
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Learning with Stochastic Guidance for Robot
Navigation

Linhai Xie1, Yishu Miao1, Sen Wang2, Phil Blunsom1,
Zhihua Wang1, Changhao Cheng1, Andrew Markham1 and Niki Trigoni1

Abstract—Due to the sparse rewards and high degree of
environment variation, reinforcement learning approaches such
as Deep Deterministic Policy Gradient (DDPG) are plagued by
issues of high variance when applied in complex real world
environments. We present a new framework for overcoming
these issues by incorporating a stochastic switch, allowing an
agent to choose between high and low variance policies. The
stochastic switch can be jointly trained with the original DDPG
in the same framework. In this paper, we demonstrate the power
of the framework in a navigation task, where the robot can
dynamically choose to learn through exploration, or to use the
output of a heuristic controller as guidance. Instead of starting
from completely random actions, the navigation capability of a
robot can be quickly bootstrapped by several simple independent
controllers. The experimental results show that with the aid
of stochastic guidance we are able to effectively and efficiently
train DDPG navigation policies and achieve significantly better
performance than state-of-the-art baseline models.

Index Terms—Deep reinforcement learning(DRL), Deep deter-
ministic policy gradient(DDPG), REINFORCE, Robot navigation.

I. INTRODUCTION

DEEP Reinforcement Learning (DRL) has been shown to
be highly effective at mastering complex simulations

and artificial tasks, e.g. playing Atari games [1] and Go
[2]. However, DRL’s poor sample complexity has limited its
application to real world tasks, such as navigating a robot to a
target position without crashing into obstacles.

Deep Deterministic Policy Gradient (DDPG) [3] is an actor-
critic algorithm that is suitable for such continuous control
tasks in principle, but in practice the cost of exploration in
complex navigation environments can prove prohibitive.

Since an agent must stochastically explore a long sequence
of states during each training episode, high variance becomes
the main bottleneck that hinders DDPG from learning effective
DRL models. In order to mitigate this issue, conventional archi-
tectures generally require a huge number of learning samples,
resulting in high computational and environmental costs. In
this paper, we propose a new framework that allows an agent
to stochastically switch between high variance controllers (e.g.
DDPG), and low variance controllers (e.g. simple deterministic
controllers), effectively allowing the DDPG component to
be quickly bootstrapped instead of starting from completely
random moves.

1 Department of Computer Science, University of Oxford, Oxford OX1 3QD,
United Kingdom {firstname.lastname} @cs.ox.ac.uk

2 School of Engineering and Physical Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, United Kingdom s.wang@hw.ac.uk

Manuscript received April 19, 2005; revised August 26, 2015.

Intuitively, learning is usually easier to carry out under
guidance from other heuristics. The independent controllers
here act as the guidance that are introduced for learning
better DDPG policies. In our case, the agent still maintains
an independent DDPG module that learns navigation by
exploring the environment, but is able to dynamically switch
between learning from exploration or learning from the heuristic
controllers. Here, the switching mechanism is constructed as
a stochastic function updated by the REINFORCE learning
signal [4] to maximise total reward. Meanwhile, the DDPG
component is learned by employing the action selected by
the stochastic switch, rather than directly using the output
action generated by its policy network. Therefore, the switching
mechanism helps DDPG avoid trivial explorations during
the early training process, and learns to balance between
exploration and heuristic guidance. More interestingly, once
trained, the DDPG component can be used in isolation from
the other controllers, in which case the switch is turned off and
the navigation is carried out solely by the DDPG component.
Similar to the idea of imitation learning [5], [6], the DDPG
component is able to learn from the demonstrations given by
the guidance, which is a Proportional-integral-derivative (PID)
controller and an obstacle avoidance (OA) controller in our
case, and instantly generalise to new situations that PID and
OA could not handle. Those guidance can be considered as a
positive bias for reducing the variance of gradient estimators,
and the model is able to remove this bias after benefiting from
it.

For quantitative evaluation, we firstly compare our model
with the incorporation of the stochastic switch to the vanilla
DDPG baseline and deterministic benchmarks for demonstrat-
ing the benefits brought by bootstrapping with additional
primitive controllers. Then the influence of using different
independent controllers is investigated, which shows that the
framework has strong generalisation ability and it is able to
accumulate the benefits from different simple controllers. In
addition, we propose three variants of the switch mechanism
including a uniformly random switch, an argmax switch and
a Thompson sampling switch for comparison. Finally, we
show that the models can abandon the extra controllers when
their usage rate declines below a threshold and are able to
continue self-learning by only using the DDPG component.
For qualitative evaluation, we test our model in a real world
scenario: without further modification, the model trained in
simulation is able to be directly transferred to carry out
navigation tasks.

In summary, we propose a new framework that leverages

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

the heuristic knowledge provided by independent controllers
to bootstrap deep reinforcement learning for robot navigation.
Our experiments demonstrate that by incorporating stochastic
guidance, we are able to effectively and efficiently train the
DDPG navigation policies and achieve significantly better
performance than baseline models.

Specifically our contributions are:
• We achieve near-oracle performance, with low training

variance and an accelerated training rate relative to vanilla
DDPG.

• We demonstrate how the stochastic switch dynamically
learns which controller to choose based on the input and
anticipated reward, outperforming switches which only
learn from anticipated reward (e.g. Thomson sampling).

• We show that this technique is particularly important for
sparse rewards, where vanilla DDPG is unable to learn
how to complete an entire episode.

II. PROBLEM FORMULATION AND ASSUMPTIONS

We can consider the local navigation problem as a decision
making process [7] where the robot is required to avoid
obstacles and reach a target position. At time t ∈ [0, T] the
robot takes an action at ∈ A according to the observation
xt. After executing the action, the robot receives a reward rt
given by the environment according to the reward function and
then transits to the next observation xt+1. The goal of this
decision making procedure is to reach a maximum discounted
accumulative future reward Rt =

∑T
τ=t γ

τ−trτ , where γ is
the discount factor.

The reward function rt at time t is defined as:

rt =


Rcrash, if robot crashes
Rreach, if robot reaches the goal
(dt−1 − dt) cos (ωt)− C, otherwise

(1)
where Rcrash is a large penalty for collision, Rreach is a
positive reward for reaching the goal, dt−1 and dt denote the
distances between the robot and the goal at two consecutive
time steps t − 1 and t, ωt represents the rotational speed of
the robot at time t, and C is a constant time penalty which
encourages the robot to approach the goal quickly.

III. MODEL

The proposed model consists of three parts: perception,
control and stochastic switch, as shown in Fig.1. At each
time step, the perception part processes an observation and
generates a corresponding input representation. Then different
controllers can propose candidate actions based on the input
representation. Finally, the stochastic switch determines which
one of the actions to be carried out.

A. Perception

At each time step t, the robot observes the state of the
world xt, which includes a stack of current and historical
geometric observations, its linear and angular velocities and a
destination. The geometric observations, which give distances to

surrounding objects (depth images or laser scans), are processed
by a convolutional neural network to produce a compressed
input representation. It is then concatenated with the robot
velocities and destination and input to both the control and
stochastic switch blocks. We assume that the robot can localise
itself to obtain the relative position of the destination in robot
coordinate frame, for example using wi-fi localisation [8].

B. Control

1) Action: With the observation xt at time t, the robot takes
an action at = (avt , a

ω
t) ∈ A, where avt and aωt respectively

denotes the expected linear and rotational velocity at time t. It
obtains a reward rt given by the environment and transitions
to the next observation xt+1. The goal of our model is to
reach a maximum discounted accumulative future reward Rt.
In this work, the actions can be determined by the independent
controllers and DDPG, establishing a set of candidate actions
for the stochastic switch to choose.

2) Independent Controllers: Two independent controllers
aid DDPG to learn reasonable policies, especially in the initial
training phase. One is a proportional-integral-derivative (PID)
controller with proportional term [9], which derives action
from the relative position of the destination [xlocal, ylocal] in
robot coordinate frame as:

at = Kp · [xlocal, ylocal]T , (2)

where Kp is the coefficient for the proportional term. PID
controller is one of the most widely used and successful
control mechanisms. However, without considering geometric
observation, it does not have an obstacle avoidance capability.

The other one is a simple obstacle avoidance (OA) algorithm
which can drive the robot without collision. It uses geometric
observations to detect and avoid nearby obstacles by controlling
the heading direction (rotational speed) of the robot:

|aω|=

{
aωmax ·

|do−β|
β , do < β

0, otherwise.
(3)

where do is the distance to the closest obstacle, aωmax represents
the largest rotational speed and β indicates a pre-defined
minimum safety distance. In the case where the distance
between the robot and an object is less than the safety distance,
i.e., do < β, the robot will rotate to avoid collision. These
two controllers complement one another to provide candidate
actions for stochastic switch. Note that the OA only produces
aω , while the selected av is provided by the DDPG controller.

Note that these are just two simple exemplar controllers,
and it is possible to incorporate more either in number or
sophistication.

3) DDPG: The main controller of this framework is DDPG,
which is an actor-critic approach in DRL [3] that simultaneously
learns the policy and the action-state value (Q-value) to assess
the learnt policy. Although the policy network and the critic
network of the DDPG share the same input representation from
the perception, the policy network predicts the action, while
the critic network estimates the Q-value for current state-action
pair. In the learning mechanism of critic network, given the
policy π which maps states to actions at, the expected return

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

V

(X,Y)

Switch

Stochastic Switch

Policy Net

Critic Net

PID Controller

OA Controller Control

Perception

Independent Controllers

Fig. 1: The architecture of the proposed framework. It consists of three sections namely: perception, control and stochastic switch. The
perception section processes an observation and generates a corresponding input representation. The control section contains a standard
DDPG controller and a number of independent controllers - in this case, a Proportional-integral–derivative (PID) controller and an Obstacle
Avoidance (OA) controller. The stochastic switch determines which controllers’ action should be used out for navigation.

is Qπ(xt, at) = E[Rt|xt, at, π], which can be calculated with
the Bellman equation [10]:

Qπ(xt, at) = E[rt + γE[Qπ(xt+1, at+1)|xt, at, π]].

If the policy is deterministic, we can define at = µ(xt) and the
inner expectation can be avoided. Since the outer expectation
is independent of policy µ, it becomes an off-policy learning.
Then, the objective is to minimise the temporal difference (TD)
error:

L(θQ) = Ext,at,rt,xt+1
[(y −Q(xt, at; θ

Q))2],

y = rt + γQ(xt+1, at+1; θ
Q)

(4)

where θQ is a parameter of the critic network. To update
the critic network by temporal difference learning [11], all
learning samples stored in the replay buffer are formulated as
(xt, at, rt, xt+1).

The policy network is parameterised by θµ. During training,
the gradients are estimated by applying chain rules to the
objective function (expected reward) J(θµ) w.r.t the parameters
θµ. Generally, in DDPG, the parameters are updated by the
gradients computed based on the actions produced by the policy
network. However, in our case, we introduce a stochastic switch
for choosing the final action from a set of actions proposed by
all controllers. Hence, the networks are updated by the action
finally selected by the switch network at each time step. It
can be the at produced by the policy network of DDPG as
well as the actions from the heuristic controllers, depending
on different situations and the learnt switching strategy.

C. Stochastic Switch

The PID controller, OA algorithm and DDPG are three
independent sources that produce candidate actions for the
switch network to (optimally) select. The switch network is
a stochastic deep neural network which consists of a parame-
terisation network and a multinomial distribution. The switch
effectively learns which controller to choose, based on the
anticipated reward and conditioned on the input representation.
It is trained end-to-end with the other deep learning components
e.g. DDPG and the optional input representation network.

1) Stick-breaking: Conventionally, a softmax layer can be
employed to provide the parameter θ for the multinomial distri-
bution. Here, instead, we apply stick-breaking construction
[12], [13], [14], which is alternative to softmax.

The intuition is to introduce a bias that encourages more
usage of the deep reinforcement learning algorithm, such
as DDPG in our case. Since our framework is designed
to train a robust DDPG component that benefits from the
stochastic guidance, we expect it to be used more often than
others in this framework so that we are able to get rid of
the simple independent controllers after a certain period of
training. It basically transforms the modeling of multinomial
probability parameters into the modeling of the logits of
binomial probability parameters.

We firstly define α = fs(xt|θs) as the unscaled logits from
the fully connected layers of switching network fs(·|θs) given
the input representation xt and θs as the parameter of the switch
network. Then the binomial logits η can be obtained with
η = sigmoid(α). Notice that η = [η1, η2]

T and α = [α1, α2]
T

are all 2 dimensional vectors since we have 3 controllers in
our case.

Therefore, the multinomial probability parameters ξ =
[ξ1, ξ2, ξ3] can be generated with the stick breaking function
fSB(η) by two breaks:

ξ1 = η1

ξ2 = η2(1− η1)
ξ3 = (1− η2)(1− η1),

(5)

where the fSB can be generalised to more breaks ξk =
ηk

∏k−1
i=1 (1− ηi) (1 < k < K) if there are K controllers.

Conditioned on the current observation xt, we are able to
construct the stochastic switch policy st ∼ πs(st|xt; θs) as:

ξ = fSB(sigmoid(fs(xt|θs))) (6)
st ∼ multinomial(ξ). (7)

At each time step t, the stochastic switch samples a decision
st and ξ1, ξ2, ξ3 corresponds to DDPG, PID and OA. Then,
according to the decision st, the critic network of DDPG takes
the final action ast ∈ {aDDPG, aPID, aOA} as input and updates
the networks accordingly. Meanwhile, the stochastic switch
is updated by the REINFORCE learning signal so that the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

switch network is able to dynamically choose to learn through
exploration (DDPG), or it can choose to use the output of a
heuristic controller (PID or OA) as guidance by observing the
environment.

2) REINFORCE Algorithm: Since the gradients cannot be
directly back-propagated through the discrete samples, we
employ REINFORCE algorithm [4] to construct the gradient
estimator for the switch network, where the goal is to maximise
the total reward R under the switching policy πs(st|xt; θs).
Thus the objective function is:

H = Ep(S;θs)[R] = Ep(S;θs)
[∑T

τ=1
γτ−1rτ

]
, (8)

where S is a sequence of decisions s1, s2, ..., sT in an episode,
st ∼ πs(st|xt; θs) is the decision sample at each time step
t, and p(S; θs) =

∏T
t=1 π

s(st|xt; θs) is the probability of
generating the current decision sequence. Hence, the gradients
can be estimated as follows:

(9)

∂H
∂θs

= Ep(S;θs)
[∂

∂θs
log p(S; θs)R

]
≈ 1

N

N∑
n=1

Tn∑
t=1

∂

∂θs
log πs(snt |xnt ; θs)Rn

where N is the number of sampled episodes, Tn is the length
of the episode n, and Rn is the total reward of the episode. It
indicates a Monte Carlo based unbiased gradient estimation
for updating the switch network.

3) Variance Reduction: Since the REINFORCE gradient
estimator also suffers from the high variance issue, we introduce
two control variates [15] for alleviating the problem: a centred
learning signal bc (moving average) and an input dependent
control variate b(x) respectively. Here, we simply build an MLP
(multilayer perceptron) to implement the b(x) conditioned on
input x. During training, the two control variates are learned by
minimising the expectation: Ep(S;θs)[R− bc − b(x))]2, which
is and the gradients are derived as,

∂H
∂θs
≈ 1

N

N∑
i=1

Tn∑
t=1

∂

∂θs
log πs(snt |xnt ; θs)(Rn − bc − b(xt)).

The introduction of stochastic switch can be considered as
an inductive bias for learning to navigate with better action
samples. Updated by REINFORCE, the stochastic switch is
able to sense the environment, avoid trivial explorations and
select better actions for learning DDPG policies. In addition, as
the independent controllers are incorporated via the stochastic
switch, the negative influence of the introduced biases from
the heuristics is limited. The independent controllers can be
explicitly disabled once DDPG is sufficiently trained, although
this naturally happens to a large degree anyway.

D. Algorithm

The brief algorithm of training DDPG with our stochastic
guidance (SGuidance) is demonstrated in Algorithm 1. Since
DDPG is an off-policy approach, a replay buffer R is applied
to store all the transitions (xt, at, rt, xt+1). And a batch of
transition is sampled at every training step to update DDPG. In
contrast, the learning of switching policy with REINFORCE is

(a) ROS Stage simple (b) ROS Stage com-
plex

(c) ROS Gazebo

Fig. 2: (a) The 4 grey rectangles are obstacles and the blue square
represents the robot. A sparse laser is mounted on the robot and its
detecting area is illustrated as the green area. (b) It shows a more
complex environment simulated by ROS Stage. (c) ROS Gazebo is
also used for training a model that can be transferred to real-world
environment. Turtlebot 2 (a platform for ground robots) is employed
as the mobile platform equipped with a depth camera.

an on-policy process, thus we only save the current trajectory
of switching (xt, st, rt), where t = 1, 2, ...T to calculate the
gradients for updating the switching network, including the
control variate, at the end of each episode.

Algorithm 1 SGuidance

1: procedure TRAINING
2: Initialize switching network fs(xt|θs) and buffer Rs.
3: Initialize DDPG network Q(x, a|θQ) and π(x|θπ).
4: Initialize the target network of DDPG.
5: Initialize replay buffer R and exploration noise ε.
6: for episode=1, M do
7: Reset the environment.
8: Initialise replay buffer Rs.
9: Obtain the initial observation xt.

10: for step = 1, T do
11: Sample switch st = fs(xt|θs) ∈ {0, 1, 2}.
12: Sample a0t = π(xt|θπ) + ε.
13: Get a1t from PID controller.
14: Get a2t from OA controller.
15: Execute at = astt and obtain rt, xt+1.
16: Store transition (xt, at, rt, xt+1) in R.
17: Sample a batch of transitions from R.
18: Update the actor and critic network of DDPG.
19: Update the target network of DDPG.
20: Store switching trajectory (xt, st, rt) in Rs.
21: end for
22: Update switching network with trajectory in Rs.
23: end for
24: end procedure

IV. EXPERIMENTS

A. Training Environments and Settings

The proposed framework is trained in two different simu-
lators. The first one is a light-weight simulator, ROS Stage1

(Fig. 2(a) and Fig. 2(b)), in which a large amount of repet-
itive experiments are conducted for showing the learning
curve, demonstrating the improvements brought by stochastic

1http://wiki.ros.org/stage

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

guidance, and comparing to other baseline models. In this
simulator, we mount the mobile robot with a laser scanner to
provide the geometric information of surroundings. Hence, the
convolutional neural network (in Fig. 1) is not used in this
case, and the laser scans are directly concatenated with the
other observations as input representation. By accelerating the
simulation time, we obtain the quantitative evaluation through
a lot of repetitive experiments in ROS Stage. Note that the
simple environment as shown in Fig. 2(a) is our default training
environment and experiments in the complicated environment
are carried out in Sec. IV-B6.

The other one, ROS Gazebo2 (Fig.2(c)), contains a physical
engine and can accurately simulate the dynamics of the mobile
robot. Thus the model trained in ROS Gazebo is directly applied
to real world scenario to qualitatively evaluate the navigation
performance, but it has a larger computational overhead
compared to ROS Stage. Here, depth images are utilised to
observe surroundings, therefore a 3-layer convolutional network
(the filters are [4,4,3,8], [4,4,8,16] and [4,4,16,32] respectively)
is constructed to provide input representations based on depth
images.

In each training episode the robot starts at the origin
point (centre point) with a random heading direction and the
destination is randomised within the area beyond obstacles.
When the robot collides with an obstacle or reaches the
destination, the current episode terminates. The action control
frequency is 5Hz and the switching frequency is 1Hz. The
lower switching frequency is to facilitate the learning of the
switching policy as long episodic samples result in higher
variance of the estimated gradients by REINFORCE. For all
the experiments carried out in ROS Stage, the training process
lasts for 100k steps and is repeated for 5 times. The averaged
learning curves as well as the variance3 are illustrated for
demonstrating the performance.

Regarding the hyper-parameters, the hidden layers of critic
network and actor network contain 100 ReLU units in each
layer, while the output layer of actor network applies tanh and
sigmoid respectively for rotational and linear velocity. When
updating DDPG parameters, 32 learning samples are randomly
sampled from a rank based prioritised experience replay [16]
as a training batch, and the learning rate for the actor network,
the critic network and the stochastic switch are 10−4, 10−3

and 10−3 respectively, and the rest follows [3].

B. Navigation in Simulated Environment

Here, we discuss the experiments carried out in ROS Stage
for quantitative evaluation. The default settings for applying
stochastic switch with DDPG is to learn with the guidance from
both PID and OA controllers where REINFORCE algorithm
and Control Variates(CV) are utilised.

1) Reinforcement Learning with Stochastic Guidance: Fig.3
compares the models for demonstrating the benefits brought by
learning with stochastic switch. SGuidance is our model with
stochastic switch that dynamically choose the action from the

2http://wiki.ros.org/gazebo_ros_pkgs
3Note that the variance mentioned here is the variance of the smoothed

learning curves.

Fig. 3: The total reward achieved by our models and other baseline
models as comparison. The curve represents the average value of 5
repetitive training procedures and the transparent area indicates the
variance of the results.

candidates proposed by the controllers of DDPG, PID and OA.
As shown in Fig.3, SGuidance achieves significantly better
performance than the DDPG baseline. Meanwhile, DDPG
suffers from the high variance issue according to the wide
transparent area around the learning curve, while SGuidance
is much more stable. This is due to the high complexity of the
environment that leads to the highly variant learning samples
provided by DDPG, which might lead to trivial explorations.
In addition, the stochastic gradient estimator of DDPG applies
biased approximation which makes it difficult to guarantee the
convergence and stability. By contrast, SGuidance is able to
benefit from the heuristic simple controllers since the beginning
of training procedure instead of starting from completely
random moves.

In this experiment, we also plot the rewards of MoveBase
(without map) and Oracle (MoveBase with map) for compari-
son. MoveBase package4 is a widely used motion planner for
mobile robot navigation and is implemented in the ROS package
named Navigation Stage. It consists of a local planner [17], [18]
and a global planner (implemented by Dijkstra or A* algorithm).
The global planner generates an optimal path from the origin to
the destination on the global map of the environment, and the
local planner dynamically avoids the newly detected obstacles
while moving along the optimal path. Hence, we call the
MoveBase with map Oracle in this experiment. As shown
in Fig.3, DDPG is able to obtain comparable performance to
MoveBase. SGuidance, however, significantly surpasses the
deterministic MoveBase model. Even without the access to the
global map, SGuidance has shown its strong ability to navigate
in the environment by just using the geometric information.
In addition, we plot the performance of two simple heuristic
controllers (OA and PID) for reference. Basically, the simple
deterministic controllers cannot be applied independently for
carrying out navigation task (the accumulative rewards are
both under 0). However, when incorporated with DDPG via
the stochastic switch, they contribute significantly towards
alleviating the high variance issue encountered with vanilla
DDPG.

2) Using Different Independent Controllers: This experi-
ment shows the impact of different independent controllers

4http://wiki.ros.org/move_base

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 4: The smoothed total reward obtained by incorporating different
heuristic controllers with DDPG. SGuidance(PID+OA) utilises both
PID and OA controllers while SGuidance(OA) and SGuidance(PID)
only adopt one of them respectively. SGuidance(movebase) is guided
by movebase and DDPG(Vanilla) is the baseline DDPG without
heuristic guidance.

Fig. 5: The accumulated reward obtained by learning with different
switching mechanism. Stochastic represents our default stochastic
switch settings. Argmax and Uniform are the proposed argmax switch
and uniformly distributed switch respectively. ThompsonSampling
is the Thompson Sampling we implemented with Gaussian prior.

towards training performance.
As illustrated in Fig.4, SGuidance (PID + OA) achieves

the best performance when compared to the DDPG with only
PID or OA and the DDPG without any independent controllers.
It demonstrates that the contribution of the stochastic switch
is greatly enhanced by adding more controllers, which yields
more stable learning curves and better navigation performance.
Interestingly, the PID controller brings more benefits than
the OA controller in this context, and their benefits could be
accumulated with the help of the stochastic switch. Additionally,
when movebase is utilised as the independent controller
alongside DDPG, there is an obvious improvement on learning
speed, especially in the early stage of training. These results
show that the proposed framework enables us to incorporate
a large range of different controllers, from naive to more
sophisticated ones. This is a massive advantage over imitation
learning which requires a good demonstration to learn from.

3) Using Different Switching Mechanism: Fig. 5 compares
the stochastic switch to other switching variants, including
argmax switch, a uniformly random switch and a switch based
on Thompson Sampling [19]. The uniform switch assigns
uniformed fixed probability to DDPG, PID and OA controllers,
while the argmax switch applies biased argmax output instead
of stochastically drawing samples from the stochastic switch
network. Thompson sampling [19] is implemented with a
Gaussian prior distribution and estimates the posterior of the
total reward when deploying each controller. As illustrated in

49.5%

D
D

P
G

0-10k steps

70.7%

40k-50k steps

91.5%

80k-90k steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25.5%

P
ID

8.8% 1.7%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25.0%

O
A

20.4% 6.8%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) The switching policy of SGuidance

26.5%

D
D

P
G

0-10k steps

35.3%

40k-50k steps

100.0%

80k-90k steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

46.1%

P
ID

0.1% 0.0%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

27.4%

O
A

64.6% 0.0%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) The switching policy of Thompson Sampling

Fig. 6: Above figures illustrate the spatial density of using each
controller (DDPG, PID or OA) in three different learning periods.
Each row represents the employment of a single controller and each
column indicates the early (0-10k steps), middle (40k-50k steps)
or late (80k-90k steps) training stage. Note that all grey areas are
obstacles.

Fig. 5, SGuidance has the best performance while Uniform
is the worst. Note however, that Uniform actually learns
the fastest in the first 20k steps. ThompsonSampling has a
comparable performance to Argmax. The former learns slightly
faster mainly due to the stochasticity and keeps seeking a
potentially better switching policy. Later Argmax outperforms
ThompsonSampling and Uniform as it selects controllers
based on current observations while both ThompsonSampling
and Uniform do not. When comparing Argmax with SGuid-
ance, it has much bigger variance on the total reward. This
is because Argmax is a biased sampler and the introduced
bias in turn damages its final performance since there is less
exploration.

4) Further Comparison with Thompson Sampling: To un-
derstand the benefits obtained by learning a situation-aware
switching policy, we compare the usage of different controllers
between SGuidance and ThompsonSampling during the
training in Fig. 6(a) and Fig. 6(b). They demonstrate the spatial

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

0

50

100

S
G

u
id

a
n
c
e

0-10k steps 40k-50k steps 80k-90k steps

C
ra

sh

Tim
e-

ou
t

Suc
ce

ss

0

50

100

T
h
o
m

p
s
o
n
S

a
m

p
lin

g

S

ta
tu

s
 r

a
te

(%
)

C
ra

sh

Tim
e-

ou
t

Suc
ce

ss

Episode final status

C
ra

sh

Tim
e-

ou
t

Suc
ce

ss

DDPG

PID

OA

Fig. 7: Above figures display the rate of reaching different final status
in an episode when applying SGuidance and ThompsonSampling
respectively. Each column represents a training period and different
segments in each bar indicates the usage ratio of different controllers
within this period.

density of controller usage, where each row represents the
employment of a single controller and each column indicates
the early (10k-20k steps), middle (50k-60k steps) or late (90k-
100k steps) training period. Note that the training is based on
the ROS Stage simple environment in Fig. 2(a) and in each
episode the robot is initialised in the centre and the destination
is randomised.

Fig. 6(a) and Fig. 6(b) show the main differences between
the switching policy of SGuidance and ThompsonSampling.
SGuidance explores the strengths and weaknesses of each
controller in different situations while ThompsonSampling
does not. Notice in the second row of Fig. 6(a) that SGuidance
gradually abandons candidate actions from PID controller
when it is still surrounded by the obstacles and only uses it
when approaching the target. The OA controller (third row) is
occasionally adopted to avoid obstacles. However, in 6(b), it is
shown that the usage of each controller does not depend on the
position in the map. In fact, ThompsonSampling completely
abandons PID and OA controller eventually. Since it can only
estimate the overall performance of the controller in an episode,
it will easily converge to DDPG when it is confident enough
about the superiority of DDPG after a long training period
without considering the context.

Fig. 7 plots the rate of reaching different final states and the
average usage of each controller in an episode when applying
SGuidance and ThompsonSampling respectively. It further
demonstrates the difference between their learnt switching
policies in terms of situation dependence from a more statistical
perspective. In each sub-figure, three columns represent three
final states, corresponding to different situations, i.e. crashing
with obstacles (Crash), timing out (Time-out) or successfully
reaching the destination (Success). For ThompsonSampling,
the ratio among the usages of all controllers always remain
the same in different situations, whilst for SGuidance, they
are similar at first but then diverge over time.

5) Construction of Stochastic Switch Function: Since we
have introduced a bias, which can be considered as a preference,
of selecting different controllers with stick-breaking, this part

Fig. 8: Discussion on different stochastic switch function. The left
y-axis shows the total reward of all the methods, and the right y-axis
shows the total usage of the independent controllers.

will investigate the effect of setting different orders for PID and
OA controller in stick-breaking. In Fig. 8, the StickBreaking1
(DDPG, PID, OA) represents the function we applied in the
paper and the StickBreaking2 (DDPG, OA, PID) used an alter-
native order of the independent controllers. More specifically,
according to Eq. 6, StickBreaking1 and StickBreaking2 both
set η1 with DDPG controller and give different order with PID
and OA controller where η2 is assigned with the PID controller
in StickBreaking1 but with OA controller in StickBreaking2.
As shown in the figure, Softmax is able to achieve almost
adequate performance compared to StickBreaking1 in terms
of the total reward. However, according to the total usage of
independent controllers, the DDPG component is being less
used in Softmax than StickBreaking1 and StickBreaking2.
Although the two stick breaking functions have similar total
usage of independent controllers, StickBreaking2 performs
slightly worse than StickBreaking1, which shows that the
order of independent controllers has a small effect on the
performance. Hence, the softmax function is a safe choice to
construct the stochastic switch function. However, the prior
knowledge about the performance of simple controllers could be
used to benefit the learning in stick breaking construction. For
instance, Fig. 4 shows PID brings more benefit than OA when
incorporating with stochastic switch, and Fig. 8 also shows the
StickBreaking1 performs slightly better than StickBreaking2.

6) Complex Environment and Simple Reward: In this ex-
periment, we test SGuidance in a more cluttered environment
as displayed in Fig. 2(b). Through our experiments, we found
that although using the dense reward function can accelerate
training in the simple environment, it makes the actor network
converge to a suboptimal policy in the complex one. As
mentioned in [20], the greedy behaviour learnt from the dense
reward makes the robot approach the destination as quickly
as possible without keeping a reasonably safe distance to the
obstacles, resulting in a higher probability of collisions. Hence
we use Eq. 10 as the reward function here, making the network
converge slower but at a safer policy.

rsparset =


Rcrash, if robot crashes
Rreach, if robot reaches the goal
−C, otherwise

(10)

The first two rows of Fig. 9 provide the trend of obtaining

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 9: The figure illustrates the experimental results on the complex
environment as shown in Fig. 2(b) with sparse rewards. The robot
only receives a reward when crashing or reaching the destination,
besides a time penalty at each step. The first two rows represent the
rate of getting different ending status (crash, time-out or success) of
each navigation episode when deploying the guidance or not. The
total reward of each episodes is also displayed in the last row.

different ending status of each episode through the training
period with/without the stochastic guidance respectively.

As shown in Fig. 9, with the growing performance of the
DDPG controller, SGuidance reaches the destination more
frequently. However, the naive DDPG without any guidance
never explores to reach the destination safely.

7) Inference without Guidance: This experiment explores
whether the trained DDPG policy is able to independently
carry out navigation with all the heuristic controllers turned
off after it has been trained with stochastic guidance. We
firstly train the DDPG with SGuidance and compare the
inference performance of keeping or turning-off the stochastic
guidance. The experiment is carried out in the ROS stage
simple environment with reward defined in Eq. 1. As shown
in Table I, the overall performance only has a slight decrease
after switching-off the guidance in testing.

Interestingly, when we carry out the same test in the
ROS stage complex environment, turning-off the guidance
even improves the success rate (SR) and reduces the crash
rate (CR). This is because SGuidance, which is similar to
ThompsonSampling at this point, keeps exploring potentially
better options. However, this exploration also occasionally leads
to erroneous actions especially in the late training period or
the testing phase and is counter productive. This applies more
to the complex environment as a single wrong action may lead
to a crash.

8) Learning with Different γ: In this experiment we inves-
tigate how different values of the reward discount factor γ
affect the switching policy learnt by SGuidance. As shown
in Fig. 10, with a smaller γ, SGuidance samples the DDPG
less frequently since it becomes a more greedy controller and
has a worse long-term performance. As a consequence, when
the policy in DDPG cannot reach the destination, SGuidance
prefers the OA controller which, at least, can avoid collisions,

Guidance Policy-U PID-U OA-U SR TR CR AR
Test in Simple World with Dense Reward

Keep 88.1% 3.5% 8.4% 92% 7% 2% 5.01
Turn-off 100% 0% 0% 90% 4% 6% 4.91

Test in Complex World with Sparse Reward
Keep 81.7% 2.5% 15.8% 81% 14% 5% -2.29

Turn-off 100% 0% 0% 83% 16% 1% -2.34

TABLE I: Comparing the performance between keeping/turning-off
the guidance after training in terms of the usage of three controllers
(Policy-U, PID-U, OA-U), the rate of the final state of each episode
(SR: success rate, TR: time-out rate, CR: carsh rate) and also the
average total reward of each episode (AR).

50

100

 =
 0

DDPG

PID

OA

50

100

 =
 0

.3

U
s
e
 r

a
te

(%
)

50

100

 =
 0

.6

10 20 30 40 50 60 70 80 90 100

Training steps 10 3

50

100

 =
 0

.9
9

Fig. 10: The use rate of each controller by SGuidance with different
discount factor γ. Each figure draws the use rate of three controllers
with a different γ.

i.e. large instant negative rewards.

C. Navigation in Real World Environment

In this experiment, we qualitatively analyse the performance
of our model applied in real world environments. The model is
trained in a simulated world built by ROS Gazebo (Fig. 2(c)),
and directly transferred into the real world scenario without
any fine tuning in order to verify the effectiveness and strong
generalisation of the model. The learning curves, which are
illustrated in Fig. 11(a), show that SGuidance can outperform
naive DDPG.

A Turtlebot 2 robot mounted with a Kinetic depth camera is
used as the mobile platform. Unlike the observation from laser
scanner which is simulated in ROS Stage, the dimension of
state space for using a depth camera is dramatically increased.
Therefore, a 3-layer convolutional neural network is employed
(as in Fig.1) to provide geometric representations. Other inputs,
i.e. velocity and goal location, are concatenated with the
geometric representation into a dense input representation.

Since the ground truth of the robot locations is not available
in the real world environment, we apply the off-the-shelf AMCL
ROS package5 for providing the estimation of the robot location,
and calculating the destination position in the local coordinate
frame. In order to improve the localisation accuracy, we record
the map of the environment with Gmapping ROS package6. It

5http://wiki.ros.org/amcl
6http://wiki.ros.org/gmapping

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0 50 100 150 200

Training steps 10 3

-5

0

5
T

o
ta

l
re

w
a

rd

SGuidance

DDPG

(a) Learning curves in Gazebo Simulator

(b) Real world environment

0

3

2

6

0
1

2

3

4

57

(c) Destinations and navigation trajectory

Fig. 11: (a) The total reward achieved by SGuidance and DDPG
models in ROS Gazebo simulator as comparison. Note that since
Gazebo simulates physics properties, the control policy is more
difficult to learn and the training takes a longer time when compared
to use ROS stage. (b) The real world scenario. A turtlebot is used
as the mobile platform and several boxes are placed in the room as
obstacles. (c) The room layout and obstacles are the black areas. The
blue curve represents the trajectory of the robot and the goals are
plotted with red circles where the number indicates the sequence.

is worth mentioning that this global map is not used by the
navigation component of the model during training or testing.
The obstacles are laid out in the room as illustrated in Fig. 11(b).
The target of this experiment is to employ the learned policy
and control the robot to reach several destinations successively
without any collision. Fig.11(c) shows the trajectory of the
robot (blue curve). Notice that the robot can smoothly avoid
all the obstacles and reach each target successfully by only
learning in simulation with the proposed stochastic guidance
model.

V. RELATED WORK

Many works have applied DRL on robotic problems, e.g.
navigation [21], [22], [23], [24], [25], [26], [27] and ma-
nipulation [28], [29]. Since most of the robotics problems
involve continuous control, policy based approaches such as
policy gradient [30] or actor-critic method [31], e.g. DDPG [3],
are widely used as the conventional approaches. Introducing
positive bias is a common approach for alleviating the issue.
[16] assigns higher weights to the data where the model has
less confidence to improve the efficiency of sample usage.
[32] leverage the concept of information gain when exploring
new policies. Unlike above approaches where the bias are
tightly merged into the models, our framework incorporates
extra knowledge as stochastic guidance without imposing any
change to the underlying approach.

Thompson Sampling [33] shares the similar spirit of our
switching mechanism which learns to switch among different
controllers. The difference is that, instead of explicitly calcu-
lating the posterior for updating in Thompson Sampling, our
framework directly employs neural networks to construct the

latent distributions which are trained jointly with the DDPG
component by backpropagation. The advantage is that the
switch function can be easily built and conditioned on all
of the sensor inputs so that it chooses different controllers
according to different contexts/conditions. In addition, the target
of our framework is more focused on training a better DDPG
component, which is able to benefit from the low-variance
gradient estimator due to the better samples generated by the
stochastic switch.

To effectively stabilise the estimated gradients from REIN-
FORCE, we have applied variance reduction techniques. This
is a common topic across different fields. Johnson et al. [34]
proposed Stochastic Variance Reduced Gradient(SVRG) to
reduce the variance of gradients estimation in vanilla stochastic
gradient descent with control variates. In [35], another control
variate is introduced based on Taylor expansion of the off-
policy critic. It can effectively alleviate the high variance
problem in policy gradient while keep its advantage of sample
efficiency but is computationally expensive. Neural Variational
Inference also suffers from high variance problem, several
approaches have been proposed. One major approach is by
applying delicately designed baselines [15], [36], [37], and
another is based on continuous relaxation [38] when the latent
variable is discrete.

In [39], Leonetti et al. investigated a low level integration
of RL and external controllers where the RL algorithm only
explores with feasible actions provided by the planner, these
heuristics can not be discarded, both for training and testing.
Therefore, the performance of the learner very depends on, if
not limited by, the capability of the heuristics. By contrast, in
our framework, DDPG can explore the full action space by
itself alongside the guidance during the whole training process
and can eventually work independently.

Yang et al. [27] proposed a hierarchical reinforcement
learning based method. It learns basic skills with multiple
independent actors and finally samples actions from the one
with the highest Q-value estimation which is similar to the
deterministic baseline ’argmax’ mentioned in section IV-B3.
From the experiments it is proved that our stochastic switch
outperforms the deterministic counterpart. Furthermore, our
goal is only to assist the training of DDPG where all the extra
controllers will be discarded eventually.

The proposed framework is also related to imitation learning
[40], [6]. In the imitating approaches, the demonstrator must be
good enough to solve the problem. But our approach stays in a
larger spectrum since it should be compatible with both simple
heuristic and complex learn-able controllers. This is because,
how to use these controllers is decided by the switching policy.
It learns to use suitable controllers under different observations
and these controllers might be completely useless in other cases.
Furthermore, after obtaining a good DDPG component, all of
the heuristics (or controllers) can be gotten rid of, and we are
able to test in the environment just by the DDPG component
without using any of the heuristics.

VI. CONCLUSION

This paper proposes a new framework for effectively incor-
porating heuristic knowledge to overcome the high variance

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

issue in learning DDPG. The experiments demonstrate that
the stochastic switch allows an agent to balance the learning
from exploration and heuristics, which significantly bootstraps
the performance of navigation that surpasses state-of-the-art
baseline models. More interestingly, the DDPG component
remains independent and can be tested in isolation from other
controllers. When transferring the policies in the real world,
the robot is able to successfully carry out navigation tasks,
which indicates the robustness and strong generalisation of our
proposed framework.

ACKNOWLEDGMENT

This work was supported by EPSRC Mobile Robotics:
Enabling a Pervasive Technology of the Future (grant No.
EP/M019918/1).

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, pp. 529–533, 2015.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
2016.

[4] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229–256, 1992.

[5] B. Piot, M. Geist, and O. Pietquin, “Bridging the gap between imitation
learning and inverse reinforcement learning,” IEEE Trans. Neural Netw.,
vol. 28, no. 8, pp. 1814–1826, Aug 2017.

[6] M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Siegwart,
and J. Nieto, “Reinforced imitation: Sample efficient deep reinforcement
learning for mapless navigation by leveraging prior demonstrations,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 4423–4430,
Oct 2018.

[7] R. Simmons and S. Koenig, “Probabilistic robot navigation in partially
observable environments,” in International Joint Conference on Artificial
Intelligence, vol. 95, 1995, pp. 1080–1087.

[8] Y. Sun, M. Liu, and M. Q.-H. Meng, “WiFi signal strength-based robot
indoor localization,” in IEEE International Conference on Information
and Automation. IEEE, 2014, pp. 250–256.

[9] K. J. Åström and T. Hägglund, PID controllers: theory, design, and
tuning. Instrument society of America Research Triangle Park, NC,
1995, vol. 2.

[10] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[11] G. Tesauro, “Temporal difference learning and td-gammon,” Communi-
cations of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[12] J. Sethuraman, “A constructive definition of dirichlet priors,” Stat. Sin.,
pp. 639–650, 1994.

[13] M. Khan, S. Mohamed, B. Marlin, and K. Murphy, “A stick-breaking
likelihood for categorical data analysis with latent gaussian models,” in
Artificial Intelligence and Statistics, 2012, pp. 610–618.

[14] Y. Miao, E. Grefenstette, and P. Blunsom, “Discovering discrete latent
topics with neural variational inference,” in International Conference on
Machine Learning, 2017, pp. 2410–2419.

[15] A. Mnih and K. Gregor, “Neural variational inference and learning in
belief networks,” arXiv preprint arXiv:1402.0030, 2014.

[16] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[17] B. P. Gerkey and K. Konolige, “Planning and control in unstructured
terrain,” in ICRA Workshop on Path Planning on Costmaps, 2008.

[18] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[19] D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, Z. Wen et al., “A
tutorial on thompson sampling,” Foundations and Trends R© in Machine
Learning, vol. 11, no. 1, pp. 1–96, 2018.

[20] L. Xie, S. Wang, S. Rosa, A. Markham, and N. Trigoni, “Learning
with training wheels: speeding up training with a simple controller for
deep reinforcement learning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 6276–6283.

[21] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning:
Continuous control of mobile robots for mapless navigation,” IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2017.

[22] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using deep
reinforcement learning,” in IEEE International Conference on Robotics
and Automation. IEEE, 2017, pp. 3357–3364.

[23] F. Sadeghi and S. Levine, “(cad)2rl: Real single-image flight without a
single real image,” 2017.

[24] L. Xie, S. Wang, A. Markham, and N. Trigoni, “Towards monocular
vision based obstacle avoidance through deep reinforcement learning,”
arXiv preprint arXiv:1706.09829, 2017.

[25] X. Truong and T. D. Ngo, “Toward socially aware robot navigation in
dynamic and crowded environments: A proactive social motion model,”
IEEE Trans. Automat. Sci. Eng., vol. 14, no. 4, pp. 1743–1760, Oct
2017.

[26] C. Ye, N. H. C. Yung, and D. Wang, “A fuzzy controller with supervised
learning assisted reinforcement learning algorithm for obstacle avoidance,”
IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. 1, pp. 17–27, Feb 2003.

[27] Z. Yang, K. Merrick, L. Jin, and H. A. Abbass, “Hierarchical deep
reinforcement learning for continuous action control,” IEEE Trans. Neural
Netw., vol. 29, no. 11, pp. 5174–5184, Nov 2018.

[28] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates,” in IEEE
International Conference on Robotics and Automation. IEEE, 2017, pp.
3389–3396.

[29] A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and S. Levine, “Collective
robot reinforcement learning with distributed asynchronous guided policy
search,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2017, pp. 79–86.

[30] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approximation,”
in Advances in Neural Information Processing Systems, 2000, pp. 1057–
1063.

[31] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska, “A survey of
actor-critic reinforcement learning: Standard and natural policy gradients,”
IEEE Trans. Syst., Man, Cybern. C, vol. 42, no. 6, pp. 1291–1307, Nov
2012.

[32] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel,
“Vime: Variational information maximizing exploration,” in Advances in
Neural Information Processing Systems, 2016, pp. 1109–1117.

[33] M. J. Kim, “Thompson sampling for stochastic control: The finite
parameter case,” IEEE Trans. Automat. Contr., vol. 62, no. 12, pp. 6415–
6422, Dec 2017.

[34] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Advances in Neural Information
Processing Systems, 2013, pp. 315–323.

[35] S. Gu, T. Lillicrap, Z. Ghahramani, R. E. Turner, and S. Levine, “Q-prop:
Sample-efficient policy gradient with an off-policy critic,” 2017.

[36] M. T. R. AUEB and M. Lázaro-Gredilla, “Local expectation gradients
for black box variational inference,” in Advances in Neural Information
Processing Systems, 2015, pp. 2638–2646.

[37] A. Mnih and D. Rezende, “Variational inference for monte carlo
objectives,” in International Conference on Machine Learning, 2016, pp.
2188–2196.

[38] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” Stat, vol. 1050, p. 1, 2017.

[39] M. Leonetti, L. Iocchi, and P. Stone, “A synthesis of automated
planning and reinforcement learning for efficient, robust decision-making,”
Artificial Intelligence, vol. 241, pp. 103–130, 2016.

[40] Y. Duan, M. Andrychowicz, B. Stadie, J. Ho, J. Schneider, I. Sutskever,
P. Abbeel, and W. Zaremba, “One-shot imitation learning,” arXiv preprint
arXiv:1703.07326, 2017.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Linhai Xie is a DPhil student at the Department of
Computer Science, University of Oxford. Before that,
he obtained his BEng degree at National University of
Defense Technology, China. His research is focused
on learning based robot perception and autonomy,
including robot navigation, reinforcement learning,
deep learning, robotic vision and SLAM.

Yishu Miao is the founder & CEO of MO Intel-
ligence Ltd, an AI startup for automating digital
building twins. He received a DPhil degree in
Computer Science from the University of Oxford,
a Master in Data Mining from Tsinghua University.
He worked as a research intern at DeepMind during
the year of 2016 and 2017. He is a pioneer research
scientist in deep learning, passionate entrepreneur,
and experienced software engineer. He has years’
experience on landing AI technologies in multiple
different areas.

Sen Wang is an Assistant Professor in Robotics and
Autonomous Systems with Heriot-Watt University
and a faculty member of the Edinburgh Centre for
Robotics. Previously, he was a postdoctoral researcher
with the University of Oxford. His research focuses
on robot perception and autonomy using probabilistic
and learning approaches, especially autonomous
navigation, robotic vision, SLAM and robot learning.

Phil Blunsom is originaly from Australia, where
he obtained his PhD degree at the University of
Melbourne under the supervision of Timothy Bald-
win, Steven Bird and James Curran. He then came
to the United Kingdom as a Research Fellow at
the University of Edinburgh. There he worked on
the application of machine learning techniques to
machine translation with Miles Osborne. Since 2009
he has been at the University of Oxford, both in the
Department of Computer Science and as a Fellow of
St Hugh’s College. Since 2014 he has been splitting

his time between Oxford and DeepMind London, where he works with the
Natural Language group.

Zhihua Wang is a DPhil student at the Department
of Computer Science, University of Oxford. Before
that, he obtained MPhil degree from University
of Cambridge and BEng degree from University
of Manchester. His research interests lie in Cyber-
Physical systems, deep learning and intuitive physics.

Changhao Cheng is currently a PhD student in De-
partment of Computer Science, University of Oxford.
Before that, he obtained his MEng degree at National
University of Defense Technology, China, and BEng
degree at Tongji University, China. His research
interests include machine learning, robotics and
cyber physical systems. He is working on machine
(deep) learning to process time-series sensor data
for localization, navigation, mapping and perception,
in support of robots, mobile devices, self-driving
vehicles and Internet of Things (IoT).

Andrew Markham is an associate professor in the
Department of Computer Science, at the University
of Oxford. He received his BSc (Hons)(2004) degree
and PhD(2008) degree both from the University of
Cape Town, South Africa. He broadly works within
the area of cyberphysical systems and machine learn-
ing, with application to a number of interdisciplinary
areas such as wildlife tracking, earthquake monitor-
ing and industrial safety. Current research interests
include data driven techniques for positioning, scene
reconstruction and sensor processing.

Niki Trigoni is a Professor at the Oxford University
Department of Computer Science and a fellow of
Kellogg College. She obtained her DPhil degree
at the University of Cambridge (2001), became a
postdoctoral researcher at Cornell University (2002-
2004), and a Lecturer at Birkbeck College (2004-
2007). At Oxford, she is currently Director of the
EPSRC Centre for Doctoral Training on Autonomous
Intelligent Machines and Systems, a program that
combines machine learning, robotics, sensor systems
and verification/control. She also leads the Cyber

Physical Systems Group, which is focusing on intelligent and autonomous
sensor systems with applications in positioning, healthcare, environmental
monitoring and smart cities. The group’s research ranges from novel sensor
modalities and low level signal processing to high level inference and learning.

