
Computing Science Group

Dominance:
Consistently Comparing

Computational Complexity

Ed Blakey
edward.blakey@queens.ox.ac.uk

CS-RR-08-09

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford, OX1 3QD

Abstract. Though complexity theory strives primarily to categorize
problems according to their complexity, it is typically the complexity
only of methods of solving problems that we can directly measure. Specif-
ically, we have an upper bound for a problem’s complexity: namely, the
complexity of the most efficient known solution method for the problem.
In order to improve such bounds, it is desired to consider sets of solution
methods that are as complete as possible; but, whilst comparisons of
computing systems’ respective efficiencies can—via O-notation—readily
be made when the systems conform to the same computational model
and when the comparison is with respect to the same resource, it is not
clear how to compare model-heterogeneous sets of solution methods—
this imposes a constraint on the size of sets of methods that can be
considered, and a corresponding constraint on the quality of bounds on
the complexity of problems.

Here, we propose the notion of dominance as a way of augmenting the
power of O-notation to compare systems’ complexity. In particular, our
augmentation allows meaningful comparison of the respective complexi-
ties, with respect to different resources, of computing systems that con-
form to different computational models, thus allowing consideration of
larger, model-heterogeneous sets of solution methods and, hence, im-
proved bounds on problems’ complexity.

1 Preliminaries

1.1 Computation

Many devices and systems (including, but by no means limited to, digital com-
puters) can be said to compute. As long as a system has provision for accepting
input values and—usually after some form of processing—for supplying output
values, then it computes; what it computes is the relation—often a function—
between input and output values.1

For example,

– a digital computer’s input values may be typed on a keyboard and its output
values presented on a screen (with algorithmic processing—implemented as
a program, which is in turn implemented electronically—occurring between
input and output);

– a chemical computer’s input and output values may be encoded in the con-
centrations of solutions respectively supplied to and drawn from the system
(with chemical reaction occurring between input and output);

– and so on.

1 An equivalent interpretation of this computation relation is as a problem, which is
of the form ‘given a problem instance (i.e., input value), find the/an answer (i.e.,
output value) to the question that defines the problem’. Just as we say that a system
performs a computation/computes a relation, we say that it solves the corresponding
problem.

More generally, computing devices/systems accept input values encoded in the
values of manipulable parameters, and supply output values encoded in the
values of measurable parameters, of the system2 (with processing, in the form of
the system’s evolving in accordance with the laws—be they electrical, chemical,
etc.—to which it is subject, occurring between input and output).

1.2 Resource

A small set of ‘trivial’ (for example, identity- or constant-function) computations
aside, computation is not free: the act of computing consumes resource. A natural
question—when considering computation both theoretically and practically—is,

what types of resource are required (and in what quantities) by a given
computational system as it processes a given input value?

We may measure, for example, the time for which we have to wait before an
output value is supplied, the volume of physical space occupied by the system
(including any provision for data storage that it may require in processing the
given input), or the precision with which we must supply input and measure
output values in order that the correct computation be performed (see [3]); each
is a valid and potentially insightful measure of resource.

We adopt the convention of using upper-case letters A, B, C, etc. to denote
resources, which we view as functions

– that depend on the choice of computational system (shown as a subscript,
which, when understood, is often suppressed), and

– that map an input value to the corresponding amount of resource used by
the system in processing this value.

Hence, where Φ is a computer (that is, a system—any system—that performs
computation) and x is an input value for Φ, AΦ (x) (or simply A (x)) is the
amount of resource A consumed by Φ in processing x.

1.3 Complexity

Given a computational system, and considering a specific resource, we may ask
how this resource scales. In particular, we may be interested not in the resource
used by the system given one specific input value (that is, in some ‘A (x)’), but
in the resource used as a function of the size of the input value3—this is what we
2 There is a side issue that arises when one acknowledges that, in the non-Turing

realm of physical computing, the precision with which parameters are manipulated
and measured can affect the computation; we discuss this, and accordingly introduce
precision complexity, in [3].

3 We require, then, a size function σ that maps input values to non-negative reals (the
input values’ ‘sizes’); for example, if our input value is a natural number n expressed
in binary, then we can take as its size the number of bits, excluding leading zeros
(or, as is sufficient for virtually all complexity-theoretic purposes, the approximation
log2 (n) to this number of bits).

mean by the complexity function corresponding to the resource. Specifically, for
computer Φ and size function σ, the complexity function ACΦ,σ (corresponding
to a given resource A) evaluated at n is ACΦ,σ (n) := sup {AΦ (x) | σ (x) = n}
(‘Φ’s and/or ‘σ’s are often suppressed when understood).4 So, just as A, B, C,
etc. stand for types of resource, AC, BC, CC, etc. stand for types of complexity.

1.4 O-notation

The use of asymptotic, especially O-, notation is widespread in existing complex-
ity theory; it provides a suitable language for discussing the large-scale behaviour
of complexity functions in that it allows abstraction of the relevant information.
To say that an algorithm takes 6n2 − 2n + 10 milliseconds to process an input
value of size n is to make an implicit assumption about the implementation
of the algorithm (that it uses a processor of a specific speed, for example); a
better processor may execute the same algorithm in 3n2 − n + 5 milliseconds.
Since it is typically the time complexity of the algorithm itself, rather than of
any of its physical implementations (with specific-speed processors and so on),
that we wish to measure, the relevant information is that the time complexity
is quadratic in n; more exactly, the complexity theorist is often interested only
in the fact that, but for a finite number (or bounded set) of exceptional values
of n—which necessarily all occur where n is less than some finite threshold—,
the time complexity behaves quadratically. This is precisely the sort of condition
captured by O-notation (in this example, we have that TC (n) ∈ O (

n2
)
, where

T is the resource of time), as is evident from its definition:

Definition 1. Let O (f (n)) be the set of all functions g (n) such that there exist
a threshold n0 and constant c such that, for all n > n0, |g (n)| ≤ c |f (n)|.

(In addition to the notation’s ignoring arbitrary details such as processor
speed, its appropriateness is further bolstered by speed-up theorems, etc.5)

Below, we introduce a means—namely, dominance—of comparing in a fair
and meaningful way the respective complexities of computational systems; no-
tably, the systems may be instances of different models of computation (Tur-
ing machines, random access machines, analogue/quantum/chemical comput-
4 This definition of ACΦ,σ in terms of the supremum of a set of amounts of resource

reflects the fact that, whilst there may be several different amounts AΦ (x) of resource
corresponding to various input values x of the same size n, we are interested in finding
an amount ACΦ,σ (n) of resource sufficient for any input value of size n. (We are
tacitly assuming the perfectly reasonable condition that computation can proceed
when more resource than is necessary is available: specific values of AΦ and ACΦ,σ

can be thought of as lower bounds. Should there be a need to model the notion of ‘too
much of resource type A’—an upper bound—, then a new resource, ‘−A’, bounded
from below, can be introduced.)

5 For example, if an algorithm Φ is such that TCΦ (n) = f (n), then, for all real
numbers ε > 0, there exists an equivalent algorithm Ψ such that TCΨ (n) = εf (n)+
n + 2. Hence, we can disregard all but the order k of a polynomial time complexity
function: ‘TC (n) ∈ O

(
nk

)
’ captures the relevant information (see Sect. 2.4 of [5]).

ers, etc.), and may be compared with respect to different resources (time, space,
precision, ink, etc.). This notion of dominance relies on O-notation.

2 Dominance

2.1 Motivation

O-notation makes immediately possible like-with-like comparisons: given two
computers Φ and Ψ6 and a resource A, we may have either

1. that ACΨ (n) ∈ O (ACΦ (n)) (in which case Φ can be said to consume no
less of A than Ψ does), or

2. that ACΦ (n) ∈ O (ACΨ (n)) (in which case Ψ consumes no less of A than Φ
does).

We may, further, have both 1 and 2 (in which case Φ and Ψ consume A equally7),
or, finally, neither 1 nor 2 (in which case the respective consumptions by Φ and
Ψ of A are incomparable). This induces a pre-ordering of complexity functions
based on ‘A-efficiency’.

So, we know how to make like-with-like (‘A-with-A’) comparisons; however,
they are not necessarily relevant. For example, we note in [3] two methods for
finding the greatest common divisor of two given natural numbers:

– an algorithm (Euclid’s Algorithm), which has time and space complexities
logarithmic in the input values, and precision complexity8 constant in same;
and

– an analogue system, which has time and space complexities constant in the
input values, and precision complexity cubic in same.

We could describe the methods respectively as logarithmic- and constant-time
(and infer, by ‘A-with-A’ comparison, that the latter is more time-efficient); but
it is intuitively more insightful to describe the latter as a cubic-precision (and less
overall-resource-efficient), rather than constant-time, method, since the former
description focuses on the more relevant (i.e., O-dominant) resource. This notion
of ‘most relevant resource’ is now formalized.
6 In practice, the computers will typically perform the same computation/solve the

same problem; else, little meaning can be attributed to a comparison of their respec-
tive complexities (one may, prima facie, assume that such comparison is meaningful,
that it says something, for example, about which computation is harder to perform,
but a computation’s/problem’s complexity is defined in terms of an optimal—not
arbitrary—solution method’s (i.e., computer’s) complexity; comparison of problems
is better achieved using the notion of reduction).

7 This should be interpreted as equality ‘modulo irrelevant details’—see Sect. 1.4.
8 Precision complexity is discussed in [3]; for present purposes, we need note only that

precision is a resource required during some (non-Turing) computations, and that
precision complexity is the corresponding complexity function.

2.2 Definition

In light of Sect. 2.1, the intent of our notion of dominant resource is that the
corresponding complexity function should O-dominate all other resources’ com-
plexity functions; those resources corresponding to dominated complexity func-
tions are negligible, in the sense that their asymptotic contribution to resource
requirements is negligible. Accordingly, we tentatively make the following defi-
nition.

Definition 2 (provisional; see Definition 3). A dominant resource for a
computing system Φ is a type A of resource such that, for any resource type B,
the B complexity BCΦ is in O (ACΦ).

There are two aspects of this definition that require modification. First, a
resource’s dominance is over every other resource: it is not enough to show,
for example, that precision complexity O-exceeds time and space complexities
in order to show that precision is dominant according to Definition 2; rather,
precision complexity must be shown to O-exceed time, space, and all other con-
ceivable resources’ complexities, whereas attempting even to list such resources
is futile. Instead, we redefine below dominance relative to a set of resource types.

Secondly, the definition does not for every computing system imply existence
of a dominant resource (much as we should like one), since there exist pairs of
functions f and g such that f 6∈ O (g) and g 6∈ O (f). We weaken accordingly
the definition of dominance (essentially from ‘AC O-exceeds all other complexity
functions’ to ‘AC O-exceeds all other complexity functions with which it is O-
comparable’).9

Definition 3 (to replace Definition 2). Let Φ be a computing system, and
let R be a finite, non-empty set of resource types for Φ. An R-dominant resource
for Φ is a type of resource A ∈ R such that, for any resource type B ∈ R such
that ACΦ ∈ O (BCΦ), we have that BCΦ ∈ O (ACΦ).

Given this notion of (R-) dominance, it is natural to introduce the following
complexity classes.

Definition 4. Let Φ and R be as in Definition 3.

– For A ∈ R and a function f , let CR (f,A) be the class of problems for
which there exists a computing system Φ with R-dominant resource type A
such that ACΦ ∈ O (f).

– Let CR (f) =
⋃

R∈RCR (f, R).

9 Note, however, that it would be an immense surprise to the author were the definition
without this modification not to suffice for actual, practical computing systems—f
and g as described are necessarily fairly contrived and unnatural.

2.3 Discussion

Dominance formalizes a resource’s relevance when considering a computation:
resources that are dominant impose the asymptotically greatest cost, to the
extent that non-dominant resources may be disregarded as irrelevant.10 Further,
we have defined complexity classes that categorize problems according to cost
in terms of relevant (that is, dominant) resource.

As we note above, O-notation allows comparison of computers’ respective
complexities with respect to like resources (‘A-with-A’ comparison). This no-
tation together with the notion of dominance allows meaningful comparison of
computers’11 respective complexities with respect to different resources: as long
as the resources are dominant for their respective computers, it is meaning-
ful to compare (according to the O-ordering) the corresponding complexities;
though not necessarily ‘A-with-A’, such comparisons are nonetheless ‘relevant-
with-relevant’, and, hence, like-with-like (albeit at a higher level of abstraction).
For example, letting T , S and P stand for the resources of time, space and
precision respectively, we have

– that both T and S, but not P , are {T, S, P}-dominant for the former of the
greatest common divisor methods of Sect. 2.1, and

– that P , but neither T nor S, is for the latter.

Since the cubic PClatter O-dominates the constant TCformer and SCformer—
a ‘relevant-with-relevant’ comparison—, we have that the former method is (at
least when considering only these three resources) the more efficient.

We have, then, a framework in which can be made meaningful and consis-
tent comparisons of computation-model-heterogeneous sets of computers; the
framework’s classes can accommodate instances of various models of compu-
tation, and provide structure according to cost in terms of various resources.
This model heterogeneity offers an immediate advantage: a problem’s complex-
ity, which is the most commonly sought object in complexity theory, is bounded
above by the complexity of the most efficient solution method for the problem
(algorithm, physical system, or similar that solves the problem); the ability to
consider model-heterogeneous—and, hence, larger—sets of methods allows lower
minimal complexity of methods, and so tighter upper bounds on the complexity
of problems.

Note that dominance as we have defined it is by no means specific to Turing
machines: it is defined relative to the resource(s) considered, which may cater
for any computational model(s).12 Therefore, the notion is compatible with,

10 Necessary care during this disregard takes the form of constraints upon what con-
stitutes a resource. Though such constraints are outside the scope of the present
paper—here we define dominance relative to sets of given resources, which we as-
sume to be sensibly constrained—, Blum’s axioms offer a possible starting point for
the constraints’ definition; we shall explore this elsewhere.

11 These computers may, furthermore, be instances of different computational models.
12 This is of particular interest given the great research and practical activity in non-

standard computation—see [1], [4], etc.

and offers complexity classes defined in terms of, arbitrary theories of resource;
this work may—in fact, we intend it to—form part of a modular framework of
complexity (see [2]).

Acknowledgements. We thank Bob Coecke and Joël Ouaknine (at Oxford) for
their support, supervision and suggestions; and participants of Unconventional
Computing 2007 and the Second International Workshop on Natural Computing
for their encouraging feedback and discussion. We acknowledge the generous
support of the EPSRC; this work forms part of project EP/G003017/1.

4.vii.2008

References

1. Adamatzky, A. (editor): International Journal of Unconventional Computing. Old
City Publishing (2005 onwards)

2. Blakey, E.: A Model-Independent Theory of Computational Complex-
ity; Price: From Patience to Precision (and Beyond). Available at
http://users.ox.ac.uk/~quee1871/transfer.pdf.

3. Blakey, E.: On the Computational Complexity of Physical Computing Systems.
Unconventional Computing proceedings (2007) pp. 95–115

4. Hoare, C. A. R.; Milner, R. (editors): Grand Challenges in Computing. The British
Computer Society (2004)

5. Papadimitriou, C.: Computational Complexity. Addison-Wesley (1995)

