: If hk+1,k 6= 0 then qk+1 =

uk+1,k

hk+1,k
, otherwise we say that Arnoldi iteration failed at

step k and set qk+1 = 0;

4: Return qn+1 = (q1, . . . , qn+1) and

Hn =


h1,1 · · · h1,n
h2,1 · · · h2,n

. . .
...

hn+1,n

 .
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The gmres algorithm is now straightforward:

Algorithm 2.3 GMRES

Given f ∈ Bn+1[L], compute vLn as follows:

1: Find qn and Hn using Arnoldi iteration (we do not need qn+1);

2: Use least squares to find coefficients c = (c1, . . . , cn)> which minimize the norm

‖Hnc− ‖f‖ e1‖2 ;

3: Define

vLn = qnc =
n∑

k=1

ckqk.

When 〈·, ·〉 is an inner product or Arnoldi iteration succeeds, the columns of qn span Kn[L, f ].

Thus gmres does indeed compute an element with minimal seminorm:

‖Lqnc− f‖ = ‖qn+1Hnc− ‖f‖ q1‖ = ‖qn+1 [Hnc− ‖f‖ e1]‖ = ‖Hnc− ‖f‖ e1‖ .

When we apply Arnoldi iteration to the operator M, we denote the Hessenberg matrix

returned by Hn,ω, to emphasize the dependence on ω. If we used this algorithm without

modification, we would have to recompute the approximation from scratch for each choice

of ω. But, due to the special structure of our operator, we can actually reuse most of the

computation for other choices of ω. The key is the following theorem:

Theorem 2.4 Suppose f ∈ Bn+1[P ] and that Arnoldi iteration with P and f succeeds,

returning q̃n and H̃n. Then Arnoldi iteration applied to the operator M = P + iω returns

qn = q̃n and the Hessenberg matrix

Hn,ω = H̃n + iωIn+1,n for the n+ 1× n matrix In+1,n =


1

. . .
1

 .

Proof : We first show that qn = q̃n. The theorem is trivially true for q1 = f
‖f‖ . Now

assume that qk = q̃k Note that

qk+1 ∈ span {q1, . . . , qk,Pqk + iωqk} = span {q1, . . . , qk,Pqk} . (2.1)

The element in the space span {q1, . . . , qk,Pqk} orthonormal to qk is unique, hence qk+1

must be equal q̃k+1.

Now let h̃i,j be the (i, j)th entry of the matrix H̃n. Then, for i ≤ j + 1,

hi,j = 〈qn+1Hn,ωei, qj〉 = 〈(P + iω)qnei, qj〉
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= 〈Pqi, qj〉+ iω 〈qi, qj〉 =
〈
qn+1H̃nei, qj

〉
+ iωδi,j = h̃i,j + iωδi,j .

Q.E.D.

We use this theorem to alter the gmres algorithm:

Algorithm 2.5 Modified GMRES

Given f ∈ Bn+1[P ] , compute vMn as follows:

1: Precompute qn and H̃n using Arnoldi iteration with P and f ;

2: Define Hn,ω = H̃n + iωIn+1,n;

3: Use least squares to find coefficients c = (c1, . . . , cn)> which minimize the norm

‖Hn,ωc− ‖f‖ e1‖2 ;

4: Define

vMn = qnc =
n∑

k=1

ckqk.

We can use this formulation to say something about the stability of the algorithm. We

will show that the least squares step is well-conditioned as ω → ∞. This is confirmed in

numerical experiments, where larger ω results in better numerical stability.

Corollary 2.6 For any condition number κ and fixed n, κ(Hn,ω)→ 1 as ω →∞.

Proof :

Note that

H?
n,ωHn,ω = Hn,0

?Hn,0 + iω(Hn,0
?In+1,n + In+1,nHn,0)− ω2In.

Since the condition number κ of a nonsingular matrix depends continuously on its entries,

we obtain

κ(H?
n,ωHn,ω) = κ

(
ω2
[
In +O

(
ω−1

)])
= κ

(
In +O

(
ω−1

))
→ κ(In) = 1.

Q.E.D.

3. Convergence

As with any numerical method, an important question is whether the computed results

converge to the true solution. In this section we will derive fairly weak conditions on f and

g which ensure convergence. As an example, consider the integral∫ 1

0
cosx eiω(x2+x) dx.

7



5 10 15 20 25 30
n10-16

10-13

10-10

10-7

10-4

0.1
Differential GMRES

5 10 15 20 25 30
n10-16

10-11

10-6

0.1

104

109

Asymptotic Expansion

Figure 1: Errors in approximating
∫ 1
0 cosx eiω(x2+x) dx by QMn [f ] (left) and the n-term asymp-

totic expansion (right) for ω = 1 (plain), 10 (dotted), 50 (dashed) and 100 (thick).

In Figure 1 we compare the error in approximating I[f ] (computed by Mathematica using

the NIntegrate routine) by QMn [f ] to that of the asymptotic expansion of the same order,

for ω = 1, 10, 50 and 100. As can be seen, this new method converge for each choice of ω,

while the asymptotic expansion diverges super-geometrically fast.

Recall that ‖·‖S denote the supremum norm over a set S of complex points. Now define

the following class of functions:

Definition 3.1 G[L,Ω] is the class of functions f ∈ C∞[Ω] such that for every ε > 0 there

exists an n and a g ∈ Kn[L, f ] such that

‖f − Lg‖Ω < ε.

When Ω is bounded, convergence in the supremum norm immediately implies convergence

in the L2 norm. Thus, if f ∈ G[M,Ω], then∣∣∣I[f ]−QMn [f ]
∣∣∣ =

∣∣∣I[f −MvMn
]∣∣∣ ≤ √b− a ∥∥∥f −MvMn

∥∥∥
2
→ 0, as n→∞.

Since g is monotonic and smooth, its inverse exists and is C∞[cl (g(a), g(b))]. Consider

the function

w(t) =
f(g−1(t))

g′(g−1(t))
eiωt, for t ∈ cl (g(a), g(b)).

Note that

w′(t) =

[
f ′(g−1(t))

g′(g−1(t))2
− f(g−1(t))g′′(g−1(t))

g′(g−1(t))3
+ iω

f(g−1(t))

g′(g−1(t))

]
eiωt =

Mf(g−1(t))

g′(g−1(t))
eiωt.

Induction reveals that

w(k)(t) =
Mkf(g−1(t))

g′(g−1(t))
eiωt,
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and hence

g′(x)e−iωg(x)span
{
w(g(x)), . . . , w(n−1)(g(x))

}
= Kn[M, f ] .

Thus f ∈ G[M,Ω] if and only if w ∈ G[D, cl (g(a), g(b))].

Conditions for which a function can be approximated by its own derivatives in Ω were

derived in [13]. These conditions require the following class:

Definition 3.2 For a sequence of open balls B = {B1, B2, . . .} in the complex plane (i.e.,

Bk = {z : |z − pk| < εk} for some complex point pk and positive real number εk), P [Ω,B] is

the set of functions f defined for every ball in B such that ‖f‖Ω+Bk
→ 0 as k →∞.

Definition 3.3 P [Ω] is the union of P [Ω,B] over all sequences B.

The following theorem states that a function which decays in the complex plane in a sequence

of domains larger than Ω can be approximated by its derivatives in Ω, subject to some minor

conditions on analyticity.

Theorem 3.4 [13] w ∈ G[D,Ω] if either of the following conditions hold:

• w is entire, Ω is bounded and w ∈ P [Ω];

• w is analytic in a domain D, w ∈ P [Ω,B] where zero and B are in an open simply

connected domain U such that U + Ω ⊂ D, and w is bounded in u+ Ω for all u ∈ U .

The presence of the eiωt kernel in w allows us to find a simpler (but weaker) condition that
ensures convergence:

Corollary 3.5 Suppose that f(g−1(t))/g′(g−1(t)) can be analytically continued to a func-

tion which has finitely many singularities and at most exponential growth in the first quad-

rant of the complex plane, and that a is bounded. Then f ∈ G[M,Ω] for sufficiently large
ω.

In analogy to the finite dimensional case, linear dependence of f,Mf, . . . ,Mn−1f typi-

cally implies convergence of gmres:

Theorem 3.6 If 〈·, ·〉 is an inner product, f ∈ Bn+1[L] and the dimension of Kn[M, f ] is

r < n for some n ≥ 1, then QMn [f ] = I[f ] except for at most r values of ω.

Proof : Arnoldi iteration gives us a Hessenberg matrix Hr,ω such that Mqr = qr+1Hr,ω,

where qr+1 = 0. Define Ĥr,ω as the square matrix consisting of the upper-left r × r block of

Hr,ω. Thus (note that the dimension of e1 changes)∥∥∥MvMn − f
∥∥∥ = ‖qr+1 [Hr,ωc− ‖f‖ e1]‖ =

∥∥∥qr

[
Ĥr,ωc− ‖f‖ e1

]∥∥∥ =
∥∥∥Ĥr,ωc− ‖f‖ e1

∥∥∥
2
.
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We know that Ĥr,ω = Ĥr,0 + iωIr; hence det Ĥr,ω is a degree-r polynomial in ω. Since the

inverse of a nonsingular matrix depends continuously on its entries, Ĥr,ω is nonsingular for

sufficiently large ω, which implies that det Ĥr,ω is not identically zero as a function of ω.

Thus there are at most r values of ω such that det Ĥr,ω vanishes. When this determinant

does not vanish, setting c = Ĥ−1
r,ωe1 results in

∥∥∥MvMn − f
∥∥∥ = 0. Thus f = MvMn (since

both functions are continuous), and hence

I[f ] = I
[
MvMn

]
= QMn [f ] .

Q.E.D.

4. Asymptotics

As seen in Figure 1, not only does differential gmres converge, but in fact the rate of

convergence increases as the frequency increases. In this section we explain this phenomenon

by proving that the error behaves like O
(
ω−n−1

)
as ω →∞. Consider again the integral

∫ 1

0
cosx eiω(x2+x) dx.

Instead of investigating the behaviour of the error of QMn [f ] as n → ∞ with fixed ω, we

want to see how the error behaves as ω →∞ with fixed n. In Figure 2 we compare the error

in approximating I[f ] by QMn [f ] to that of the asymptotic expansion of the same order, for

n = 3, 6, 10 and 20. Note that the peaks in the top-left graph are not singularities. While

both the n-term asymptotic expansion and QMn [f ] decay at the same rate as ω → ∞, a

dramatic increase in accuracy over the asymptotic expansion is obtained, with the increase

becoming more significant as n increases.

To establish the asymptotic order of QMn [f ], we will show that it must take into ac-

count the behaviour of the asymptotic expansion. Thus we first present a derivation of the

asymptotic expansion of a particular solution of Lv = f . An asymptotic expansion for the

integral I[f ] is typically found using integration by parts. We, however, want a solution to

the associated differential equation, and hence we use a slightly different, though equivalent,

formulation. We will require the following lemmas in several of the proofs that follow. The

first lemma states that any two seminorms are in some sense asymptotically equivalent for

functions in Kn[M, f ].

Lemma 4.1 Let |‖ · ‖| be a seminorm and f ∈ Bn

[
D 1

g′ , ‖·‖+ |‖ · ‖|
]
, and assume that n− 1

Arnoldi iterations succeed, or that 〈·, ·〉 is an inner product. If pω ∈ Kn[M, f ] and ‖pω‖ =

O(1), as ω →∞, then |‖ pω ‖| = O(1).
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Figure 2: Errors in approximating
∫ 1
0 cosx eiω(x2+x) dx. In the top graphs, error for QMn [f ] (left)

and the n-term asymptotic expansion (right), for n = 3 (plain) 6 (dotted), 10 (dashed) and 20
(thick). In the bottom graphs the same errors, each scaled by ωn+1.

Proof : Suppose Kn[M, f ] has dimension r. Let qr be the basis for Kn[M, f ] obtained

via r − 1 Arnoldi iterations with 〈·, ·〉, which Theorem 2.4 states is independent of ω. Thus

pω(x) = qr(x)cω where cω is independent of x. Note that ‖cω‖2 = ‖pω‖ = O(1). Then

|‖ pω ‖| = |‖ qrcω ‖| ≤ nmax {|‖ q1 ‖|, . . . , |‖ qr ‖|} ‖cω‖∞ = O(1) , ω →∞.

Q.E.D.

Lemma 4.2 Let f ∈ Bm

[
D 1

g′ , ‖·‖+
∥∥∥ ·g′ ∥∥∥∞ +

∥∥∥D 1
g′ ·
∥∥∥

1

]
, and assume that m − 1 Arnoldi

iterations succeed, or that 〈·, ·〉 is an inner product. Suppose we are given pω ∈ Kn[M, f ]

such that ‖pω‖ = O
(
ω−s

)
. If m ≥ n, then

I[pω] = O
(
ω−s−1

)
.

Furthermore, if m ≥ n+ 1 and 0 = pω(a)
g′(a) = pω(b)

g′(b) , then

I[pω] = O
(
ω−s−2

)
.

11



Proof :

Note that ωspω satisfies the conditions of the preceding lemma with |‖ · ‖| =
∥∥∥D 1

g′ ·
∥∥∥

1
+∥∥∥ ·g′ ∥∥∥∞, hence |‖ pω ‖| = O

(
ω−s

)
. Integrating by parts we obtain

|I[pω]| =
∣∣∣∣∣
∫ b

a
eiωgpω dx

∣∣∣∣∣ =

∣∣∣∣∣ 1

iω

[
pω(b)

g′(b)
eiωg(b) − pω(a)

g′(a)
eiωg(a)

]
− 1

iω
I

[
Dpω

g′

]∣∣∣∣∣
≤ 3

ω
|‖ pω ‖| = O

(
ω−s−1

)
.

(Recall that we have assumed that pω(b)
g′(b) eiωg(b) and pω(a)

g′(a) eiωg(a) exist.) For the second part of

the theorem we note that the first term in the above expansion is zero, and by integrating

by parts once more we obtain:

I[pω] = − 1

iω
I

[
Dpω

g′

]

=
1

ω2

{
1

g′(b)
D
[
pω

g′

]
(b)eiωg(b) − 1

g′(a)
D
[
pω

g′

]
(a)eiωg(a)

}
− 1

ω2
I

(D 1

g′

)2

pω


= O

(
ω−s−2

)
.

Q.E.D.

We now obtain the classical asymptotic expansion:

Theorem 4.3 Let f ∈ Bn+1

[
D 1

g′ , ‖·‖+
∥∥∥ ·g′ ∥∥∥∞ +

∥∥∥D 1
g′ ·
∥∥∥

1

]
, and assume that n Arnoldi iter-

ations succeed, or that 〈·, ·〉 is an inner product. The residual of the asymptotic expansion

is ∥∥∥f − LvA
n

∥∥∥ = O
(
ω−n

)
for vA

n = −
n∑

k=1

(−iω)−k 1

g′

(
D 1

g′

)k−1

f.

Furthermore

I[f ]−QA
n [f ] = O

(
ω−n−1

)
,

where

QA
n [f ] = I

[
LvA

n

]
= vA

n (b)eiωg(b) − vA
n (a)eiωg(a).

Proof : Clearly ∥∥∥f − LvA
1

∥∥∥ =
∥∥∥DvA

1

∥∥∥ =
1

iω

∥∥∥∥∥D 1

g′
f

∥∥∥∥∥ = O
(
ω−1

)
.

12



The first part of the theorem then follows from induction. From (2.1) we know that

Kn[M, f ] = span

f,D 1

g′
f,

(
D 1

g′

)2

f, . . . ,

(
D 1

g′

)n−1

f

 = Kn

[
D 1

g′
, f

]
.

It follows that g′vA
n ∈ Kn[M, f ]. The theorem follows from Lemma 4.2 with

pω = f − LvA
n = f −Mg′vA

n ∈ Kn+1[M, f ].

Q.E.D.

The residual of the differential gmres approximation must be smaller than that of the

asymptotic expansion:

Lemma 4.4 Let f ∈ Bn+1

[
D 1

g′ , ‖·‖+
∥∥∥ ·g′ ∥∥∥∞ +

∥∥∥D 1
g′ ·
∥∥∥

1

]
, and assume that n Arnoldi itera-

tions succeed, or that 〈·, ·〉 is an inner product. Then∥∥∥f −MvMn
∥∥∥ = O

(
ω−n

)
.

Proof : Since gmres minimizes the seminorm the residual, MvMn must approximate f

better than the asymptotic expansion:∥∥∥f −MvMn
∥∥∥ ≤ ∥∥∥f −Mg′vA

n

∥∥∥ =
∥∥∥f − LvA

n

∥∥∥ = O
(
ω−n

)
.

Q.E.D.

When Ω is bounded, a bound on the residual automatically gives us a bound on the

quadrature error:∣∣∣I[f ]−QMn [f ]
∣∣∣ =

∣∣∣I[f −MvMn
]∣∣∣ ≤ √b− a ∥∥∥f −MvMn

∥∥∥
2

= O
(
ω−n

)
.

However, this bound is not sharp: we actually achieve an order of accuracy of O
(
ω−n−1

)
.

Theorem 4.5 Let f ∈ Bn+1

[
D 1

g′ , ‖·‖+
∥∥∥ ·g′ ∥∥∥∞ +

∥∥∥D 1
g′ ·
∥∥∥

1

]
, and assume that n Arnoldi iter-

ations succeed, or that 〈·, ·〉 is an inner product. Then

QMn [f ]− I[f ] = O
(
ω−n−1

)
.

Proof : This estimate follows by combining the fact that f −MvMn ∈ Kn+1[M, f ] with

Lemma 4.4 and Lemma 4.2.

Q.E.D.
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Figure 3: The error scaled by ωn+2 in approximating
∫ 1
0 cosx eiω(x2+x) dx by QMn,n for n = 2

(plain) 5 (dotted) and 9 (dashed).

Though the integrals we are computing are oscillatory, the elements of the Krylov sub-

space are not, at least with respect to ω → ∞. However, the higher order elements of the

orthogonal basis {q1, . . . , qn} are typically oscillatory with respect to n →∞, which means

that computing L2 inner products in the Arnoldi process becomes increasingly difficult as

n→∞. To avoid this issue, we replace the continuous inner product with the discretization

〈〈·, ·〉〉m, based on Clenshaw–Curtis quadrature with m points. This raises the question: is the

asymptotic accuracy maintained? The answer to the question is largely affirmative, though

it depends on how many iterations of Arnoldi can successfully be performed. We actually

get a higher asymptotic order with the discrete semi-inner product if m = n and Arnoldi

fails at the nth iteration. This is seen in Figure 3, where the same asymptotic orders as in

Figure 2 are achieved with one less iteration. In this case,MvMm,n actually interpolates f at

the quadrature points, and hence preconditioned differential gmres is essentially a numeri-

cally stable way of computing a Levin-type method with the asymptotic basis, developed in

[10].

Theorem 4.6 Suppose that f ∈ Bn+1

[
D 1

g′ , ‖·‖+ |‖ · ‖|+
∥∥∥ ·g′ ∥∥∥∞ +

∥∥∥D 1
g′ ·
∥∥∥

1

]
, where 〈·, ·〉 is

an inner product and 〈〈·, ·〉〉 is a semi-inner product such that |‖ p ‖| = 0 implies that p(a)
g′(a) =

p(b)
g′(b) = 0 for all p ∈ Kn[M, f ]. If Arnoldi iteration with 〈〈·, ·〉〉 fails at r iterations, then

I[f ]−QMm,n[f ] = O
(
ω−r−2

)
, ω →∞.

Otherwise,

I[f ]−QMm,n[f ] = O
(
ω−n−1

)
, ω →∞.

Proof :

14



When Arnoldi iteration succeeds, the theorem follows from Theorem 4.5. Otherwise, we

have Mqr = qr+1Hr,ω + ur+1,re
>
r , where qr+1 = 0 and |‖ur+1,r ‖| = 0. Using the notation

of the proof of Theorem 2.4, we find that ur+1,r is independent of ω:

ur+1,r =Mqr −
r∑

j=1

hj,rqj = Dqr
g′

+ iωqr −
r∑

j=1

h̃j,rqj − iωqr = Dqr
g′
−

r∑
j=1

h̃j,rqj .

Similar to the proof of Theorem 3.6,

|‖MvMm,n − f ‖| = |‖ qr+1 [Hr,ωc− |‖ f ‖|e1] ‖| =
∥∥∥Ĥr,ωc− |‖ f ‖|e1

∥∥∥
2
. (4.1)

Again, large ω ensures that Ĥr,ω is nonsingular; thence, Ĥr,ωc− |‖ f ‖|e1 = 0. Thus∥∥∥MvMm,n − f
∥∥∥ =

∥∥∥qr

[
Ĥr,ωc− |‖ f ‖|e1

]
+ crur+1,r

∥∥∥ = |cr| ‖ur+1,r‖ .

We need to find the asymptotic order of cr. Note that, for sufficiently large ω,

c = |‖ f ‖|Ĥ−1
r,ωe1 =

1

iω
|‖ f ‖|

(
1

iω
Ĥr,0 + Ir

)−1

e1

=
1

iω
|‖ f ‖|

[
Ir −

1

iω
Ĥr,0 +

(
− 1

iω
Ĥr,0

)2

+ · · ·+
(
− 1

iω
Ĥr,0

)r−1

+O
(
ω−r

)]
e1.

Since Ĥr,0 is Hessenberg, the last row of Ĥk
r,0e1 is zero for k ≤ r−2. Thus cr = O

(
ω−r

)
, and∥∥∥MvMm,n − f

∥∥∥ = O
(
ω−r

)
. We can apply the second part of Lemma 4.2 with pω =MvMm,n−f ;

hence,

I[f ]−QMm,n[f ] = I
[
f −MvMm,n

]
= O

(
ω−r−2

)
.

Q.E.D.

5. Numerical results

In most of the following examples, Ω is bounded, so the conditions on f being in Bn+1[M]

are satisfied for all the norms considered. One property of the differential gmres method

we have not yet explored is that it does not depend on ω being real. In Figure 4 we compute

I[1] =
∫ 1

0
eiω sin x dx

for ω on four circles in the complex plane. As can be seen, differential gmres in some sense

approximates the integral uniformly throughout the complex plane. Note that the relative

error will still explode at zeros of I[1], and thus a more sensible “relative error” would be∣∣∣I[1]−QMn [1]
∣∣∣

‖eiωg‖2
,
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Figure 4: The relative error in approximating
∫ 1
0 eiω sin x dx by QMn [f ] for n = 1 (plain), 5

(dotted), 10 (dashed) and 15 (thick) and ω = eit, 25eit, 50eit and 100eit.

in which case uniform convergence follows from the bound∣∣∣I[1]−QMn [1]
∣∣∣ =

∣∣∣I[1−MvMn
]∣∣∣ ≤ ∥∥∥1−MvMn

∥∥∥
2

∥∥∥eiωg
∥∥∥

2
.

Remark : To compute the exact values of the integral, we had to increase the working

precision of Mathematica’s NIntegrate to 20 digits. Computing QMn [1] still only used

machine precision arithmetic.

A class of integrals where differential gmres significantly outperforms other oscillatory

methods are those in which f itself has oscillations in the form of an exponential oscillator.

Filon-type, moment-free Filon-type and Levin-type methods are all based on polynomial

approximation, which cannot capture oscillations in f without using high degree polynomials.

Suppose that f = reikp where p′ 6= 0, r and p are smooth functions and k is real. Note that

Mf = eikp

[
D 1

g′
+ ik

p′

g′
+ iω

]
r.

It follows that applying M to f results in a function with the same kernel of oscillations,

hence we can write any function in Kn[M, f ] as r̃eikp for some nonoscillatory (with respect
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Figure 5: The error in approximating
∫ 1
0 eikx+iω(x3+x) dx by QMn

[
eikx

]
for k = 1 (plain), 25

(dotted) and 100 (dashed) and four choices of ω.

to ω and/or k increasing) function r̃. Let f1 = r1eikp and f2 = r2eikp be two functions in

Kn[M, f ]. Then their L2 inner product is

〈f1, f2〉 =
∫ b

a
r1r̄2eikpe−ikp dx = 〈r1, r2〉 ,

which is nonoscillatory. In Figure 5 we compute

I
[
eikx

]
=
∫ 1

0
eikx+iω(x3+x) dx

using QMn
[
eikx

]
for twelve choices of ω and k. This demonstrates that the method does not

degenerate as k increases, and the rate of convergence still increases with ω.

Unless we are given f and g symbolically, it is not possible to find Mf in closed form.

There are several situations where the integrand is indeed given symbolically, for example

when applying a spectral method to a specific differential equation, or when computing a

special function from its integral representation. As an example of the latter kind, consider

the computation of the Airy function, in particular when x is negative and the Airy function
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is oscillatory. We utilize the integral representation

Ai(x) =
1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt. [1]

We can transform this expression into a form more conducive to differential gmres, giving
us

Ai(x) = Re


√
−x
π

∫ ∞
0

e
i(−x)3/2

„
t3

3 −t

«
dt

 .
We thus define f(t) = 1, g(t) = t3

3 − t and ω = (−x)3/2. This integral contains a stationary

point at t = 1—i.e., g′(1) = 0—which is incompatible with the method we have developed.

Thus we split the interval into (0, 2) and (2,∞). On the first interval we could use a Moment-

free Filon-type method. As it is outside the scope of this paper, we simply compute the

integral over (0, 2) to machine precision, and focus on the latter interval. The integral is free

of stationary points in (2,∞), and hence we employ differential gmres with the Laguerre

inner product

〈p, r〉L =
∫ ∞

2
p(t)r̄(t)e−t dt.

We now show that the conditions of Theorem 4.5 are satisfied which reveal the asymptotic

order of the approximation method. Note that

D v
g′

= D v

t2 − 1
=

1

t2 − 1
v′ − 2t

(t2 − 1)2
v,

hence

D 1

g′
= − 2t

(t2 − 1)2
,

(
D 1

g′

)2

= 2
1 + 5t2

(t2 − 1)4
and

(
D 1

g′

)3

= −40
t+ 2t3

(t2 − 1)6
.

(Here, D 1
g′ does not denote an operator, but rather the operator D 1

g′ applied to the function

1.) A straightforward inductive argument says that
(
D 1

g′

)k
= O

(
t−3k

)
. It follows that

1 ∈ Bn+1

[
D 1

g′
, ‖·‖L +

∥∥∥∥∥ ·g′
∥∥∥∥∥
∞

+

∥∥∥∥∥D 1

g′
·
∥∥∥∥∥

1

]

for all n. We thus approximate Ai(x) by

Ãin(x) =

√
−x
π

Re


∫ 2

0
e

i(−x)3/2
„

t3

3 −t

«
dt+QMn [1]

 ,
which Theorem 4.5 states has an asymptotic order of

Ai(x)− Ãin(x) = O
(
x−

3
2n−1

)
, x→∞.
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Figure 6: The error in approximating Ai(x) by Ãin(x) (left) and the n-term asymptotic expansion
(right) for n = 1 (plain), 5 (dotted), 10 (dashed) and 15 (thick).

For any choice of g−1, the analytic continuation of 1
g′(g−1(t))

has only algebraic growth in

the complex plane. Thus 1
g′(g−1(t))

e(−x)3/2t decays in the upper half plane for all negative x,

and Theorem 3.4 implies that 1 ∈ G[M,Ω]. Now convergence in the Laguerre norm follows:

∥∥∥1−MvMn
∥∥∥2

L
=
∥∥∥∥∣∣∣1−MvMn

∣∣∣2 e−t
∥∥∥∥

1
≤
∥∥∥1−MvMn

∥∥∥2

∞

∥∥∥e−t
∥∥∥

1
.

Perturbing the integration path of I[1] so that it has positive real part suggests that the

contribution of the integral over (T,∞) is super-geometrically small as T → ∞. It should

then follow that convergence in the Laguerre norm implies convergence of Ãin(x) to Ai(x),

as long as vMn does not blow up considerably in a complex neighbourhood of (2,∞) as

n→∞—a condition which we do not prove. Figure 6 shows the error in the approximation

method for four choices of n.

Remark : We needed to increase the precision to 20 digits in Mathematica in order to

compute Ai(x) accurately enough to compare to Ãin(x). On the other hand, we only used

machine precision arithmetic to compute QMn [1], though we did use 20 digit arithmetic to

compute the integral over (0, 2) to machine precision.

There exist many alternative methods for approximating Airy functions for large |x|,
many based on deformation of the integration contour into the complex plane and integrating

along the path of steepest descent. A comprehensive list of algorithms was compiled in [8].

In [3], Gauss–Laguerre quadrature is utilized along the path of steepest descent, though

the error is never compared to the asymptotic expansion, and it is unclear whether high

asymptotic orders are achieved. It is instead suggested to switch to the asymptotic expansion

whenever |x| is large, for example |x| ≥ 15. The benefit of our approach is we can use the

same method for large and small x, as long as x is bounded away from zero. Furthermore, if
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Figure 7: The error in approximating
∫ 1
0 e
− 1

x2 +iωx
dx by QMn [f ] (left) and an n-point Gauss–

Legendre rule (right), for ω = 1 (plain), 50 (dotted), 100 (dashed) and 200 (thick).

more than machine precision is required, the accuracy of asymptotic expansions is limited,

whereas Ãin is arbitrarily accurate.

Using the property that QMn [f ] remains accurate in the complex plane—demonstrated

in Figure 4—presents the intriguing possibility that a uniform approximation to the Airy

function throughout the complex plane can be found. Whether complications arising from the

change of variables and choice of integration path can be overcome has yet to be investigated.

All examples so far have utilized analytic functions, and seem to roughly achieve super-

algebraic convergence. On the other hand, if f is only Cr, convergence is impossible: the

Krylov subspace depends on derivatives and is no longer well-defined. This leaves one other

possible set of functions f for which we can use this approximation method: functions which

are C∞ but not analytic. Thus consider the integral

∫ 1

0
e
− 1

x2 +iωx
dx.

This has a single point where analyticity is lost: at x = 0. Unfortunately, it seems in Figure 7

that convergence to the exact solution is no longer achieved, though the asymptotic decay

rate is still maintained due to Theorem 4.5, which never utilized analyticity. If we choose an

integration range that does not contain zero, then convergence is again guaranteed.

6. Closing remarks

We have presented a new method for computing oscillatory integrals that captures

the asymptotic decay of the asymptotic expansion, and in some sense converges uniformly

throughout the complex plane. Furthermore, it remains accurate when the integrand has

oscillations at multiple scales. The method shows potential for computing uniform approxi-

mations to special functions with integral representations.
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Since the method is based on finding a particular solution to a first order differential

equation, it raises the possibility of generalizing differential gmres to compute higher order

ordinary, or even partial, differential equations. There are several additional complications in

these situations which must be overcome, for example imposing initial or boundary conditions

and proving convergence.
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