
Model Checking in an Industrial Environment

Ulrich Hensel1, Eva Fordran2, Matthias Fruth1/2, Hu Shaoyu1, Madabhushi Srinivasan1

Abstract - This paper presents experiences in applying model checking to register transfer level (RTL) design verifi-
cation tasks. The presentation focuses on the description of typical verification problems and their formal capture as
well as the application of reduction techniques. Moreover the paper briefly reports on those spots in the verification
flow where model checking may be applied successfully.
The paper discusses various rather typical RTL blocks that were subject to formal verification: FIFO control logics
and arbiter blocks. These real-world examples provide a set of interesting verification challenges such as proper clock
descriptions, synchronous constraints, multiple unaligned clock domains, usage of partial reference models, applica-
tion of reduction techniques.

1 Introduction

This paper presents experiences gained during the application of model checking to design verifi-
cation at AMD’s Dresden Design Center (DDC).

The standard RTL (register transfer level) design verification at the DDC is currently based on sim-
ulation on both block and system level. The simulation environment exploits different high-level
approaches and tools for an efficient test vector generation, check and coverage analysis. In partic-
ular, test benches and tests are written using a high level verification language providing random
generation based on constraint solving, temporal expressions, definition and collection of function-
al coverage, means for reuse of verification components, etc.

Based on this language the DDC follows the method of coverage driven verification where cover-
age analysis is fed back to test case constraints to improve the coverage of a (randomized) test case.
Coverage driven verification ensures a high level of confidence once the coverage goal is reached
while it keeps at the same time the number of required test cases to a minimum.

Formal verification based on model checking complements this simulative approach. Model
checking seems to fit well into the following verification stages:

— Early in the design cycle: Model checking may produce sanity and basic functional results
on block level very quickly. Reset properties, simple data flow, and request-acknowledge
schemes seem to be simple properties and reveal missing assumptions or errors quickly.

— Concurrently with system level simulation: Especially crucial blocks like (inhouse) IP or
central control structures deserve a full-fledge formal verification. This on the other hand
requires a sufficient behavioral interface description in the architecture specification. In

1 AMD Saxony LLC&Co.KG, Dresden Design Center, M/S I21-DC, PF 110 110,

D-01330 Dresden, Mail: ulrich.hensel@amd.com
2 Fraunhofer-Institut für Integrierte Schaltungen IIS, Außenstelle EAS Dresden

Zeunerstraße 38, 01069 Dresden
Mail: fordran@eas.iis.fhg.de



fact, the applications in this paper belong mainly to this scenario.

— Late in the design cycle, corner case search and debug aid: Double-check and debug
error conditions that appeared on system level simulation or even emulation. In this case
model checking can be applied on a block that turned out to produce rather unstable verifi-
cation results. Model checking can help in identifying the error cause quickly once the error
condition has been put into a safety property.

The paper starts with a brief introduction into model checking methodology in Section 2. The de-
scription of the application domain follows in Section 3. In particular, Section 3 presents the de-
signs under verification FIFOs and arbiters and the properties (informally) and, moreover, touches
briefly on the verification results. Section 4 finally discusses the lessons we have learned from our
model checking adventure including clocking schemes, modelling techniques, and reduction tech-
niques.

2 A Brief Model Checking Primer

Today verification based on formal model checking achieves more and more acceptance. In con-
trast to simulation, formal methods can exhaustively prove the correctness of a design with respect
to a set of properties. But they suffer from the so-called ‘state space explosion’ and therefore run
successfully on small to medium-sized modules or blocks only [2, 6, 8]. Model checking is also
more suitable for control logic blocks rather than arithmetic blocks.
Instead of developing test cases or test vectors, model checking starts with the formalization of a
given specification within properties. Properties describe the behavior of a design using a temporal
logic. For instance a property could require that each request is answered by a grant eventually if
no reset is asserted. The model checker attempts to verify such properties for all input pattern se-
quences, that is, there is no test vector needed. However, the input behaviors need to be legal: there-
fore constraints can be formulated and applied. The constraint is akin to a property however it is
assumed to be true for the verification run. For instance a constraint could ensure that a certain in-
put is stable with respect to to an enable signal.

Model checking hunts the whole reachable state space. The result is either that ‘the property holds’
(at all possible circumstances) or ‘the property fails’. If the property fails, the model checker gives
an error trace for this property that can be debugged using a waveform viewer. The principle of
model checking is shown in Fig. 1.

Using model checking for real industrial designs needs preliminary arrangements of modeling, ab-
straction techniques, clock handling, reduction techniques, etc. The publications [1, 3, 4, 5, 9] dis-
cuss various possibilities of handling industrial designs for verification. A combination of different
formal verification methods (Symbolic Trajectory Evaluation and model checking in [4], theorem
proving and model checking in [5], pseudo-random testing and model checking in [1]) allows to
shrink the state space for model checking. Abstraction [9] and reduction techniques chase the same
goal. H.Choi and others [3] show one possibility to model unsynchronized clocks. This paper fo-
cuses mainly on clock modeling and reduction methods.

design
(RTL)

specification properties
model checker

property holds

property fails
error trace given

constraints

Figure 1:principle of model checking



3 Designs-Under-Verification (DUVs) - Industrial Examples

The designs under verification considered in this paper are subblocks of PC infrastructure chips
also called chipsets. These chipsets inhabit a variety of peripheral controllers. From the verification
point of view the application domain has the following characteristics:

— There are almost no data path processing blocks containing, for instance, large multipliers.

— Most of the structures are control oriented such as address decoders, DMA controllers, arbi-
tration schemes, timer blocks, etc.

— There are many different clock domains.

3.1 FIFOs

FIFOs are normally implemented using registers or with a RAM. The paper discusses FIFOs based
on dual-port-RAMs only. Such FIFOs can write and read at the same time. They have different
pointers for write and read. The paper discusses the verification of distinct FIFOs. The enumeration
below presents a set of general properties applicable to both FIFOs.

• General FIFO properties

— After an active reset, the input-, output- and internal registers or signals transition to their
defined reset values.

— If there is no write or read operation then the pointers hold their values.

— If the FIFO is writing/reading then the write/read pointer is incrementing.

— If the two pointers are equal then the FIFO is full or the FIFO is empty.

— The read pointer always follows the write pointer

— If the FIFO is full then writing does not change the content

— If the FIFO is empty then reading does not produce valid results

— Data written successfully into the FIFO can be read out if there is no reset in between (Data
content check)

— Data ordering is preserved.

• FIFO_1: a dual clock FIFO IP containing the RAM

The first example is a parameterized FIFO block intended as reusable component. The desired re-
use justifies the application of formal methods to achieve a very high confidence in the block.

FIFO_1 (for an interface see Fig. 2) is based on a dual port RAM. The FIFO comes equipped with
a parameterizable depth and width. The target instantiation of the block carries 256 32bit words.

The clock signal in_clk drives the input domain and the clock signal out_clk the output domain.
The clocks are asynchronous and there is no known frequency relationship. Also the clock edges
have no relationship. Thus the FIFO can be used as a multi-purpose synchronization block. The
FIFO block should be verified in a black box approach basically as given i.e. including the RAM.

The main goal for this verification is to prove data consistency and ordering.

• FIFO_1: Results

FIFO_1s original target size together with its free ranging clock domains make the model checker
fail because it runs out of memory. Reduction in the parameter values however results in a success-



ful verification: model checking of the downscaled 8x2 FIFO proves all properties including the
demanding data consistency and ordering properties. Runtimes are less than an hour.

• FIFO_2: a dual clock FIFO controller

FIFO_2 is a control block within a DMA controller (Fig. 3). The block serves as a coordinator be-
tween a package handler and a host protocol which belong to two clock domains. The package han-
dler receives data from downstream and writes them into a 32-deep 4-byte-wide buffer. The 4-bit
signal write_en indicates the progress of the bytes written into one element of the buffer. Every
time four bytes writes, the controller increases the pointer write_ptr holding the position of the
writer. As a counterpart, the host protocol reads out the data from the buffer and sends them up-
stream. The signal read_en indicates the read action and four bytes are read out from the buffer
within one read cycle. The pointer read_ptr holding the position of the reader is increased when-
ever the read action is done. All the pointers are controlled in a wrapped around manner. In contrast
to FIFO_1 the two clocks stand in fixed relationship however they are not phase locked that is their
edges are not aligned. They run at a speed relationship of 3 to 5. The signal diff_ptr indicates how
many elements reside in the FIFOs buffer.

• FIFO_2: Results

FIFO_2 is also a rather large block for model checking. Down-scaling as in FIFO_1 cannot be ap-
plied easily because this design is not parameterized. The model checker runs only successfully
after using its reduction techniques. Such techniques, offered by the used model checker, are, for
instance, one step or iterative cone of influence reductions, deleting inactive variables, etc. All re-
duction techniques pursue the target of shrinking the state space.

Constraints model the two alive clocks using counters to realize their fixed relationship 3:5.

data_in

write_en

in_clk

fifo_full

data_out

read_en

out_clk

fifo_empty

FIFO_1

reset Output domainInput domain

Figure 2:interface of FIFO_1

data_in
write_en
clock_wr

data_out
read_en
clock_rd

read_ptr

FIFO_2reset_wr
update_wr
update_ptr

write_ptr

reset_rd
update_rd

diff_ptr
fifo_full

Figure 3:interface of FIFO_2



The model checker shows that one corner case property does not hold: The signal fifo_full is not
asserted even when FIFO_2 contains 32 elements, because the signal diff_ptr never reaches the val-
ue 32. The examination of the counter example reveals the cause of failure: fifo_full is only assert-
ed when the 33rd element is written. The specification did not cover this specific behavior of
fifo_full.

3.2 Arbiter

Arbiter are control devices that manage exclusive access of a set of requestors to a common re-
source. The paper touches on the verification of two different arbiters; general properties applying
to both are:

• General arbiter properties

— After active reset each signal or register gets its reset value.

— Always there is at most one grant.

— No grant is given, while resource is busy.

— There is no grant without a request.

— A request leads to a grant.

— Each request gets its grant fairly.

• DUV3: Arbiter_1

The informal specification of the small arbiter _1 reads as follows:
The arbiter arbitrates the requests of four different queues following a round-robin arbitration
scheme (Fig. 4) with the option to prioritize posted requests. The priority selection is controlled by
a single bit. If posted requests have priority, then non-posted requests will be granted after three
arbitration cycle for posted requests at the latest.

• Arbiter_1: Results

Arbiter_1 is a very small block. The model checker needs only a few seconds to verify all proper-
ties of the arbiter.

At first the model checker disproved the fairness property. Inspection of the error trace (counter
example) given by the model checker revealed the cause: some input signals have to fulfill stability
constraints. The specification did not describe these constraints and was updated accordingly. Us-

i = 0

request i

grant i

transaction ready
resource free

i = i +1 mod n

yes

no

yes

no

Figure 4:round-robin arbitration scheme



ing the additional constraints the model checker proves the fairness property ‘Each request gets its
grant within 10 clocks’.

This demonstrates that model checking may not only find design bugs but may also lead to more
precise specifications. In fact, model checking often uncovers “understood assumptions” that need
to be documented explicitly to ensure correct block integration.

• DUV4: Arbiter_2

The informal specification of the arbiter_2 reads as follows:
The arbiter arbitrates the requests of 15 bus masters. The arbiter supports two arbitration levels
with different priorities (fig. 5). Within each level a fair arbitration after a round-robin scheme
takes place between all possible bus masters. All bus master requests can be programmed to which
level they belong and a master can only request on this specified level.

Fig. 5 shows the two arbitration levels and the requests for bus masters 3, 5, 6, 12 and 13, were the
masters 5 and 12 are prioritized over the other masters. The high request L in Level 1 shows that
there are low priority requests. If the last high priority grant was 5 and the last low priority grant
was 3, than the next grants after round robin at each level will be 12, 6, 5, 12, 13, 5, 12...and so on,
assumed the requests will stay all the time.

• Arbiter_2: Results

Arbiter_2 is larger and more complicated than arbiter_1. It is possible, that a request gets his grant
after 65 other grants were served.

Another approach to reduce the verification complexity is the decomposition of properties. Instead
of attempting the verification of the entire fairness property (each request gets its grant after at most
65 cycles) we can prove the fairness property for each request/grant pair separately while all other
requests run unconstrained. This property slicing leads to a reduction of the state space and thus
the model checker can succeed. The verification of the fairness property for one request/grant pair
consumes approx. 55 hours without using additional reduction techniques. Of course this verifica-
tion had to be repeated for each request/grant pair. Although this method consumed a lot of com-
putation time it finally produced a complete fairness proof.

4 Model Checking Lessons Learnt

This section discusses lessons we have learned in the process of applying model checking during
product development.

1

2

3
4 5

6

7

8

9

10
1112

14

151

2
3

4

6

7

8

9

10
11 12 13

14

15

5

L

Level 0Level 1
low priorityhigh priority

13

Figure 5:two level arbitration



4.1 Solving the Ground Problem: stepping back and forth between formal and informal

The application of model checking during product development poses a couple “soft” challenges
besides the various “hard” ones such as capacity and expressiveness. Nevertheless these soft ap-
plication obstacles still may hamper the introduction of model checking.

The specification of blocks and subblocks has to contain enough behavioral interface description
to enable a black box verification at a granularity level suitable for model checking. Very often
block and subblock specifications are rather structural than behavioral. Structural descriptions lend
themselves well for implementation but the derivation of properties requires great deals of inter-
pretation. Good examples for behavioral descriptions use wave forms, explicit (informal) descrip-
tions of assumptions, message sequence diagrams, etc.

While the formalization of properties from a more or less complete informal specification has been
commonly recognized as a problem, we experienced also a resistance when presenting the verifi-
cation results to a non-specialist audience. It is a non-trivial task to demonstrate that a set of prop-
erties verified under certain constraints provides the desired complete coverage on all input
situations and all parts of the design. The 100 per cent coverage that is often stated as the virtue of
formal proof obviously depends on the completeness of the set of properties as well as the set of
applied constraints. We desired to have a theorem prover like proof management where the proof
tool keeps track of all unproven assumptions and holes in the verification.

As the model checker did not support such proof management we used a simple HTML presenta-
tion of constraints and properties to keep track of the verification status(e.g. see Table 1).

4.2 Clocks, Clock Relationships, (A)Synchronous Inputs

From the model checker perspective, clocks without any additional constraints are just ordinary in-
puts. Our designs however are synchronous with respect to a clock or at least have synchronous
clock domains. Neglecting the synchronicity of inputs with respect to clock leads almost necessar-
ily to false negatives. Therefore we need to constrain clocks as well as the respective synchronous
inputs.
With our tool the simplest way is to define a clock in terms of cranks where a crank is an atomic

state transition, for instance we could define the simplest clock by (using pseudo code)
clock clk == 1 crank up; 1 crank down

General
design

operating
modes

Query/
Property

Name

Description General
Assumptions

Assump
tions

Goal Status/
Results

Remarks

Reset
behavior

reset_beh
avior

Assert resets and
check if pointers
go back to the orig-
inal values.

clock_constrai
nts

reset is
active

radr=0
wadr = 0
diff_ptr=0
fifo_full=0

verified There is no glo-
bal reset signal,
resets must be
asserted respec-
tively in their
own domain.

Eventually aft_rd_rad
r_inc

After a valid read
the read ptr will
update.

clock_constrai
nts

a valid
read

radr ++ verified The counter
should increase
in a wrap-
around way.

Table 1: sample HTML verification result presentation



The synchronicity of an input with respect to a clock could then be defined by a constraint
always(stable(in) or negedge(clk))

meaning that the input can only change on negative edges of clk and therefore is synchronous

with respect to the positive edge of clk.

For a fully synchronous design these assumptions suffice. However as presented in Section 3.1,

blocks subjected to model checking may have two clock domains and the clocks may be unrelated

at all. In this case a clock definition in cranks is not expressive enough because these clocks are

not phase locked. Instead we just assume that clocks are alive by requiring the constraints
after (clk == 0) eventually (clk == 1)

and
after (clk == 1) eventually (clk == 0)

Note that using this constraint we do not restrict the clocks to any duty cycle.

These constraints were sufficient for FIFO_1. However FIFO_2 required to specify unlocked

clocks of a certain relationship (namely 3:5). We achieve that by implementing counters that

count each on each positive edge of the respective clock (modulo 3 and 5 respectively) and requir-

ing additional constraints like
after (clk_1_cnt == 3) always (clk_2_cnt == 5)

and
after (clk_2_cnt == 5) always (clk_1_cnt == 3)

These constraints fix the relationship between the two clocks while leaving them unconstrained

enough to wind their way freely.

4.3 Properties vs. Partial Reference Models

In the course of describing FIFO as well as Arbiter properties, the model checker language ability
to describe partial reference model turned out to be crucial.

For the FIFO we employed counters and storages to express ordering.

For the Arbiter we created a partial reference model for the round robin algorithm allowing for a
stronger form of a liveness property.

4.4 Verification windows technique

A specification describes an associated class of models. The stronger the property is specified, the
fewer models are contained in the class. If either the property is too tight or too loose against the
desired requirements for the product then it will make the verification results less reliable. Some
incorrect models may satisfy properties that are too weak. An effective way to prevent such situa-
tions is to write properties with verification windows such as

after ... eventually ... within -delay 0 -duration 3 clock=rising

which strengthens the former eventuality property with a 3 clock-cycle window. The infinite test-
ing scope is restricted to a finite one, thus, putting an upper bound on the eventually condition and
ruling out all models that fulfil the eventually conditions later in time.

4.5 Reduction techniques

Facing the limitation of model checking to large designs we have to employ reduction techniques



for a successful verification. During this case study we basically applied three techniques:

— Explicit Model Downscaling: the FIFO IP block comes equipped with parameters for the
width and the depth. Reducing the parameter to small but still sufficiently expressive values
allows model checking to succeed even without removing the memory.

— Explicit Property Decomposition: For the larger arbitration block we decomposed the
properties into sets of properties regarding one request/grant pair respectively.

— Reduction Algorithms: The cone-of-influence reduction is the universal way of pruning
away unrelated variables that increase the state space in vain. The more sophisticated type
of reduction is the iterated reduction. A group of variables is pushed over in the model and
non-deterministic many other variables will fall invalid like in the dominoes effect. If the
model with the standing-erect variables is sufficient to make the property succeed, so will
the initial model. Selection of the group of variables can be stochastic, but this will lead to
pessimistic results in most cases. An educated selection needs a deep insight into the model,
while as a compensation of the efforts, it will make the verification more efficient and avoid
meaningless trials. Using educated reduction seeds we were able to achieve a considerable
speed-up for quite large models.

References

[1] Mike G. Bartley, Darren Galpin, Tim Blackmore:
A Comparison of Three Verification Techniques: Directed Testing, Pseudo-Random
Testing and Property Checking. DAC 2002, Louisiana, USA, p. 819-824

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang:
Symbolic Model Checking: 1020 States and Beyond.
Proc. Fifth Ann. Symp. Logic in Computer Science, June 1990

[3] Hoon Choi, Byeong-Whee Yun, Yun-Tae Lee, Hyung-Lae Roh:
Model Checking of an Industrial Interface Logic for Two Unsynchronized Clocks.
DATE 2001, Designer’s Forum, Munich, Germany, p. 93-97

[4] Scott Hazelhurst, Gila Kamhi, Osnat Weissberg, Limor Fix:
A Hybrid Verification Approach: Getting Deep into the Design.
DAC 2002, Louisiana, USA, p.111-116

[5] Roope Kaivola, Naren Narasimhan:
Formal Verification of the Pentium4 Floating-Point Multiplier.
DATE 2002, Paris, France, p.1- 8

[6] Thomas Kropf: Introduction to Formal Hardware Verification.
ISBN: 3-540-65445-3, Springer Verlag, 1998

[7] Robert P. Kurshan: Formal Verification in a Commercial Setting.
Design Automation Conference, June 1996

[8] Kenneth L. McMillan:
Symbolic Model Checking: An Approach to State Explosion Problem.
Kluwer Academic Publishers, 1993

[9] Marco A. Pena, Jordi Cortella, Enric Pastor, Alexander Smirnov:
A case study for the verification of complex timed circuits: IPCMOS.’
DATE 2002, Paris, France, p. 44-51


	Model Checking in an Industrial Environment
	1 Introduction
	2 A Brief Model Checking Primer
	Figure 1: principle of model checking

	3 Designs-Under-Verification (DUVs) - Industrial Examples
	3.1 FIFOs
	Figure 2: interface of FIFO_1
	Figure 3: interface of FIFO_2

	3.2 Arbiter
	Figure 4: round-robin arbitration scheme
	Figure 5: two level arbitration


	4 Model Checking Lessons Learnt
	4.1 Solving the Ground Problem: stepping back and forth between formal and informal
	Table 1: sample HTML verification result presentation

	4.2 Clocks, Clock Relationships, (A)Synchronous Inputs
	4.3 Properties vs. Partial Reference Models
	4.4 Verification windows technique
	4.5 Reduction techniques



