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School of Computer Science

Supervisor: Ian Horrocks and Ulrike Sattler

Advisor: Sean Bechhofer



Contents

Abstract 5

1 Introduction 6

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Information integration . . . . . . . . . . . . . . . . . . . . 6

1.1.2 The use of Description Logics . . . . . . . . . . . . . . . . 7

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Anticipated contributions . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Structure of the document . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 11

2.1 Description Logics . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Relational model . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Conjuctive queries and datalog . . . . . . . . . . . . . . . 16

3 Foundations of information integration 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Declarative vs. Procedural . . . . . . . . . . . . . . . . . . 18

3.2.2 Virtual vs. Materialized . . . . . . . . . . . . . . . . . . . 19

3.2.3 Centralized vs. Peer-to-peer . . . . . . . . . . . . . . . . . 20

3.3 Knowledge representation framework . . . . . . . . . . . . . . . . 20

3.3.1 Conceptual level . . . . . . . . . . . . . . . . . . . . . . . 21

2



3.3.2 Logical level . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.3 Physical level . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.4 Interlevel mappings . . . . . . . . . . . . . . . . . . . . . . 23

4 Centralized information integration 24

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Local as view . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.2 Global as view . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.3 GLaV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Query processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 GaV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.2 LaV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Answering queries using views 35

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Rewritings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 The bucket algorithm . . . . . . . . . . . . . . . . . . . . . 37

5.3.2 The inverse-rules algorithm . . . . . . . . . . . . . . . . . 39

5.3.3 The MiniCon algorithm . . . . . . . . . . . . . . . . . . . 40

6 Existing information integration systems 42

6.1 Carnot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 TSIMMIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Information Manifold . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4 SIMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.5 OBSERVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.6 Infomaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.7 DWQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.8 PICSEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.9 TAMBIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.10 TAMBIS II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.11 SomeWhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3



7 Query rewriting: The first experience 57

7.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3 View-based query rewriting algorithm . . . . . . . . . . . . . . . . 59

7.3.1 Proof of soundness and correctness . . . . . . . . . . . . . 59

7.4 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8 Conclusions and future work 64

8.1 Research undertaken . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 67

4



Abstract

Currently there is an amazing quantity of heterogeneous data distributed over

a large number of sources. Retrieving information is becoming a difficult task

in which regular users have to make use of their knowledge in terms of source

characteristics, data models and query languages to obtain acceptable results.

Moreover, with the arrival of the World Wide Web, users were given access to a

huge number of sources.

Information integration (II) is the problem of combining data from different

information sources and providing the user with a unified view of these data [28].

The idea is to provide transparent integrated access to relevant data, concealing

information about the sources, such as their location, data model or query lan-

guage. A variety of knowledge representation (KR) formalisms have been used to

design existing information integration systems. Several of such formalisms are

based on Description Logics (DLs) that represent the knowledge of an application

domain in terms of concepts, individuals (instances of concepts) and roles (bi-

nary relations between individuals) [5]. Research in this area has been motivated

by the possibility of integrating huge amounts of data on the World Wide Web,

which would contribute to the development of the Semantic Web [9].

This research is focused on studying the problem of information integration

for systems modeled with DLs. The main aim of this research is to investigate

whether or not the problem can be solved in such a setting. The main research

hypothesis is that techniques implemented in the various existing systems can

be extended and/or modified to be used in this context. During the first year

of research a sound and complete query rewriting algorithm was devised for a

limited scenario. The future research priority is to investigate the ways to make

the algorithm more general for typical application domains and information needs.

At the end, it is desirable to design and implement our algorithm in a prototype

system.

5



Chapter 1

Introduction

1.1 Context

1.1.1 Information integration

Currently there is an amazing quantity of heterogeneous data distributed over

a large number of sources. Retrieving information is becoming a difficult task

in which regular users have to make use of their knowledge in terms of source

characteristics, data models and query languages to obtain acceptable results. In

general, in order to obtain information from several relevant sources it is necessary

to (1) find relevant sources, (2) interact with each source (through its specific

interface) in isolation, and (3) manually combine relevant information.

Information integration (II) is the problem of combining data from different

information sources and providing the user with a unified view of these data [28].

The idea is to provide transparent integrated access to relevant data, conceal-

ing information about the sources, such as their location, data model or query

language. Although the general idea behind information integration is simple

(grant users with transparent access to a set of sources through a uniform view),

there are a number of interesting issues and challenges to consider. Some of

the main issues relate to the fact that an IIS should manage several different

sources. Relevant sources could handle different data models, query languages

or internal protocols (besides being spread in different locations), which implies

that the system must cope with source heterogeneity and autonomy. Moreover

not all considered sources necessarily have the same capabilities regarding query

answering, there could be some relational databases in which all their data can be

6



1.1. CONTEXT 7

accessed with arbitrary queries, but we could also handle some sources in which

data access is limited by some query patterns. On the other hand, there could

be conflicts in the meaning or in the interpretation of the same data. Moreover,

another new kind of problems have to be considered, namely, multiple values

of the same entity in different sources, non-observance of integrity constraints,

non-conformity of the measuring units, different data formats, etc.

A basic II system (IIS) is composed of (1) a global view representing the appli-

cation domain, (2) a set of information source models representing the structure

of the data residing at relevant sources, and (3) a set of semantic correspondences

or mappings relating the global view to the source models (or the source mod-

els between each other) [28]. Two main approaches for modeling mappings have

been proposed in the literature [40, 31], the global-as-view (GaV) approach, in

which the global view is defined as a set of queries over the underlying sources;

and the local-as-view (LaV) approach, in which the sources are modeled as a set

of queries over the global view. The combination of these two approaches has

resulted in the GLaV approach [22], in which queries over the global view are

related to queries over the sources.

Queries from users and/or applications are posed to the IIS in terms of the

global view. Computing the set of answers for a given query (query processing),

strongly depends on the way mappings are modeled. In the GaV approach, the

problem generally resumes to some kind of unfolding [28], while in the LaV and

GLaV approaches, query processing is closely related to the problem of answering

queries using views [31, 40], and can be reduced to view-based query rewriting or

view-based query answering [28].

1.1.2 The use of Description Logics

A variety of knowledge representation (KR) formalisms have been used to de-

sign existing IISs, most of which are closely related to the relational model [2].

Nonetheless, there are a number of efforts that make use of more expressive for-

malisms to better capture the semantics of the IIS (i.e., accurately model its three

main components). Several of such richer formalisms are based on Description

Logics (DLs) [5].

DLs are a family of KR formalisms that represent the knowledge of an applica-

tion domain in a so-called knowledge base (KB) in terms of concepts, individuals

(instances of concepts) and roles (binary relations between individuals). A KB is
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composed of a terminology, so-called TBox and a set of assertions called ABox.

The TBox, is a set of axioms that define a concept hierarchy. Moreover, some

DLs also allow for a role hierarchy. The ABox is a collection of assertions about

individuals. There are two types of assertions: (1) concept assertions, that spec-

ify that an individual is an instance of a concept, and (2) role assertions, which

relate a pair of individuals with a role.

1.2 State of the art

Existing systems implementing GaV include [19, 17, 6, 24, 37]. LaV, on the other

hand, is implemented in [4, 32, 23, 20], mainly focusing on query rewriting. GLaV

has received less attention, and, on the contrary, current efforts on this matter [15]

mainly focus on query answering. Summing up, the design and implementation

of a GLaV IIS that effectively solves the problem of view-based query rewriting

remains an open problem.

Therefore, the development of a sound and complete query rewriting algorithm

is of major interest. It is desirable to use rich KR formalisms to model the IIS in

order to capture the semantics of a given scenario as accurately as necessary. It

is also desirable to provide a framework to facilitate the design of an IIS (creating

the global view, adding sources, defining mappings) based on the characteristics

of a specific scenario.

1.3 Aims and objectives

This research is focused on studying the problem of information integration for

GLaV systems modeled with DLs, enhanced with mappings between source mod-

els. The main aim of this research is to investigate whether or not the problem

of view-based query rewriting can be solved in such a setting. The main research

hypothesis is that techniques implemented in the various existing systems can be

extended and/or modified to be used in this general context.

The approach presented in [15], based on the II KR framework presented in

[14, 13], is the closest to our goal. Nevertheless, given the fact it is used in a

data warehouse context, it focuses on view-based query answering as opposed

to view-based query rewriting. Unfortunately, since query answering requires the

content of the sources as input, integrating different information sources with this
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technique is not practical, scalable or feasible for many typical scenarios.

1.3.1 Methodology

In order to reach our research aims it is necessary to investigate:

• Different KR formalism including several DLs.

• The problem of II in general.

• The relation between II and DLs.

• Current techniques and approaches implemented in existing IISs.

• The problem of answering queries using views, its existing solutions, its

complexity and its relationship with other problems.

• Typical application domains for II.

• Typical information needs (i.e., queries) w.r.t. a given domain.

1.4 Anticipated contributions

Anticipated contributions of this research include:

• An understanding of how DLs can be used in an II context.

• An investigation of the trade-off between the complexity of view-based

query rewriting and the expressive power of the KR formalism used to

define the global view, the source models and the mappings.

• The development of a new practical algorithm for view-based query rewrit-

ing for DL-based GLaV IISs enhanced with mappings between source mod-

els.

• The development of a framework to facilitate the design of IISs (creating the

global view, adding sources, defining mappings) based on the characteristics

of a specific scenario.
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1.5 Structure of the document

The remainder of this document is as follows:

• chapter 2 presents background knowledge and introduces the terminology

used throughout the document. This chapter is a brief introduction to De-

scription Logics, the relational model and two considered query languages:

conjunctive queries and datalog.

• chapter 3 presents the foundations of information integration. The prob-

lem of information integration is defined and several existing approaches to

solving it are presented. In the last part of this chapter we describe a KR

framework which abstracts the main components of an IIS.

• chapter 4 presents the formal semantics of a centralized IIS as well as that

of its mappings. In the last part of this chapter we introduce the main

techniques for query processing according to the type of mapping the system

was modeled with.

• chapter 5 presents the generalities of the problem of answering queries using

views. We present three solutions that have been proposed so far, namely,

the bucket , the inverse-rule and the MiniCon algorithms.

• chapter 6 presents the various existing IISs that have been implemented

so far. We analyse them w.r.t. the framework introduced in chapter 3,

describing, for each system, the information integration approach it imple-

ments, the type of mappings and queries that are cosidered, as well as the

distinctive features of the system.

• chapter 7 presents a sound and complete view-based query rewriting al-

gorithm that was devised for an scenario where we consider: (1) acyclic

ALCH 1 KBs for the global view and the source models, (2) limited GLaV

and intersource mappings, and (3) atomic user queries.

• chapter 8 concludes the document presenting the research undertaken and

the future work.

1A simple DL including role hierarchy [5].



Chapter 2

Background

2.1 Description Logics

Description Logics (DLs) are a family of KR formalisms that represent the knowl-

edge of an application domain in a so-called knowledge base (KB) in terms of

concepts, individuals (instances of concepts) and roles (binary relations between

individuals) [5]. Constructors can be used to define complex concepts and/or

roles. A particular Description Logic is characterised by its set of supported con-

structors. A naming scheme for DLs as well as the basic language for designing

them was introduced in [39]. Such a language, called AL (Attributive concept

Language) allows for negation of atomic concepts, conjunction, universal quan-

tification, and unqualified existential quantification. For additional operators a

further letter is appended, e.g., AL plus complex negation is called ALC. For a

complete survey on existing DLs see [5].

2.1.1 Constructors

Table 2.1 lists the constructors that are available to build more complex concept

expressions from atomic concept names. The cardinality of the set S is denoted

as |S|. Table 2.2 lists the constructors that are available to build more complex

role expressions from atomic role names1. The inverse relation is symmetric. To

avoid writing role expressions such as R−− we define a function inv(). inv(R)

returns R− if R is a role name, or returns S if R = S− where S is a role name.

The semantics are given by an interpretation I = {4I , ·I}, which consists

1We use C and D to denote concepts, and R and S to denote roles.

11



12 CHAPTER 2. BACKGROUND

Constructor Syntax Semantics

atomic concept A AI ⊆ 4I

top > >I = 4I

bottom ⊥ ⊥I = ∅
conjunction C uD (C uD)I = CI ∩DI

disjunction C tD (C tD)I = CI ∪DI

negation ¬C (¬C)I = 4I \ CI

nominal/oneOf {a1, . . . , an} {a1, . . . , an}I = {aI1 , . . . , aIn}
universal
quantification ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
existential
quantification ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
number
restriction ≥ nR (≥ nR)I = {x | |{y | 〈x, y〉 ∈ RI}| > n}

≤ nR (≤ nR)I = {x | |{y | 〈x, y〉 ∈ RI}| 6 n}
qualified number
restriction ≥ nR.C (≥ nR.C)I = {x | |{y | 〈x, y〉 ∈ RI∧

y ∈ CI}| > n}
≤ nR.C (≤ nR.C)I = {x | |{y | 〈x, y〉 ∈ RI∧

y ∈ CI}| 6 n}

Table 2.1: Syntax and semantics of concept expression constructors.

Constructor Syntax Semantics

atomic role R R RI ⊆ 4I ×4I

role conjunction R u S (R u S)I = RI ∩ SI

role disjunction R t S (R t S)I = RI ∪ SI

inverse role R− (R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}
role composition R ◦ S (R ◦ S)I = {〈x, z〉 | ∃y.(〈x, y〉 ∈ RI∧

〈y, z〉 ∈ SI)}
transitive closure R+ (R+)I =

⋃
i>0(R

I)i

reflexive
transitive closure R∗ (R∗)I =

⋃
i≥0(R

I)i, where (RI)0 = (id(∃R.>))I ,
and (RI)i+1 = (RI)i ◦RI

identity id(C) (id(C))I = {〈x, x〉 | x ∈ CI}

Table 2.2: Syntax and semantics of role expression constructors.
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of a non-empty domain of interpretation 4I , and an interpretation function ·I .
The interpretation function maps atomic concepts to a subset of the domain 4I ,

atomic roles to a subset of 4I ×4I and individual names to elements of 4I .

2.1.2 Axioms

A knowledge base K is a tuple of a TBox T and an ABox A, written as K =

〈T ,A〉. T is composed of a set of TBox axioms (see table 2.3). A contains

assertions about individuals in the knowledge base as a set of ABox axioms (see

table 2.4). For K = 〈T ,A〉, the signature of K is the union of concept, role, and

individual names in K.

Axiom Syntax Semantics

concept inclusion C v D (C v D)I = CI ⊆ DI

concept equivalence C ≡ D (C ≡ D)I = CI = DI

concept existence ∃C (∃C)I = |CI | ≥ 1
role inclusion R v S (R v S)I = RI ⊆ SI

role equivalence R ≡ S (R ≡ S)I = RI = SI

transitive role Trans(R) Trans(R)I = (RI)+

functional role Func(R) Func(R)I = 〈x, y〉 ∈ RI ∧ 〈x, z〉 ∈ RI →
x = y

Table 2.3: TBox axioms.

According to [5], cycles in a TBox T are defined as follows. Let A and B be

atomic concepts ocurring in T . We say that A directly uses B in T if B appears

on the right-hand side of the definition of A, and we call uses the transitive

closure of the relation directly uses. Then T contains a cycle iff there exists an

atomic concept in T that uses itself. Otherwise, T is called acyclic.

Some DLs assume the so-called Unique Name Assumption (UNA), which

means that different individual names are mapped to different elements of the

domain. Without the Unique Name Assumption, different individual names can

be mapped to the same element of the domain. In this case, most DLs allow to

state that two individuals are different or to assert that two individual names

should be mapped to the same element of the domain.
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Axiom Syntax Semantics

concept assertion R R RI ⊆ 4I ×4I

role assertion R u S (R u S)I = RI ∩ SI

individual equality R t S (R t S)I = RI ∪ SI

individual inequality R− (R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}

Table 2.4: ABox axioms.

2.2 Databases

2.2.1 Relational model

Intuitively, in the relational data model, data are stored as n-ary tuples in rela-

tions or tables. Each relation has a name and is associated to a list of attributes.

A database schema is simply a set of relation names (with their associated at-

tributes). Finally a database is composed by sets of tuples (one set for every

relation of its schema) [2].

Formally we consider three disjoint, countably infinite sets: att, which de-

notes an ordered set of attributes; dom, that contains constants of a specific

domain; and relname, which is composed by the names of the considered rela-

tions. As already mentioned, each relation has a name and is associated to a set

of attributes. In order to associate a set of attributes to each relation name, we

define the function

sort : relname → U

where U∈ att.

A relation schema RS is composed by a relation name R and its associated

to the set of attributes sort(R). To denote a relation schema, we use the following

notation:

R(A1, . . . ,An),

where R ∈ relname and sort(R) = {A1, . . . ,An}.

A database schema DBS is a set of relation schemata. It is defined over

relname that, as already said, comprises one symbol for each relation.

Example 2.2.1. Suppose our domain refers to restaurants. Let us define att
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and relname as follows:

att = {RestaurantName, Type, PriceClassification, PostalCode},

relname = {FoodType, Price, Location}.

Based on the previous sets, we can define a possible database schema DBS1 as a

set containing the following relation schemata:2:

DBS1 = {FoodType(RestaurantName,Type),

Price(RestaurantName,PriceClassification),

Location(RestaurantName,PostalCode)}.

A tuple t is a function that maps a subset of attributes to constants of the

domain:

t : U → dom,

where U∈ att.

In order to denote a tuple, we use the following notation:

〈u1 : c1, . . . , un : cn〉3,

where t(ui) = ci, ui ∈ U, ci ∈ dom.

A relation R for a relation schemaRS is a set of tuples that map the attributes

associated to RS to constants of the domain dom.

Example 2.2.2. Consider our domain is defined as follows:

dom = {Chiquito, Barburrito, Chinatown, Ming, Mexican,

Chinese, Cheap, Expensive, L101, L102,

L201, L202}.

Based on the relation schema of FoodType defined in the previous example, the

2Note that it is not necessary to know dom in order to define a relation schema.
3Given the fact that att is ordered, it is common not to write the attribute names.
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relation FoodType could be defined as follows:

FoodType = {〈Chiquito, Mexican〉, 〈Barburrito, Mexican〉,

〈Chinatown, Chinese〉, 〈Ming, Chinese〉}

Finally, a database DB for a schema DBS is a set of relations, one for each

relation schema defined in DBS.

Example 2.2.3. A possible database Restaurants for our previously defined

database schema DBS1 could be composed by the relations:

FoodType = {〈Chiquito, Mexican〉, 〈Barburrito, Mexican〉,

〈Chinatown, Chinese〉, 〈Ming, Chinese〉},

Price = {〈Chiquito, Cheap〉, 〈Ming, Cheap〉,

〈Barburrito, Expensive〉, 〈Chinatown, Expensive〉},

Location = {〈Chiquito, L101〉, 〈Ming, L201〉,

〈Barburrito, L102〉, 〈Chinatown, L202〉}.

2.2.2 Conjuctive queries and datalog

A conjunctive query q of arity n over a database schema DBS is an expression

of the form:

Q(~x) : −
∧

1≤i≤k

Ri(~xi)

where:

• Ri ∈ relname, i.e., Ri is the name of a relation in the database schema

DBS.

• ~x and ~xi are tuples of variables and constants.

• Each variable of ~x must occur in some ~xi.

The atom Q(~x) is called the head of the query and refers to the answer relation.

The atoms R1(~x1), . . . , Rk(~xk) are the subgoals in the body of the query.

Given a query q and a database DB, qDB denotes the set of tuples in DB that

satisfy q, i.e., the set of tuples that are valuations in dom for the free variables

of q that make q true in DB.
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Example 2.2.4. If we were to pose the query ‘cheap, mexican restaurants’,

cheapMexican(x) : −FoodType(x,Mexican) ∧ Price(x,Cheap)4,

to our database Restaurants; then:

qRestaurants = {〈Chiquito〉}.

A datalog query is a set of conjunctive queries whose body predicates do

not have to refer to names of relations of the database schema. In a datalog

query there are two types of predicates: EDB, that refer to the database schema

relations, and IDB, referring to intermediate relations. Therefore in the rules,

EDB predicates appear only in the bodies, while IDB predicates can appear

anywhere. There is a distinguished IDB predicate called the query predicate that

refers to the relation of the result.

A predicate p in a datalog program is said to depend on another predicate

q, if q appears in one of the rules whose head is p. The datalog query is said

to be recursive if there is a cycle in the dependency graph of the predicates. A

non-recursive datalog query can be rewritten as a union of conjunctive queries.

Given a datalog query q and a database DB, containing the extensions for all

EDB predicated of q, qDB denotes the least fixpoint model of q and DB. Such a

model can be computed as follows: First, rules in q are applied arbitrarily. An

appication of a rule may drive new tuples for the relation denoted by the head

of a given rule. Rules continue to be applied until no new tuples can be derived.

qDB is the set of tuples computed for the query predicate.

A query q1 is said to be contained in a query q2, denoted q1 v q2, if for any

database mathcalDB, q1
DB ⊆ q2

DB, i.e., the set of tuples computed for q1 is a

subset of those computed for q2. The two queries are said to be equivalent if

q1 v q2 and q2 v q1.

4We use this font to denote constants.



Chapter 3

Foundations of information

integration

3.1 Introduction

Information integration (II) is the problem of combining data from different infor-

mation sources and providing the user with a unified view of these data [28]. The

idea is to provide transparent integrated access to relevant data, concealing infor-

mation about the sources, such as their location, data model or query language.

In this chapter we describe the different approaches that have been proposed to

solve the problem of information integration. We also describe the knowledge

representation framework for information integration proposed in [14, 13]. We

take such a framework as a base for our own proposal for solving the problem

described in chapter 7.

3.2 Approaches

3.2.1 Declarative vs. Procedural

There are two basic approaches to solving the problem of information integration,

namely, declarative and procedural [14]. In the procedural approach, data are in-

tegrated in an adhoc way with respect to a set of predefined needs (v.g., typical

queries or specific requirements about the sources). In this case, the idea is to

develop software components that access the sources according to the predefined

requirements. There are two types of such software components: wrappers, which

18
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encapsulate the sources; and mediators, which merge and reconcile data coming

from wrappers (or other mediators). The main advantage of this approach is that

we could use knowledge regarding certain domain to make simplifying assump-

tions in order to improve the performance of the query processing, nevertheless

we would have to change the system every time a new source is added of a new

query pattern is identified.

On the other hand, in the declarative approach, the idea is to model the data

of the sources with a suitable language in order to have a unified representation to

make queries on. The main advantage of this approach is that the mechanism to

answer queries is general, i.e., it is not hardcoded into the system, which provides

scalability regarding the queries and the sources handled by the system.

3.2.2 Virtual vs. Materialized

Independently of the preferred approach, an information integration system (IIS)

can be virtual or materialized [13]. In the virtual approach, the IIS accesses the

sources every time a query is made. The IIS acts like an interface between the

user and the sources. The idea is to have a representation of the content of the

underlying data residing at the sources, but not the data itself. A clear advantage

of this approach is that the IIS can delegate the problem of having up-to-date

information to the underlying sources. Nevertheless querying is costly because,

as already said, it implies accessing the sources with every query. This kind of

approach is useful in situations in which the relevant sources are constantly being

updated and/or scenarios where we need the information to be up-to-date.

On the other hand, in the materialized approach, the sources are accessed a

priori in order to provide a replicated view of the data within the IIS. Querying is

typically more efficient, nevertheless maintaining the materialized view is costly,

especially if we want to provide up-to-date information. This approach results

especially useful in situations in which having up-to-date information is not crucial

(v.g., a data warehouse) and/or when information does not change frequently.

There are some systems that provide both alternatives, i.e., the user/application

can choose between the virtual and the materialized approaches.
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3.2.3 Centralized vs. Peer-to-peer

The architecture of an IIS could be either centralized or peer-to-peer [29]. The

centralized approach (also called mediator-based approach) implies the devel-

opment of a unified view that represents the application domain and describes

the data residing at the sources. The idea behind this approach is to provide a

common representation or global schema of the schemata of the relevant sources

for the user to pose queries on. Clearly in order to retrieve data residing at

the sources, it is vital to establish a mapping or semantic relationship between

the global schema and the schemata representing the structure of the underlying

sources. The collection of such schemata is called source schema. In a centralized

approach, users (or applications) pose queries to the IIS in terms of the global

schema, then the system uses the mapping to reformulate these global queries

into a set of queries in terms of the source schema. After this initial process, data

is retrieved, and finally, retrieved data are integrated (i.e., cleaned, reconciled,

put in a common format, etc.) and sent back to the user. Developing a central-

ized IIS is a challenging task, classical challenges include the construction of the

global schema, the definition of the mapping between the global schema and the

source schema, and the choice of the method to compute the answer to queries.

On the other hand, the peer-to-peer approach is a generalization of the former

approach that considers the existence of several autonomous components called

peers. Roughly, a peer-to-peer IIS can be seen as a collection of centralized

systems that cooperate with each other. In a peer-to-peer approach, users (or

applications) pose queries to the IIS in terms of the peer schema of a specific

peer, then the system uses the mapping to reformulate these global queries into

a set of queries in terms of the peer source schema, and in terms of other peer

schemata. After this initial process, the process is repeated until the initial query

is reformulated only in terms of the sources. Then, data is retrieved, and finally,

retrieved data are integrated (i.e., cleaned, reconciled, put in a common format,

etc.) and sent back to the user.

3.3 Knowledge representation framework

In this section we describe the framework to information integration proposed in

[14, 13]. We chose to take this framework as reference given the fact that it serves

a general setting in which different approaches to integration can be implemented,
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evaluated and compared. Such framework is divided in four levels, namely, the

meta level 1, the conceptual level, the logical level, and the physical level (see

figure 3.1).

Figure 3.1: Information integration framework.

3.3.1 Conceptual level

The conceptual level contains a formal description of the concepts, the relation-

ship between concepts, and the information requirements that the integration

system has to deal with. The conceptual level is composed of the enterprise

model, a set of source models, and a set of query models. The enterprise model is

a conceptual representation of the concepts and the relationships between them

that are relevant to a given IIS. The source model of a given source is simply a

conceptual representation of the data residing in such source. A query model is a

conceptual representation of an information need (e.g., a relational query). The

enterprise model and the various source models constitute the domain model.

1The meta level is composed of the meta model which is used to store all meta information
about the system (i.e., types of sources, location, number, etc.).
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The domain model contains intermodel relationships, i.e., semantic correspon-

dences between the enterprise model and the source models, and between the

source models themselves. It is important to note that integration does not sim-

ply mean producing the enterprise model, but rather to establish the correct

intermodel relationships.

3.3.2 Logical level

The logical level contains the description of the data, and the relevant queries

based on the relational model (see section 2.2.1) (i.e., as a set of relations). The

logical level is composed of a materialized view schema, a set of source schemata,

and a set of query schemata. The materialized view schema describes the logical

content of the materialized views maintained by the system, while each source

schema describes the logical content of the corresponding source 2. On the other

hand, the set of query schemata express the information needs at the logical

level. The materialized view schema and the various source schemata constitute

the data schema.

3.3.3 Physical level

The physical level refers to the actual data managed by the system. The ma-

terialized view store contains the data the system maintains materialized. Two

software components are included at this level: wrappers and mediators. A wrap-

per is a software module that accesses a specific source and retrieves the residing

data in a way that is coherent with the logical specification of the given source.

On the other hand a mediator [42] is a software module associated to a specific

query, it takes as input data returned from either wrappers or other mediators,

refines such data by integrating and resolving conflicts, and produces, as output,

the answer of the associated query. The result of a mediator can be materialized,

transferred to the interface, or passed to other mediator.

2Obviously, the materialized view schema is only used in case the IIS implements material-
ized information integration, it becomes meaningless in case the system implements a virtual
approach.
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3.3.4 Interlevel mappings

The conceptual, logical and physical levels described above are related through

semantic correspondences called mappings. The mapping between the source

models and the corresponding schemata represents the fact that there must be

an explicit correspondence between the concepts of the models and the relations

of the schemata. The same applies to mappings between a query model and

a query schema, and between elements of the domain model and the materi-

alized view schema. The mapping between mediators and query schemata (or

the materialized view schema) represents the fact that mediators are responsible

for computing the extension of specific logical objects (which can be material-

ized). On the other hand, wrappers are exclusively associated to source schemata

elements (the ones whose extensions they are responsible to compute).



Chapter 4

Centralized information

integration

4.1 Introduction

A basic II system (IIS) is composed of (1) a global view representing the applica-

tion domain, (2) a set of information source models representing the structure of

the data residing at relevant sources, and (3) a set of semantic correspondences

or mappings relating the global view to the source models (or the source mod-

els between each other) [28]. Two main approaches for modeling mappings have

been proposed in the literature [40, 31], the global-as-view (GaV) approach, in

which the global view is defined as a set of queries over the underlying sources;

and the local-as-view (LaV) approach, in which the sources are modeled as a set

of queries over the global view. The combination of these two approaches has

resulted in the GLaV approach [22], in which queries over the global view are

related to queries over the sources. This latter approach is general enough to

capture both GaV and LaV, and provides the means to express richer and more

complex mappings withing an IIS, which enables to capture its semantics more

accurately.

4.2 Semantics

Designing an IIS under a centralized architecture consists in defining the relation-

ships or mappings between the enterprise model and the various source models.

24
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In order to clearly describe the different existing approaches to define these map-

pings, we instantiate the framework presented in section 3.3 to formally specify

a centralized IIS. The instance of such framework is based on the work of [28], in

which a centralized IIS I is simply represented with a triple 〈G,S,M〉 where:

• G is the enterprise model or global view, expressed in a language LG over

an alphabet AG that comprises a symbol for each element of G.

• S is the set of source models, expressed in a language LS over an alphabet

AS (disjoint from AG) that comprises a symbol for each element of the

source models.

• M is the mapping between G and S. In general, M is composed of a set

of assertions of the forms:

qS  qG,

qG  qS ,

where qG and qS represent two queries over G and S respectively. Queries

qS are formulas expressed in a query language LM,S over the alphabet AS .

Similarly, queries qG are formulas expressed in a query language LM,G over

the alphabet AG. An assertion qS  qG intuitively means that the source

concept represented by the query qS corresponds to the global concept rep-

resented by qG, analogously for qG  qS
1. The different types of correspon-

dences will be discussed in section 4.3 to make this intuition precise.

In order to give semantics to I, let us define the so-called source database C
over a fixed domain Γ as a database containing the extensions of the elements of

S, i.e., C contains the data residing at the sources. Similarly, let us define a global

database B over Γ as a database containing the extensions of the elements of G.

A global database B is said to be legal for I with respect to C, if it satisfies M
with respect to C. The set of global databases that are legal for I with respect

to C is defined as:

semC(I) = {B | B is an M-model with respect to C}.

1note that qG and qS must have the same arity
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Intuitively, a global database B is part of semC(I) if there is a mapping be-

tween B and C. The notion of mapping and the formal definition of what it means

for B to be an M-model with respect to C is presented in section 4.3.

Finally we focus on describing the semantics assigned to queries made to I.

Queries are expressed in a query language LQ and posed in terms of G. Given a

source database C for I, the set of certain answers to a query q in I with respect

to C is the set of tuples ~c of elements of the domain Γ, such that ~c ∈ qB for every

global database B that is legal for I with respect to C. Formally, the set of certain

answers to a query q with respect to I and C is defined as:

cert(q, I, C) = {~c ∈ qB | ∀B ∈ semC(I)}.

Note that in this logical context, the problem of finding certain answers resumes

to logical implication: checking whether it logically follows from the data in

the sources that ~c satisfies q. On the other hand, finding possible answers, i.e.,

checking whether ~c ∈ qB for some global database B ∈ semC(I), is a consistency

problem: checking whether assuming that ~c is in the answer of q do not contradict

data in the sources. In any case, the problem of query answering completely

depends on the types of mappings used.

4.3 Mappings

In this section we describe two approaches, based on first order logic assertions, to

specify the mappings between the enterprise model and the various source models:

Local-as-View (LaV) and Global-as-View (GaV) [40, 31]. We also present an

hybrid called Global-Local-as-View (GLaV) [22] that results from the merge of

the two former approaches.

4.3.1 Local as view

In general terms, in the LaV approach (also called source-centric) the sources are

defined in terms of the global view. In other words, each element of the source

models is expressed in terms of elements of the enterprise model [28, 30]. The

mapping M and the source database C do not provide direct information about

which data satisfy the enterprise model. Sources are regarded as views, and we

have to answer queries on the basis of the available data in the views [29].
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Formally, in an IIS I = 〈G,S,M〉 based on the LaV approach, the mapping

M associates to each element s of the source models S a query qG over G. The

query language LM,S only allows expressions representing one symbol of the

alphabet AS . Therefore, a LaV mapping is composed of a set of assertions, one

for each element of S, of the form:

s qG

Example 4.3.1. To simplify the explanation, let us consider that G is represented

with a relational schema composed of the following relations:

FoodType(RestaurantName,Type),

Price(RestaurantName,PriceClassification),

Location(RestaurantName,PostalCode).

Let S be composed of the following relational sources:

s1 : Mexican(Name),

s2 : Chinese(Name),

s3 : Cheap(Name),

s4 : Expensive(Name),

s5 : Location(Name,Address),

where sources s1, s2, s3 and s4 contain lists of restaurants, and source s5 contains

a list of the restaurants with their addresses.

Then, an example of a LaV-based mapping M could be composed of the

following assertions:

Mexican(N) FoodType(N,Mexican),

Chinese(N) FoodType(N,Chinese),

Cheap(N) Price(N,Cheap),

Expensive(N) Price(N,Expensive),

Location(N,A) Location(N,A).
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In order to better characterize M, we use a function type2 that associates a

mapping type to each element s of S. Formally:

type : S → {sound, complete, exact}.

With type we can specify how accurate the source element s is with respect

to the associated query qG, as follows:

• If type(s) = sound, it means that the extension of s is a subset of the

tuples satisfying qG. In other words, the extension of s contains only correct

answers for qG, but not necessarily all. In this case, a global database B
is an M-model with respect to the source database C if for each element

s ∈ S:

sC ⊆ qG
B

That is, ∀~x(s(~x) → qG(~x)).

• If type(s) = complete, it means that the extension of s is a superset of the

tuples satisfying qG. In other words, the extension of s contains all correct

answers for qG, but it may also contain some incorrect answers or noise. In

this case, a global database B is an M-model with respect to the source

database C if for each element s ∈ S:

sC ⊇ qG
B

That is, ∀~x(qG(~x) → s(~x)).

• If type(s) = exact, it means that the extension of s is exactly the set of the

tuples satisfying qG. In other words, the extension of s contains all and only

correct answers for qG. In this case, a global database B is an M-model

with respect to the source database C if for each element s ∈ S:

sC = qG
B

That is, ∀~x(s(~x) ↔ qG(~x)).

The main advantage of this kind of mapping is related to scalability regarding

the sources. In other words, based on this mapping approach, adding sources does

2If not specified type(s) = sound.
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not require to change the global schema, which makes the process straightforward.

On the other hand, since sources are described in isolation, query processing is

not trivial (see section 4.4).

4.3.2 Global as view

In the GaV approach (also called global-view-centric) the enterprise model is

expressed in terms of the sources, i.e., the mapping is composed of a set of as-

sertions that relate each element of the enterprise model with a query over the

source models. Given a source database C, M provides direct information about

which data satisfy the elements of the global schema. Relations in G are views,

and queries are expressed over the views [29].

In an IIS I = 〈G,S,M〉 based on the GaV approach, the mapping M as-

sociates to each element g of G a query qS over S. The query language LM,G

only allows expressions representing one symbol of the alphabet AG. Therefore,

a GaV mapping is composed of a set of assertions, one for each element of G, of

the form:

g  qS

Example 4.3.2. Let G be composed of the relations:

Play(Play, Sinopsis,TheatreName),

Location(TheatreName,Address).

Let S be composed of the following sources:

s1 : Theatre(Name,Play,Location),

s2 : Play(Name, Sinopsis),

where source s1 contains a list of theatres with the plays that are showing and

their addresses, and s2 contains the sinopsis of the plays.

Then, a GaV-based mappingM could be composed of the following assertions:

Play(P, S,TN) Theatre(TN,P,L) ∧ Play(P, S),

Location(TN,A) Theatre(TN,P,A).

Similarly, in order to better characterize M, we redefine the function type so
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that, in this case, it associates a mapping type to each element g of G. Formally:

type : G → {sound, complete, exact}.

With type we can specify how accurate is the global element g with respect to

the associated query qS , as follows:

• If type(g) = sound, it means that the tuples satisfying qS are a subset of

the extension of g. In other words, the answers of qS correspond only to

the extension of g, but not necessarily all. In this case, a global database

B is an M-model with respect to the source database C if for each element

g ∈ G:

qS
C ⊆ gB

That is, ∀~x(qS(~x) → g(~x)).

• If type(g) = complete, it means that the tuples satisfying qS are a superset

of the extension of g. In other words, the answers of qS contain all the

extension of g, but they may also include other data that are not part of

the extension of g. In this case, a global database B is an M-model with

respect to the source database C if for each element g ∈ G:

qS
C ⊇ gB

That is, ∀~x(g(~x) → qS(~x)).

• If type(s) = exact, it means that the tuples satisfying qS are exactly the

extension of g. In other words, the correct answers of qS correspond to

all and only the extension of g. In this case, a global database B is an

M-model with respect to the source database C if for each element s ∈ S:

qS
C = gB

That is, ∀~x(qS(~x) ↔ g(~x)).

The main advantage of this approach is that typically query processing can be

based on some sort of simple unfolding. Nevertheless, whenever a source changes

or a new one is added, we need to change the enterprise model. In particular,
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given a new source, we need to figure out all the ways in which it can be used in

order to obtain data for the elements of the enterprise model.

4.3.3 GLaV

Finally, there is another approach which combines the expressive power of GaV

and LaV called GLaV. In GLaV, the mapping M is constituted by a set of

assertions of the form:

qS  qG

Example 4.3.3. Let G be composed of the relations:

Accommodation(Name,Type,Classification),

Price(Classification,PriceRange).

Let S be composed of the following sources:

s1 : Hotels(Name,Classification), Price(Name,PriceRange),

s2 : Hostels(Name,Classification,PriceRange),

where sources s1 and s2 contain lists of hotels and hostels with their classifications

and price ranges.

Then, a GLaV-based mapping M could be composed of the following asser-

tions:

Hotels(N,C) ∧ Price(N,PR) Accommodation(N,Hotel,C) ∧ Price(C,PR),

Hostels(N,C,PR) Accommodation(N,Hostel,C) ∧ Price(C,PR).

Again, in order to better characterize M, we redefine the function type so

that, in this case, it associates a mapping type to each query qS of M. Formally:

type : G → {sound, complete, exact}.

With type we can specify how accurate is the query qS with respect to the asso-

ciated query qG, as follows:

• If type(qS) = sound, it means that the extension of qS is a subset of the
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tuples satisfying qG. In other words, the extension of qS contains only correct

answers for qG, but not all. In this case, a global database B is an M-model

with respect to the source database C if for each element qS ∈M:

qS
C ⊆ qG

B

That is, ∀~x(qS(~x) → qG(~x)).

• If type(qS) = complete, it means that the extension of qS is a superset of

the tuples satisfying qG. In other words, the extension of qS contains all

correct answers for qG, but it may also contain some incorrect answers or

noise. In this case, a global database B is an M-model with respect to the

source database C if for each element qS ∈M:

qS
C ⊇ qG

B

That is, ∀~x(qG(~x) → qS(~x)).

• If type(qS) = exact, it means that the extension of qS is exactly the set

of the tuples satisfying qG. In other words, the extension of qS contains

all and only correct answers for qG. In this case, a global database B is an

M-model with respect to the source database C if for each element qS ∈M:

qS
C = qG

B

That is, ∀~x(qS(~x) ↔ qG(~x)).

Interestingly, any GLaV system can be transformed into a GaV system [12].

The idea is that a GLaV mapping assertion can be transformed into a GaV

assertion plus an inclusion dependency in G. That is, in order to transform a

GLaV system into a GaV one, for each GLaV assertion of the form:

qS  qG,

we add a new element r to G and we associate to r the following GaV assertion:

r  qS ,
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and the following inclusion dependency:

r v qG.

4.4 Query processing

Queries from users and/or applications are posed to the IIS in terms of the enter-

prise model. Computing the set of answers for a given query (query processing),

strongly depends on the way mappings are modeled. In the GaV approach, the

problem generally resumes to some kind of unfolding [28], while in the LaV and

GLaV approaches, query processing is closely related to the problem of answering

queries using views [31, 40].

4.4.1 GaV

In case a GaV IIS does not allow integrity constraints in the enterprise model, and

mapping assertions are sound or exact, query processing can be based on a simple

unfolding strategy due to the fact that the system has the single database property

[28]. Basically, given a query over G, every element of the query is substituted

with the corresponding query over the sources (specified by the corresponding

mapping assertion), and the resulting query is then evaluated at the sources.

Nevertheless, when the language LG, used for expressing G, allows for integrity

constraints and the mapping assertions are sound, then query processing in GaV

becomes more complex.

The problem is that given a source database C and a global database B, ob-

tained by populating G according to the mapping assertions, integrity constraints

may be violated in B. We can assume that the management of key constraints

is left to the designer, nevertheless, the management of foreign key constraints

cannot be left to the designer, since it is strongly related to the incompleteness of

the sources. Now, since foreign keys are interrelation constraints, they cannot be

captured with a GaV mapping, because, by definition, it works on each element

of G in isolation. In this case, given the assumption of sound mapping assertions,

a valid strategy to enforce foreign key constraints is to add tuples to B every time

a foreign key constraint is violated. In summary, when G contains foreign key

constraints, the semantics of I must be formulated in terms of a set of global

databases, instead of a single one. Since we are interested in the certain answers
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to a query, the existence of several such databases complicates the task of query

answering.

4.4.2 LaV

Given the fact that in a LaV IIS, we only know the extensions of the views asso-

ciated to the sources, answering queries in LaV can be regarded as an extended

form of reasoning in the presence of incomplete information [41]. Moreover, since

in LaV sources are modeled as views over G, the problem of processing a query

is traditionally called view-based query rewriting and it is very closely related to

the problem of answering queries using views [31, 40] (see chapter 5). There are

two approaches to view-based query processing, called view-based query rewriting

and view-based query answering [28].

In the former approach, given a query over G and a set of LaV mapping

assertions, the goal is to rewrite the query into an expression of a fixed query

language LR, over S, that provides the answer to the given query. It may happen

that there is no expression in the chosen language LR that is equivalent to the

original query. In this case, the objective is to compute the maximally contained

rewriting, i.e., the most similar expression to the original query in LR. On the

other hand, in view-based query answering, besides the query and the set of

mapping assertions, we are also given the extensions of the views, i.e., the contents

of the sources. The goal is now to compute the set of answers the are logically

implied by the system. As can be seen, in a LaV context, this is exactly the

problem of computing the certain answers with respect to a source database.

The difference between the two approaches is basically that in query rewriting,

query processing is divided in two steps, first the original query is rewritten in

terms of a given query language over the source models, and second the rewriting

is evaluated. On the contrary, in query answering, there are not limitations on

how queries are processed, and the only goal is to exploit all possible information

in the system in order to compute the answer to the query.
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Answering queries using views

5.1 Introduction

The problem of answering queries using views is to find efficient methods of an-

swering a query using a set of previously materialized views over a database,

rather than accessing the database relations. This problem is relevant to a wide

variety of data management problems: query optimization, maintenance of phys-

ical data independence, data warehouse design and information integration. We

will concentrate on presenting the relationship between answering queries using

views and information integration. For a survey on this and the other data man-

agement problems, see [31].

Mappings in a LaV IIS are defined as a set of views over the enterprise model.

As a result, the problem of rewriting a query, posed in terms of the enterprise

model, into a query that refers only to the source models becomes the problem of

answering queries using views. In this context, however, the number of views (i.e.,

sources) tends to be very large, and the sources are typically not considered to

contain complete information. Given a query q and a set of view definitions (LaV

mappings) V = v1, . . . , vn, a rewriting of q using the views is a query expression

q′ that refers only to a set of views V ′ = v1, . . . , vm (V ′ ⊆ V ).

5.2 Rewritings

There are two types of query rewritings: equivalent and maximally-contained

[31]. The rewriting q′ is an equivalent rewriting of q using V if:
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• q′ refers only to the views in V , and

• q′ ∪ V is equivalent to q.

On the other hand, q′ is a maximally-contained rewriting of q using V w.r.t.

a given query language L if:

• q′ is a query in L that refers only to the views in V ,

• q′ ∪ V is contained in q, and

• there is no rewriting q1 ∈ L, s.t. q′ ∪ V ⊆ q1 ∪ V ⊆ q and q′ ∪ V is not

equivalent q1 ∪ V .

5.3 Existing solutions

In this section we describe three different practical algorithms that have been

proposed to solve the problem of answering queries using views. We will use the

scenario presented in [31] to make the explanation easier:

Example 5.3.1. Let M be composed of the LaV assertions shown in table 5.1.

We make the assumption that type(vi) = sound (1 ≤ i ≤ 4), i.e., we have sound

mappings.

v1(Student,Number,Year)  Registered(Student,Course,Year)∧
Course(Course,Number)∧
Number ≥ 500∧
Year ≥ 1992,

v2(Student,Department,Course)  Registered(Student,Course,Year)∧
Enrolled(Student,Department),

v3(Student,Course)  Registered(Student,Course,Year)∧
Year ≤ 1990,

v4(Student,Course,Number)  Registered(Student,Course,Year)∧
Course(Course,Number)∧
Enrolled(Student,Department)∧
Number ≤ 100.

Table 5.1: An example scenario.
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5.3.1 The bucket algorithm

The bucket algorithm was developed in the context of the Information Manifold

system (see section 6.3). Its goal is to rewrite a query, posed in terms of the

enterprise model, into a query that refers only to the available sources. The

algorithm requires that both, the query and the sources, are described by con-

junctive queries. Each conjunct is said to be a subgoal and may include atoms of

arithmetic comparison predicates. When the query does not contain any arith-

metic comparison predicates the bucket algorithm is guaranteed to return the

maximally contained rewriting of the query using the views [32]. The main idea

underlying the bucket algorithm is that the number of query rewritings that need

to be considered can be reduced if each subgoal in the query is first considered

in isolation to determine which views may be relevant to each subgoal.

Given a query q, the algorithm proceeds in two phases. First, the algorithm

creates a so-called bucket for each query subgoal that is not part of the comparison

predicates, containing the views that are relevant to answering the particular

subgoal. Informally, a view can be useful for a query if the set of relations it

mentions overlaps of that of the query, and it selects some of the attributes

selected by the query. Moreover, if the query applies comparison predicates to

attributes that it has in common with the view, then the view must apply either

equivalent or logically weaker predicates. More formally, a view v is considered

to be relevant for a given subgoal g if the definition of v contains a subgoal g1

such that g and g1 can be unified through a variable mapping, and after unifying

the query and the view, the predicates in q and in v are mutually satisfiable. The

actual bucket contains the head of v. Nevertheless, if a subgoal g unifies with

more than one subgoal in v, its bucket will contain multiple occurrences of v.

Suppose our query q is:

q(S,D) : −Enrolled(S,D) ∧ Registered(S,C,Y) ∧ Course(C,N)∧

N ≥ 300 ∧ Y ≥ 1995.

In the first step the algorithm creates a so-called bucket for each of the query

subgoals in q. Table 5.2 shows the resulting contents of the buckets.

The bucket of Enrolled(S,D) includes v2 and v4 because there is a mapping

unifying the subgoal in q with the corresponding subgoal: {S  Student,D  

Department}. The bucket of Registered(S,C,Y) contains v1, v2 and v4 because,
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Enrolled(S,D) Registered(S,C,Y) Course(C,N)
v2(S,D,C’) v1(S,N’,Y) v1(S’,N,Y’)
v4(S,C’,N’) v2(S,D’,C)

v4(S,C,N’)

Table 5.2: The resulting buckets. Each view head in a bucket only includes
variables in the domain of the mapping. Fresh variables are used for the other
head variables of the source.

similarly, there is a unifying mapping: {S  Student,C  Course,Y  Year}.
v3 is not in the bucket of Registered(S,C,Y) because the comparison predicates

Y ≥ 1995 and Year ≤ 1990 are inconsistent. The bucket of Course(C,N) includes

source v1 because of the mapping {C  Course,N  Number}. In this case v4

is not included in because the mapping maps N to Number, and the comparison

predicate of v4 on the course number would be mutually inconsistent.

In the second phase, the algorithm builds a set of query rewritings, as con-

junctive queries, by taking one conjunct from every bucket. For each possible

combination of the cartesian product of elements of the buckets, the algorithm

checks whether it is contained in the original query q. If the rewriting is contained

in q or can be made to be so by adding comparison predicates, then it is added to

the answer. The result of the bucket algorithm is a union of conjunctive queries.

Consider the rewriting that includes the first element of each bucket:

q′(S,D) : −v2(S,D,C’) ∧ v1(S,N’,Y) ∧ v1(S’,N,Y’).

Although this rewriting is not contained in the original query, it can be made

so by adding the comparison predicates N = N’ and Y ≥ 1995. Therefore, the

following is the first rewriting that is obtained by the algorithm1:

q′(S,D) : −v1(S,N,Y) ∧ v2(S,D,C’) ∧ Y ≥ 1995.

The only other interesting rewriting to consider would involve a join between

v1 and v4. Nevertheless, such a rewriting would be dismissed because the two

sources contain disjoint numbers of courses.

1Y and Y’ have been equated as an additional optimization.
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5.3.2 The inverse-rules algorithm

The inverse-rules algorithm was developed in the context of the Infomaster system

(see section 6.6). The main idea of this approach is to construct a set of rules

that invert the view definitions or mappings.

Example 5.3.2. Consider the following mapping:

v5(Department,Course) : −Enrolled(Student,Department)∧

Registered(Student,Course).

From the mapping above, one inverse rule for every conjunct in the body of

the view is constructed:

Enrolled(f1(Department, X),Department) : −v3(Department, X),

Registered(f1(Y,Course),Course) : −v3(Y,Course).

This set of rules intuitively means that a tuple in the extension of the view v3

is a witness of tuples in the relations Enrolled and Registered. In other words, a

tuple of the form 〈D1,C1〉 tells us that the relation Enrolled contains a tuple of

the form 〈Z,D1〉, for some Z, and the relation Registered contains a tuple of the

form 〈Z,D1〉 for the same Z.

In such rules one function symbol is created for every existential variable that

appears in the view definitions. These function symbols are used in the heads of

the inverse rules, nevertheless the resulting rewriting can be rewritten in such a

way that no functional terms appear. The rewriting of a query q using the set

of views v is the datalog program that includes the inverse rules for v, and the

query q. The inverserules algorithm returns the maximally contained rewriting

of q using v [21].

Example 5.3.3. Consider the following query asking for the departments in

which the students of the “Database” course are enrolled:

q(Department) : −Enrolled(Student,Department)∧

Registered(Student,Database).
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Now, let the source v3 include the following tuples:

{〈CS,Database〉, 〈EE,Database〉, 〈CS,AI〉}.

The inverse rules would compute the following tuples:

Registered : {〈f1(CS,Database),CS〉,

〈f1(EE,Database),EE〉,

〈f1(CS,AI),CS〉},

Enrolled : {〈f1(CS,Database),Database〉,

〈f1(EE,Database),Database〉,

〈f1(CS,AI),AI〉}.

Applying the query to these extensions would yield the answers CS and EE.

5.3.3 The MiniCon algorithm

The MiniCon algorithm [38] begins like the bucket algorithm, considering which

views are relevant to the query subgoals. However, once the algorithm finds a

possible matching between a subgoal g in the query to a subgoal g1 in a view

V , it changes perspective and looks at the variables in the query. The algorithm

considers the join predicates in the query (which are specified by multiple occur-

rences of the same variable) and finds the minimal additional set of subgoals that

need to be mapped to subgoals in V , given that g will be mapped to g1. This set

of subgoals and mapping information is called a MiniCon Description (MCD). In

the second phase, the algorithm combines the MCDs to produce the rewritings.

It is important to note that because of the way MCDs are constructed, the Mini-

Con algorithm does not require containment checks in the second phase, giving

it an additional speedup compared to the bucket algorithm.

The experiments published in [38] show that:

• The MiniCon algorithm scales up to large numbers of views and significantly

outperforms the other two algorithms. Moreover, in various situations the

algorithm can handle thousands of views, which is a scale that is out of

reach of previous algorithms.
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• The bucket algorithm performs much worse than the other two algorithms

in all cases.

• All three algorithms are limited in cases where the number of resulting

rewritings is especially large since a complete algorithm must produce a

potentially exponential number of rewritings.



Chapter 6

Existing information integration

systems

6.1 Carnot

Carnot [19] is one of the first attempts to use logic-based technologies for solving

the problem of information integration. Its objective is to develop a method

for integrating independent information sources in order to allow these sources

to be accessed and modified coherently. Carnot implements virtual, declarative,

and centralized information integration based on a GaV approach with exact

mappings between atomic concepts or roles.

Distinctively, Carnot does not require the development of an enterprise model

over a set of independent source models, for it uses the Cyc knowledge base [27]

as such. The enterprise model and each of the source models are expressed in the

global context language GCL of Cyc (which is based on extended first-order logic).

Moreover, each source has a specific local data manipulation language (e.g., SQL).

Mappings between the enterprise model and the source models consist of two

parts, on one hand a syntax correspondence provides a bidirectional translation

for concepts of a specific source model(local schema) between GCL and the local

data manipulation language of the corresponding source. On the other hand, a

semantic correspondence takes the the form of a set of statements of equivalence

between concepts of the enterprise model and concepts of the source model(local

schema) called articulation axioms.

When a source is to be added to the system, it is necessary to develop a set

of articulation axioms in a three-phase process. The fist step is to build a source
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model(local schema) expressed in GCL that models the contents of the source

(in this case, the source model(local schema) is a Cyc context or microtheory

[25]). Secondly, the concepts of the built source model(local schema) are matched

with corresponding concepts in the enterprise model1. Finally, these matches are

converted into a set of articulation axioms, which then will be used to rewrite

queries asked to the system. Such queries can be expressed using GCL or any

local data manipulation language. The objective is that applications and/or users

do not necessarily have to use the enterprise model (and learn/use Cyc’s GCL)

to query the system.

Given a query expressed in the source specific manipulation language, the sys-

tem processes it in the following manner: First, the query is syntactically trans-

lated into a concept expressed in GCL over the source model(local schema). Then,

using the set of articulation axioms associated to the resulting local concept, the

system semantically translates it into a concept over the enterprise model. After

that, the system uses the set of articulation axioms associated to the resulting

global concept in reverse to translate it into a set of queries over different source

models. Finally, each of these local queries is syntactically translated into its

corresponding data manipulation language, and sent to the corresponding source

for execution. In case the original query is expressed over the enterprise model,

the system uses the set of articulation axioms associated to it to translate it into a

set of queries over different source models. Similarly, each of these local queries is

then syntactically translated into its corresponding data manipulation language

and sent to the corresponding source for execution.

6.2 TSIMMIS

TSIMMIS (The Standford-IBM Manager of Multiple Information Sources) [17]

is a project dedicated at developing tools that facilitate the rapid integration of

heterogeneous sources that may include both structured and unstructured data.

Distinctively, its goal is not to perform fully automated information integration,

but rather to provide a framework and tools to assist users in their informa-

tion processing and integration tasks. TSIMMIS implements virtual, procedural,

and peer-to-peer information integration based on a GaV approach with exact

mappings.

1In case there are not matching global concepts for the given local concepts, they are created.
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The content of each source is modeled using the so-called Object Exchange

Model (OEM), a simple self-describing object model. The fundamental idea is

that all objects, and their subobjects, have labels that define their meaning.

Each source is associated with a translator (wrapper) that logically converts the

underlying data to OEM objects. Above wrappers lie the mediators which refine

the information from one or more sources. A mediator embeds the knowledge

that is necessary for processing a specific information request. Mappings between

different source models are hardcoded withing the mediators. In other words, the

way of dealing with previously identified queries is embedded in mediators, which

in turn use wrappers in order to retrieve data from the sources. This approach

can be regarded as being too ad hoc to be scalable; to this respect, one of the

goals of TSIMMIS is to automatically or semi-automatically generate mediators

from high level description of the processing they are supposed to do.

Queries posed to the system are expressed in OEM-QL, an SQL-like language

extended to deal with labels and object nesting. Mediators and wrappers take

as input OEM-QL queries and return OEM objects. Hence, the system forms

an interconnected network of mediators and wrappers where users and mediators

can obtain data either from wrappers or from other mediators. In particular,

users can access the sources through the system either by writing applications

that request OEM objects to a subset of mediators/wrappers, or by using of

the generic browsing tools TSIMMIS provides. In such browsers, the user writes

a query or selects one predefined query. If the submitted query is valid and

successfully executed by one one of the system’s mediator or wrapper, the answer

object is returned to the user. The answer is received as a tree, whose root shows

one or more levels of the answer object, with links available to take the user to

portions of the answer that did not appear in the root.

Another key point is that TSIMMIS is able to handle integrity constraints.

Such constraints specify semantic consistency requirements over data. In this

context, i.e., a loosely coupled environment, however, it is generally not possible

to guarantee that every user or application sees consistent data every time it

interacts with the system. To this respect, TSIMMIS enforces constraints with

weaker or so-called relaxed guarantees. By enforcing such relaxed guarantees, it

is possible to know what holds and what does not, and when.
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6.3 Information Manifold

The Information Manifold (IM) system [32] objective is to provide uniform access

to a heterogeneous collection of sources (most of which located in the Web).

One of the most important characteristics of the system is that it provides a

mechanism to declaratively describe, not only the contents of the sources, but

their query capabilities which enables expressing fine-grained distinctions between

different sources. IM implements virtual, declarative, and centralized information

integration based on a LaV approach with sound mappings.

The enterprise model is represented using Classic [10, 18], i.e., the relational

model augmented with certain object-oriented features (e.g., classes, attributes).

Relations contain tuples while classes contain objects. In order to be able to

treat relations and classes uniformly, a class is represented with a unary relation

and its attributes with a set of binary relations. Similarly, the content of the

sources is also modeled as a set of tuples in one or more relations, or a set of

objects in one or more classes. Each source is regarded as containing tuples of a

certain source relation (whose name does not belong to the set of names of the

global relations). Each source relation is specified in terms of a conjunctive query

over the relations of the enterprise model, describing the conditions the tuples in

the source relation must satisfy. Distinctively, since the considered sources may

not be able to answer arbitrary queries, each source is annotated with its query

capabilities. A capability record specifies which inputs can be given to the source,

the minimum and maximum number of inputs allowed, the possible outputs of

the source, and the selections the source can apply.

Queries asked to the system are conjunctive queries over the enterprise model.

Given a query, the system computes a so-called query plan, which in general

terms represents a sequence of accesses to sources interesped with local processing

operations. The query plan combines data from different sources in a way that

guarantees semantically correct answers, while adhering to the various source

capabilities. In more detail, a query plan is a set of conjunctive plans, where a

conjunctive plan is simply a conjunctive query annotated with the inputs and

outputs of every subgoal. A conjunctive plan is said to be semantically correct

if its expansion, obtained by expanding the definitions of its subgoals using the

mappings, is contained in the query posed to the system. Moreover, a conjunctive

plan is said to be executable if it respects the various source capabilities. Finally,

the answer to a query is defined as the set of tuples that can be obtained by some
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executable and semantically correct conjunctive plan for it.

In order to generate an executable and semantically correct query plan for a

given query, the system proceeds in two stages: first, the system generates a set

of semantically correct conjunctive plans, and then it tries to order the conjuncts

of each of the plans to ensure they are executable. The generation of semantically

correct conjunctive plans amounts to finding a conjunctive query that uses only

the source relations and is contained in the given original query. This problem

is closely related to the problem of answering queries using views (see section 5),

where the source relations are considered to be sound views. Given a query, the

system implements the Bucket algorithm (see section 5.3.1) to obtain a set of

semantically correct conjunctive plans. For each of these conjunctive plans the

system then tries to order its subgoals to make it executable. For any conjunctive

plan, if there is an ordering of its subgoals to make it executable, it is guaranteed

to be found in a polynomial time in the size of the plan.

6.4 SIMS

The objective of the SIMS (Single Interface to Multiple Sources) system [4] is to

access and integrate information from multiple sources, which can be relational

databases or LOOM knowledge bases (for a full description of LOOM see [34]).

One of its main characteristics is that it applies a variety of techniques and

systems from Artificial Intelligence (e.g. planning) to build an intelligent interface

to the sources. SIMS implements virtual, declarative, and centralized information

integration based on a LaV approach with sound mappings.

The enterprise model and each of the source models are expressed in the

LOOM knowledge representation language2. The enterprise model’s collection of

terms forms the vocabulary used to characterize the contents of the local sources.

When a source is to be added to the system, it is necessary to build its model as

a local LOOM model including every fact that can influence decisions concerning

when and whether to use it. Such facts, besides the specification of the content,

include among others whether the source is originally a LOOM knowledge base,

the size of the source, and its location. Once the model is built, it is then merged

to the enterprise model by asserting relations (e.g. is-a) between matching local

2LOOM combines features of both framework-based and semantic network languages, and
provides reasoning facilities.
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concepts and global concepts.

Queries can be posed using either global or local concepts. In any case, queries

asked to the system are LOOM expressions (refering to a set of concepts). Given

a query, the system identifies the relevant sources for each of the query concepts.

Identification of relevant sources is straightforward in case each query concept has

a set of corresponding matching local concepts. Nevertheless, when this is not

the case, the system obtains a set of reformulations, that enable relevant sources

to be identified, for every query concept that does not have a matching local

concept. Once relevant sources have been identified, the system translates the

original query into a set of local queries (which refer only to local concepts) using

the asserted relations between global and local concepts. An optimized plan, or

ordered sequence of the resulting local queries, is then created an executed. Put

simply, given a query, the system generates a collection of local queries and then

executes an optimized plan for accessing the appropriate sources.

Distinctively, SIMS uses two independent systems to achieve integration. On

one hand, in order to identify relevant sources and order the sequence of a set

of resulting local queries (i.e., generating the plan) SIMS uses a a means-ends

analysis planner called Prodigy [16]. Prodigy has been linked to LOOM, so it

can use the enterprise model as its model of the world. SIMS simply formulates

the identification of relevant sources and the ordering of local queries as planning

problems and passes them to Prodigy. On the other hand, in order to perform

data retrieval SIMS uses the LOOM Interface Module (LIM) [35]. LIM converts

a database schema into a LOOM model, and given a LOOM query grounded to a

single database, automatically translates it into the appropriate database query

language, executes it in the corresponding source, and returns the results as if

they were LOOM instances. After SIMS has generated a set of local queries for

a given query, it passes the subset of local queries that are grounded in a single

database to LIM for the actual retrieval. The local queries that are grounded to

a LOOM knowledge base are handled by SIMS itself.

6.5 OBSERVER

The OBSERVER (Ontology Based System Enhanced with Relationships for Vo-

cabulary hEterogeneity Resolution) system [36] uses multiple pre-existing ontolo-

gies to access heterogeneous, distributed and independently developed sources.
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Distinctive characteristics include a mechanism to estimate the possible loss of

information that may occur when rewriting queries, and the exploitation of se-

mantic interontology relationships. OBSERVER implements virtual, declarative,

and peer-to-peer information integration with sound, exact and complete map-

pings between source models.

The content of each source is described by one or more ontologies (source

models) expressed using the Classic Description Logic [10, 18]. Each source

model(local schema) is associated with a set of correspondences between DL ex-

pressions and the query language of the corresponding source3. As OBSERVER

follows a peer-to-peer information integration approach, there is not an enter-

prise model. Hence, mappings must be defined between the concepts of different

source models. Such mappings can be either synonym, hyponym or hypernim

relationships, meaning that a mapping is either an equivalence or an inclusion

axiom between a pair of concepts of different source models.

Queries posed to OBSERVER are Classic expressions over one of the source

models. OBSERVER uses inference to classify the query and determine relevant

data repositories. The system then translates the query to the local query lan-

guages of the sources by using the correspondences between the schema and the

underlying query language. If the user is not satisfied with the answer provided by

that specific source, the scope of query can be expanded by selecting a set of target

source models. Once a target source model(local schema) is selected, the query

needs to be expressed over it. The system uses synonym mappings between the

original source model(local schema) and the target source model(local schema)

in order to substitute all the query concepts it can, by equivalent concepts of

the target source model(local schema). If there are not synonym mappings for

a subset of the query concepts, then the translation is only partial. The sys-

tem deals with partial translations in two ways: (1) A partial translation can be

combined with the partial translations obtained for other target schemata, such

that the non-translated concepts may be translated across multiple schemata. (2)

Each non-translated concept is substituted with the intersection of its immediate

parents or by the union of its immediate children.

The resulting query can now be used to retrieve underlying data. Partial trans-

lations often result in a loss of information, however. To this respect, OBSERVER

3Please note that these correspondences are not the mappings between different source
models.
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proposes measures to estimate the resulting loss of information. Moreover, based

on this estimation, the system chooses the translation that minimizes the loss of

information. If the user is still not satisfied with the results, the process repeats

itself with a new target source model(local schema).

6.6 Infomaster

Infomaster [23, 20] is an information integration system that provides integrated

access to multiple distributed heterogeneous sources on the Internet. The core

of the system is a so-called facilitator that determines which sources contain the

information necessary to answer a given query efficiently, designs a strategy for

answering it, and performs translations to convert data to a common form. In-

fomaster implements virtual, procedural and centralized information integration

based on a LaV approach with sound and exact mappings between the enterprise

model and the source models, and exact mappings between the enterprise model

and the query models.

Distinctively, Infomaster makes use of various query models besides the usual

use of the enterprise model and the underlying source models. Each query model

represents a WWW form users can use to enter queries to the system, and it is

represented with a so-called interface relation. On the other hand, the enterprise

model is represented as a set of base relations, which should be chosen to be

the basic ‘building blocks’ of a given application domain. Similarly, each source

model is represented with a set of site relations. Both, the interface relations and

the site relations are expressed in terms of the base relations.

Queries posed to the system are conjunctive queries over one of the query

models. Query processing in Infomaster is a three-step process: The first step,

called reduction, consists of rewriting the query into a query in terms of the

enterprise model by simply unfolding its definition in terms of the base relations.

In the second step, called abduction, the descriptions of the source models have

to be used to translate the rewritten query into a query in terms of a subset

of relevant source models. This second step is strongly related to the problem

of answering queries using views (see section 5) and it is based, as it names

implies, on the notion of abduction. In general, given a logical theory (composed

of the description of the source models), a syntactic restriction (given the fact

that we need the final rewriting to be in terms of the source models), and a
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query in terms of the enterprise model; a rewritten query is considered to be an

abduct of the initial one under the logical theory and the syntactic translation

if: (i) the rewritten query is in terms of the source models, (ii) the logical theory

including the rewritten query is consistent, and (iii) the logical theory including

the rewritten query implies the initial query. Abduction is implemented in the

Infomaster system using a standard model elimination prover. After abduction,

the resulting query is an executable query plan, because it only refers to data that

is actually available at the sources, nevertheless it could be inefficient. Therefore

in the third and last step, the query plan is optimized using the descriptions of

the corresponding sources. In the optimization step, the system tries to eliminate

redundant source accesses, and to group the query plan in order to avoid querying

the same information twice.

6.7 DWQ

The DWQ (Data Warehouse Quality) system [15, 14] is used in the context of

data warehouses. In DWQ, the objective of source integration is to represent the

migration of the data from the sources to a data warehouse, in order to support

the design of (materialized) views that meet user requirements. DWQ imple-

ments materialized, declarative, and centralized information integration based

on a GLaV approach with sound, complete and exact mappings. Distinctively

DWQ includes the modeling of sound, exact and complete mappings between

source models.

The enterprise model and the set of source models are expressed with DLRreg

[15]. Mappings are expressed as a set of subsumption or equivalence assertions

between concepts from different models. Since DWQ is based on a material-

ized approach, actual data are not in the sources but reside in a set of relational

schemata managed by the system at the logical level. Such schemata are intended

to provide a structural description of the content of the sources (and the mate-

rialized views). The connection to the conceptual level is established by defining

each relation as a relational query over the elements of the enterprise model or

the source models. Finally for every relation there is a specification on how the

tuples of such a relation should be constructed from a suitable set of tuples ex-

tracted from the sources. This last specification is crucial in order to load data

into the data warehouse and perform data refreshment.
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Queries to the system are DLRreg concepts over the enterprise model or the

source models. For each given query, the system verifies whether and how the

answer can be computed from the source schemata (and materialized views). This

problem is known as the query rewriting problem, which amounts to find a way

to rewrite the original query into another in terms of the relations of the source

schemata (or the materialized view schema). Although the system does not have

a method for automatically rewriting the query, it exploits query containment

checking in order to support the designer in this task. If the information contained

in the various schemata at the logical level is not enough, the system starts the

so-called client-driven integration. The idea is to verify whether the answer can

be obtained by materializing new concepts represented in the enterprise model

or the source models. In the case where neither the materialized data nor the

concepts in the models are sufficient, the necessary data should be searched for

in new sources, or in new portions of already analyzed sources.

Every time a new source is to be added to the system, the system starts the

so-called source-driven integration process: First the corresponding source model

is built and integrated into the enterprise model by adding a set of assertions

between concepts of the new source model and concepts of the enterprise model

or the source models. Note that the integration of a new source model can lead

to changes both to the existing source models and to the enterprise model. After

the first step, the source schema corresponding to the new source is produced

and populated from the sources. In order to populate the new schema, the actual

data have to be loaded into the system from the corresponding source. During

the transfer of data, possible inconsistencies and redundancies are resolved, so

that the system is able to provide and integrated and reconciled view of the data.

6.8 PICSEL

PICSEL [24] is a combination of the GaV and the LaV approaches. While it

makes us of GaV mappings to relate the enterprise model with the underlying

source models, it provides the mechanism to specify a restricted form of views

that help characterizing the data contained in the sources. PICSEL implements

virtual, declarative and centralized information integration based on a hybrid

GaV-LaV approach with sound mappings.

CARIN [33], a combination of function-free Horn rules and ALN concept
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expressions, is used to represent both the enterprise model and the set of source

models. Each source is characterized by a set of source relations, and described

by a CARIN knowledge base (source model) which contains a set of rules that

indicate what kind of data can be found in the source, and a set of terminological

and integrity constraints on the instances of the source relations. Such constraints

enable a better characterization of the data residing at the sources. Although

mappings between the enterprise model and the various source models follow a

GaV approach, the set of constraints associated to the source models allow the

expression of some kind of views (i.e., those expressible by ALN expressions). As

a result, PICSEL combines a GaV approach with a restricted LaV approach. The

reason for this limitation is that, as has been shown in [7], a full LaV approach

in the setting of CARIN, does not guarantee decidability of query answering.

Queries are non-recursive CARIN rules (i.e. union of conjunctive queries

over ALN expressions) over the enterprise model. Answering queries in PICSEL

resorts to find conjunctions of source atoms (rewritings) which entail the initial

query. A rewriting of a given query can be regarded as a specialized query plan

that can be directly executed on the sources, and that provides answers to the

initial query. In other words, the idea is to compute a representative set of all the

possible rewritings of the original query, in order to get all the possible answers

that can be obtained for it by accessing the available sources. For doing so,

given a query, the system proceeds in two steps: query expansion and rewriting

verification.

The system expands the original query to get a set of rewritings. In the first

step, query expansion is achieved by using standard backward-chaining on the

rules of the enterprise model in order to get a set of ordinary expansions for

every conjunctive query composing the original query. An ordinary expansion is

a set of atomic concepts and atomic roles over the enterprise model. Then, the

atoms composing each ordinary expansion are again expanded using mappings,

obtaining a set of terminal atoms. Terminal atoms either belong to a source

model or, in case because they cannot be logically derived from the sources, to

the enterprise model. Clearly, terminal expansions that consider only terminal

atoms from the source models are valid rewritings. However, it is more subtle

to understand that terminal expansions that contain atoms that do not belong

to any source model, may still provide valid rewritings. In this case, if such

atoms are only atomic concepts, it may be the case that their terminal expansion
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still entails the original query without them. The conjunction of the remaining

atoms for a given terminal expansion is considered a candidate rewriting. After

expanding the query, for each candidate rewriting, the system checks whether it is

compatible with the corresponding integrity constraints, and whether it actually

entails the initial query. After the validation process, the remaining rewritings

can be sent to the corresponding sources for execution.

Query processing in PICSEL is complete in the sense that the query plans,

which are obtained from the query expansion step and which are checked as

being valid rewritings for the verification step, completely characterize the set of

rewritings of the query. Hence, the union of the answers resulting from executing

such query plans provides the set of answers that can be obtained from the

available sources.

6.9 TAMBIS

The Transparent Access to Multiple Bioinformatics Information Sources (TAM-

BIS) system [6] uses a so-called domain ontology for molecular biology and bioin-

formatics to integrate a set of relevant sources. TAMBIS implements virtual,

declarative, centralized information integration based on a GaV approach with

exact mappings.

The enterprise model is modeled using the GALEN Representation and In-

tegration Language (GRAIL) [1] which allows the use of standard reasoning ser-

vices. The enterprise model in TAMBIS, however, is more than the union of con-

cepts of the underlying sources for it provides an abstract framework for relating,

reconciling, and coordinating such concepts. Distinctively, considered sources are

frequently not databases in the sense that they do not have a separate schema

containing their metadata, and they do not have a declarative query language like

SQL. On the contrary, most are tools, processes, or proprietary flat file structures

containing embedded metadata. Sources are encapsulated by wrappers described

in the functional multidatabase Collection Programming Language (CPL) [11].

Mappings relate the wrapper services in the sources with their conceptual coun-

terparts in the enterprise model constituting the so-called Sources and Services

Model (SSM).

Queries are GRAIL concept expressions of the enterprise model, hiding the

sources from the user. Queries are posed to the system through a Web-based
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query formulation and ontology browsing interface which ensures that only co-

herent queries can be expressed. When a query is posed to the system, TAMBIS

executes a query translation (rewriting) and planning process that identifies ap-

propriate sources, plans an efficient way of executing the query, and generates

an execution plan for use with a middleware layer (the set of wrappers). The

enterprise model is used during the query rewriting process as a semantic in-

dex to the wrapper methods, and the subsumption mechanism is used to select

the most specialized mapping available. Distinctively, source-independent rewrite

rules govern the choice of mappings and how the query components are combined.

6.10 TAMBIS II

TAMBIS II [37] is derived from TAMBIS and it addresses some of TAMBIS

limitations. Nevertheless, as its predecessor, it implements virtual, declarative,

centralized information integration based on a GaV approach with exact map-

pings.

The main differences with TAMBIS are as follows: (1) TAMBIS II uses the

more expressive Description Logic ALCQI (see [5]) instead of GRAIL for mod-

eling the enterprise model and expressing queries. This allows domains to be de-

scribed more precisely in the enterprise model and allows more precise questions

to be asked. (2) The reasoning services of the DL languages (i.e. ALCQI) are

used extensively during query processing to support semantic query optimization

based on axioms within the enterprise model. This allows relationships between

the sources and the enterprise model to be described in a declarative manner,

which can then exploited by the system to detect redundant queries or to allows

the use of multiple sources for the same kind of data. Finally (3) the sources are

wrapped using an object model and are presented to the rest of system as being

an object database, conforming to the ODMG data model [8].

6.11 SomeWhere

SomeWhere [3] is a semantic peer-to-peer information integration system that is

based on simple personalized ontologies distributed at a large scale. It is based on

a ‘small is beautiful’ philosophy in which no user imposes to others his/her own

peer schema (source model). SomeWhere implements virtual, declarative, and
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peer-to-peer information integration with sound, exact and complete mappings

between source models.

The various source models are represented with a simple class-based data

model in which the data is a set of resource identifiers, the schemata are simple

definition of classes possibly constrained by inclusion, disjunction or equivalence

statements. Such data model corresponds to the propositional fragment of the

OWL ontology language [26]. As SomeWhere follows a peer-to-peer information

integration approach, there is no notion of enterprise model. Hence, mappings

must be defined between the concepts of different source models. Such mappings

can be either an inclusion, equivalence or a disjunction axiom between a pair of

concepts of different source models. Every source model is associated with a set

of extensional concepts defined in terms of atomic classes of the model. Such ex-

tensional concepts are used to specify the data that is stored logically in a given

peer. Axioms defining extensional concepts are restricted to be inclusion state-

ments between an atomic extensional class and a description combining atomic

concepts of the source model. In SomeWhere a new peer joins the system network

through some peers that it knows (called acquaintances) by declaring mappings

between its own source model and the source models of its acquaintances.

Queries are posed in terms of a given source model, answers to a query are not

only instances of concepts of the local source model, but possibly instances of con-

cepts from other source models. The systems rewrites a given query into a combi-

nation of extensional classes of different relevant source models. In other words,

extensional concepts of several source models can participate in a rewriting, and

thus to the answer of a query posed to a given source model. In this setting, query

rewriting can be reduced to distributed reasoning over logical propositional the-

ories by a straightforward propositional encoding of the distributed model of the

system’s network.

6.12 Summary

In this section we summarize the main characteristics of the analyzed IISs. For

each of the considered systems, table 6.1 shows the information integration ap-

proach4 that was implemented, the type of mappings5 that was modeled, and the

4V = Virtual, M = Materialized, D = Declarative, P = Procedural, C = Centralized, P2P
= Peer-to-peer.

5S = Sound, C = Complete, E = Exact.
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KR formalism that was used to represent the system.

System Approach Mappings KR formalism

Carnot V, D, C GaV E Cyc GCL
TSIMMIS V, P, P2P E OEM
IM V, D, C LaV S Classic
SIMS V, D, C LaV S LOOM
OBSERVER V, D, P2P S, C, E Classic
Infomaster V, P, C LaV S, E Relational model
DWQ M, D, C GLaV S, C, E DLRreg

PICSEL V, D, C GaV-LaV S CARIN
TAMBIS V, D, C GaV E GRAIL
TAMBIS II V, D, C GaV E ALCQI
SomeWhere V, D, P2P S, C, E Propositional OWL

Table 6.1: Main characteristics of analyzed IISs.

Existing systems implementing GaV include [19, 17, 6, 24, 37]. LaV, on the

other hand, is implemented in [4, 32, 23, 20], mainly focusing on query rewrit-

ing. GLaV has received less attention, and, on the contrary, current efforts on

this matter [15] mainly focus on query answering. Summing up, the design and

implementation of a GLaV IIS that effectively solves the problem of view-based

query rewriting remains an open problem.



Chapter 7

Query rewriting: The first

experience

7.1 Scenario

We focus on solving the problem of view-based query rewriting (see section 4.4.2)

for centralized, declarative and virtual information integration with GLaV map-

pings. Our approach is centralized since we consider IISs with one enterprise

model, a set of source models, and a set of GLaV mappings between them. It is

declarative since we make use of DLs for representing the system components. Fi-

nally it is virtual because we make the assumption that all data reside in relevant

sources.

We make the simplifying assumption that user queries are atomic concepts

over the enterprise model. Moreover, the enterprise model and the set of source

models are considered to be acyclic ALC1 TBoxes composed of a set of limited

concept definitions2. We describe the required limitations in the following section.

In general the mappings, on the other hand, are composed of a set of expressions

of the form: C v D, where C is a concept expression over the source models, and

D is a concept expression over the enterprise model. Given the fact that both, the

enterprise model and the set of source models, are sets of concept definitions, it is

possible to substitute every concept name in the mappings for its corresponding

definition in the corresponding model. After making such a substitution, we only

1A DL allowing for concept conjunction, disjunction, negation, and universal and existential
quantification [5].

2A concept definition is an equality axiom whose left-hand side is an atomic concept.
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need to take into account the mappings to rewrite a given query.

7.2 Definitions

Let G = Ngc ∪ Ngr (Ngc ∩ Ngr = ∅) be a global signature, where Ngc is a finite

set of global concept names and Ngr is a finite set of global role names. Let

L = Nlc ∪ Nlr (Nlc ∩ Nlr = ∅) be a local signature, where Nlc is a finite set of

local concept names and Nlr is a finite set of local role names. G ∩ L = ∅.
An ABox A is said to be local atomic if it is composed of a set of assertions

of the form:

a :C or (a, b) :R

where a, b are individual names, C ∈ Nlc, and R ∈ Nlr.

An axiom of the form C v D is said to be a valid concept mapping if C is a

concept expression over L where the symbols ¬ and ∀ do not occur, and D is a

concept expression over G where the symbols ¬, ∃ and t do not occur. An axiom

of the form R v S is said to be a valid role mapping if R ∈ Nlr, and S ∈ Ngr.

An ALCH TBox M = MC ∪MR is said to be a valid set of mappings if it is

composed of a set of valid concept mappings MC and a set of valid role mappings

MR. A mapping M of the form C v D holds w.r.t. M, written CvMD if

M |= M .

A set of valid concept mappings MC is said to be complete if the application

of any rule in table 7.1 to any M ∈MC does not add any new mapping to MC.

Let unfold(M) be a complete set of valid concept mappings for a given valid

set of mappings M. unfold(M) starts with MC and applies the expansion rules

of table 7.1 to each concept mapping M ∈MC until MC is complete.

The u-rule
Condition: MC contains C v D1 uD2.
Action: MC = MC ∪ {C v D1, C v D2}.

The ∀-rule
Condition: MC contains C v ∀S.D.
Action: MC = MC ∪ {

⊔
∃R−

i .C v D, for every (Ri v S) in MR}.

Table 7.1: Expansion rules for the mappings.

Given a concept expression C over the signature of a knowledge base K, the

answer for C w.r.t. K is defined as C(K) = {a | K |= a : C}.
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Let lhs(M) and rhs(M) denote the left-hand side and the right-hand side of

a given mapping M respectively.

Let partition(C,M) = {M | rhs(M) = C, for every M in unfold(M)},
for a given concept C ∈ Ngc, and a set of valid mappings M, .

Let the rewriting of a concept C ∈ Ngc w.r.t. a valid set of mappings M be

defined as:

def(C,M) =
⊔

M∈partition(C,M)
lhs(M).

7.3 View-based query rewriting algorithm

Our algorithm takes as input a set of valid mappings M and an atomic query Q,

i.e., Q ∈ Ngc, and returns the rewriting Q′ = def(Q,M).

7.3.1 Proof of soundness and correctness

Lemma 7.3.1. If R1 vM R, then ∃R1.C vM ∃R.C.

Proof. If an individual a is instance of ∃R1.C w.r.t. M, it means that aI ∈
(∃R1.C)I for each model I of M, and that there is another individual b s.t.

bI ∈ CI , and (aI , bI) ∈ RI
1 . Now if R1 vM R, RI

1 ⊆ RI , hence (aI , bI) ∈ RI and

aI ∈ (∃R.C)I . Since aI ∈ (∃R1.C)I and aI ∈ (∃R.C)I , (∃R1.C)I ⊆ (∃R.C)I ,

therefore ∃R1.C vM ∃R.C.

Lemma 7.3.2. If R vM S then R− vM S−.

Proof. If (a, b) is an instance of R w.r.t. M, it means that (aI , bI) ∈ RI , since

R vM S, RI ⊆ SI , and (aI , bI) ∈ SI . Now since (aI , bI) ∈ RI , then (bI , aI) ∈
R−I , analogously since (aI , bI) ∈ SI , then (bI , aI) ∈ S−I . Since (bI , aI) ∈ R−I

and (bI , aI) ∈ S−I for any pair of individuals a and b, R−I ⊆ S−I , therefore

R− vM S−.

Lemma 7.3.3. (
⊔

CivMCCi) vM C.

Proof. This lemma immediately follows from the fact that (
⋃

Si⊆SSi) ⊆ S for any

set S and that any concept C (Ci) is interpreted as the set CI (resp. CI
i ) for any

model I of M.

Proposition 7.3.1. Every mapping M ∈ unfold(M) holds w.r.t. M.
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Proof. Intuitively, the concept mappings introduced by the expansion rules in

table 7.1 preserve their subclass relationship. Let us analyze such rules in detail:

The u-rule. In this case, every time the set of mappings M contains a

concept mapping M of the form: C v D1 uD2, the u-rule introduces two new

concept mappings M1 = C v D1 and M2 = C v D1. Clearly, such mappings are

implied by the first axiom, so, both M1 and M2 hold w.r.t. M.

The ∀-rule. In this case, every time the set of mappings M contains a

concept mapping M of the form: C v ∀S.D, the ∀-rule introduces a new

concept mapping: M1 =
⊔
∃R−

i .C v D, ∀(Ri v S) ∈MR.

Let us break the construction of the M1 in two phases: (1) in the first phase

we get M ′ = ∃S−.C v D from the original mapping M . Intuitively M says

that if an individual a is an instance of C, then all its S-successors b1, . . . , bn

are instances of D. On the other hand, M ′ says that if an individual bi has an

S-predecessor a that is instance of C, then bi is an instance of D (because of

M). It is clear to see that M ′ holds w.r.t M. (2) In the second phase we get

M1 =
⊔
∃R−

i .C v D,∀(Ri v S) ∈ MR from M ′. Basically we replace lhs(M ′)

for another expression E =
⊔
∃R−

i .C,∀(Ri v S) ∈ MR. From lemmata 7.3.2

and 7.3.3 it follows that E v lhs(M ′). Since E v lhs(M ′) and lhs(M ′) v D,

E v D, so M1 holds w.r.t. M.

Proposition 7.3.2. def(Q,M) vM Q.

Proof. The process of obtaining a definition of a global concept C ∈ Ngc, yields

the construction of a concept expression C ′ that is a subclass of C w.r.t. M.

Let us break the construction of def(Q,M) in three phases: (1) In the

first phase, we get unfold(M). (2) Then we get a subset partition(Q,M) of

unfold(M) by simply taking the subset of unfold(M) such that the right-hand

side of every M ∈ unfold(M) is Q. (3) Finally we get

def(Q,M) =
⊔

M∈partition(Q,M)
lhs(M).

From proposition 7.3.1, we know that every mapping M ∈ unfold(M) holds

w.r.t. M. Hence every mapping M ∈ partition(Q,M) also holds w.r.t. M.

Moreover from lemma 7.3.3 it follows that⊔
M∈partition(Q,M)

lhs(M) vM Q,
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therefore def(Q,M) vM Q.

Lemma 7.3.4. Q′(K) ⊆ Q(K) if Q′ vK Q, for any knowledge base K.

Proof. Q′ vK Q means that Q′I ⊆ QI for any model I for K. In other words,

aI ∈ Q′I implies aI ∈ QI for any individual a. Since Q(K) (resp. Q′(K)) denotes

the set of individuals which are instances of Q (resp. Q′) w.r.t. K, if Q′ vK Q,

then Q′(K) ⊆ Q(K).

Proposition 7.3.3. Q′(〈M,A〉) ⊆ Q(〈M,A〉) for any local atomic ABox A.

Proof. From lemma 7.3.4 we know that Q′(〈M,A〉) ⊆ Q(〈M,A〉) if Q′ v〈M,A〉

Q. From proposition 7.3.2 we know that Q′ vM Q, therefore Q′(〈M, ∅〉) ⊆
Q(〈M, ∅〉). It trivially follows that Q′(〈M,A〉) ⊆ Q(〈M,A〉).

Proposition 7.3.4. Q(〈M,A〉) ⊆ Q′(〈M,A〉) for any local atomic ABox A.

Proof. Let us suppose we have a TBox T composed of the axiom C ′ v C, for a

given concept C ∈ Ngc, where C ′ = def(C, T ). If we were to evaluate C w.r.t. a

knowledge base K = 〈T ,A〉 (i.e., compute C(〈T ,A〉)), for any given local atomic

ABox A; the only way for an individual a to be an instance of C, is for it to be an

instance of C ′, since there is only one mapping for C. Clearly in such a setting,

for any individual a, if aI ∈ CI then aI ∈ C ′I for any model I of T . Hence,

CI ⊆ C ′I . It trivially follows that C(〈T ,A〉) ⊆ C ′(〈T ,A〉).
In particular, in order to be able to conclude a similar statement, Q′ vM Q

must hold and be the only mapping available for Q. Since Q′ is constructed

taking into account all mappings M ∈ def(Q,M) of the form D v Q (where D

is a concept expression over L), we know Q′ vM Q is the only available mapping

for Q. Moreover we know that such mapping holds from proposition 7.3.2, hence,

as can be seen, we have the same situation as that described above. Therefore,

Q(〈M,A〉) ⊆ Q′(〈M,A〉).

Theorem 7.3.1. Q(〈M,A〉) = Q′(〈M,A〉) for any local atomic ABox A.

Proof. Since we know that Q′(〈M,A〉) ⊆ Q(〈M,A〉) from proposition 7.3.3

and Q(〈M,A〉) ⊆ Q′(〈M,A〉) from proposition 7.3.4, it trivially follows that

Q(〈M,A〉) = Q′(〈M,A〉).
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7.4 Lessons learned

During the development of our algorithm we discovered that relaxing the various

limitations we imposed on the mappings can easily lead to situations where the

problem becomes much harder. Consider the following situations in which these

limitations:

• Prevent us from using recursion in the rewritings. Let us imagine M in-

cludes a mapping of the form:

C v ∃R.C, (7.1)

where C is a concept expression over G, and R ∈ Ngr. In this case, it is

easy to see that if a user were to ask the query Q = C, trying to unfold its

definition in order to get a rewriting would yield an infinite process.

• Prevent us from constructing mappings that are equivalent to those de-

scribed previously. For example, let us imagine M contains the following

mapping:

C u ∀R.¬C v ⊥,

where C ∈ Ngc and R ∈ Ngr. A trivial transformation would show that

such an axiom is equivalent to axiom 7.1, which would yield to a similar

situation.

• Allow us to reduce a GLaV system into a GaV one in a straightforward

manner. For example, allowing the use of conjunction on the right-hand

side of mappings could permit a situation where M contains a mapping of

the form:

C v G1 tG2,

where C is a concept expression over L, G1 ∈ Ngc, and G2 ∈ Ngc. In this

case, it is impossible to break the mapping in order to obtain independent

concept definitions for G1 and G2.

In summary, the main idea behind our approach is that with certain limita-

tions on the mappings, it is possible to reduce a GLaV system into a GaV one.
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This allows us to base our rewriting technique on simple concept unfolding.



Chapter 8

Conclusions and future work

8.1 Research undertaken

The research undertaken in the first year can be grouped in three areas:

1. Background knowledge. A good understanding of the problem of infor-

mation integration and its relation with DLs has been acquired through

a thorough literature review. This review included relevant topics, such

as DLs [5], information integration [28, 29], answering queries using views

[31, 40], and database technologies [2].

2. Related work. A good idea of existing techniques and approaches to infor-

mation integration has been gotten through an extensive literature review

of existing IISs [19, 17, 6, 24, 37, 4, 32, 23, 20, 15].

3. The first attempt. A sound and complete view-based query rewriting algo-

rithm was devised for an scenario where we consider: (1) acyclic ALC1 KBs

for the global view and the source models, (2) limited GLaV and intersource

mappings represented with an acyclic ALCH2, and (3) atomic user queries.

Our algorithm, presented in chapter 7, takes an atomic query in terms of the

global view and returns a union of conjunctive queries over the source models. In

general, given the assumed simplifications, it is possible to reduce a set of GLaV

mappings to a set of GaV ones, allowing the use of unfolding to rewrite the given

query.

1A DL allowing for concept conjunction, disjunction, negation, and universal and existential
quantification [5].

2ALC with role inclusion axioms [5].
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8.2 Future work

The future research is outlined in figure 8.1 and can be grouped in the following

tasks:

• Write a paper for the algorithm developed in the first year, emphasizing

the lessons learned. It is envisaged that the results will be published in a

related workshop.

• Investigate the ways to make the algorithm more general considering: (1)

more expressive KR formalisms (e.g., DLs with number restrictions) for

representing the global view and the source models (as well as integrity

constraints [2] within them), and (2) more expressive queries (e.g., non-

atomic, conjunctive) for querying the system. The results of this investiga-

tion should be written-up in a conference paper.

• Investigate typical application domains for information integration as well

as typical information needs (i.e., queries) w.r.t. a given domain. This

investigation will give us insight as to what is the level of expression, w.r.t.

both the KR formalism and the query language, real application domains

need. A promising relationship between us and fellow researchers at the

University of Newcastle, in the context of the ComparaGRID project3, has

been created. We plan to study their application domain in order to conduct

this part of our investigation.

• Design and implement our view-based query rewriting algorithm in a pro-

totype system.

• Evaluate the system within the context of ComparaGRID. The evaluation

results, as well as the full specification of the system are envisaged to be

published in an international conference paper.

• Write up the thesis and present a successful viva. The contributions of our

investigation should be published in a relevant journal.

3http://www.comparagrid.org
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Figure 8.1: A Gantt chart outlining the timing for future research.
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