
Designing Correct Circuits 2010

Gap-Free verification of weakly
programmable IPs

against their operational ISA model

Markus Wedler, Sacha Loitz, Wolfgang Kunz
Department of Electrical and Computer Engineering

University of Kaiserslautern/Germany

Designing Correct Circuits 2010

Outline
 Challenges for Formal Verification imposed by

Weakly-Programmable IPs (WPIP)

 Interval Property Checking

 Specification Methodology

 Gap-Free Specifications

 Operational ISA model

 Operation-oriented specification

 Software Constraints

 Completeness considerations

 Applications

29.03.2010 Slide-2

Designing Correct Circuits 2010

Slide-3

Example WPIP FlexiTreP

29.03.2010

Designing Correct Circuits 2010

Slide-4

Example WPIP FlexiTreP

29.03.2010

Challenges:

 Deep pipelines

 hard to control operations in
uppermost stages

 Out-of-order memory access

 Implicit use of software constraints for
optimization of the pipeline

 Huge number of configurations

 ISA model not available

Designing Correct Circuits 2010

Slide-5

Standard design flow for ASIPs

SW
Algorithm

Profiling

Additional
Instructions

Generic
Processor

Combine

ASIP

29.03.2010

Designing Correct Circuits 2010

Slide-6

Bottom-up Design Flow for WPIPs

Micro-
Architecture
Algorithm A

Micro-
Architecture
Algorithm B

Micro-
Architecture
Algorithm C

Hallo

Design
Pipeline

WPIP

Functional
Blocks

Analyze
Flexibility

Requirements

29.03.2010

Designing Correct Circuits 2010

APIn
t

D
e

In
t

AP/

SurvivorIn
t

D
e

In
t

WPIP FlexiTreP

 MAP
micro-architecture

 Turbo
micro-architecture

 Viterbi
micro-architecture

MAP

LLR

BM REC

MEM

BUF

BUF

TB

MEM BM REC LLR/TB

29.03.2010 Slide-7

Designing Correct Circuits 2010

SAT-based Property Checking

Slide-8

Iterative Circuit Model: from i = t to i = t + k

t, t t+1, t+1

Xt
Xt+1

st

Yt

t+k, t+k

Xt+k

s’t+1= st+2

Yt+1 Yt+k

Boolean function to represent property
p = 1?

s’t = st+1

Boolean satisfiability problem (SAT)
SAT modulo Theory (SMT) problem

29.03.2010

Designing Correct Circuits 2010

SAT-based Property Checking

 Unsatisfiability guarantees unbounded validity of G(p)
 p is specified by a timed Boolean predicate (TBP) in terms of

design signals consisting of:
 Boolean connectives (∧,∨,…)

 Generated next state operator Xt

 A TBP p refers to bounded inspection interval of time [tf,tl]

Slide-9

t, t t+1, t+1

Xt
Xt+1

st

Yt

t+k, t+k

Xt+k

s’t+1= st+2

Yt+1 Yt+k

Boolean function to represent property
p = 1?

s’t = st+1

29.03.2010

Designing Correct Circuits 2010

RT-level module verification: operation by operation

Typical methodology for Property Checking
of SoC modules:

 Adopt an operational view of the design

 Each operation can be associated with
certain important control states in
which the operation starts and ends

 Specify a set of properties for every
operation, i.e., for every important
control state

 Verify the module operation by
operation by moving along the
important control states of the design

 The module is verified when every
operation has been covered by a set of
properties

Control 1

Control 2

n cycles

Slide-1029.03.2010

Designing Correct Circuits 2010

Property Checking of processor pipeline

property instr_XYZ

assume:

at t: next_instr_can_be_issued();

at t: command_dec(XYZ,res,op1,op2);

during[t,t+3]: no_reset;

during[t,t+3]: no_interrupt;

…

prove:

at t+3: res == compute_res(XYZ,op1,op2);

at t+3: stable_other_regs(res);

at t+1: next_instr_can_be_issued();

end

"assumptions"

"commitments"

Goal: Prove that instructions are performed correctly

Spec: Safety properties of type: G(ac) with bounded
inspection interval

Example: Property in ITL (Interval Language)

29.03.2010 Slide-11

Designing Correct Circuits 2010

Control 1

Control 2

/ data_path_control_signals

data path

CPU verification: instruction by instruction

Property 1: G(acontrol 1 ccontrol 2)

Property 2: G(acontrol 2 ccontrol …)

n cycles

Slide-12

Designing Correct Circuits 2010

RT-level module verification: operation by operation

Typical methodology for property checking
of SoC modules:

 Adopt an operational view of the design

 Each operation can be associated with
certain important control states in
which the operation starts and ends

 Specify a set of properties for every
operation, i.e., for every important
control state

 Verify the module operation by
operation by moving along the
important control states of the design

 The module is verified when every
operation has been covered by a set of
properties

Control 1

Control 2

n cycles

Slide-1329.03.2010

How to guarantee
that every
scenario is
covered?

Designing Correct Circuits 2010

Mutation coverage

A set of (operational) properties P is complete for a design
C with respect to a set of mutations M={C1,…,Cn}, if C
satisfies the properties in P and for every mutation Ci at
least one property fails.

Problems:

 Criterion design-dependent

 Do the mutations reflect designer mistakes?

29.03.2010 Slide-14

Designing Correct Circuits 2010

Completeness

A set of (operational) properties P is complete if every two
designs C1, C2 satisfying the properties in P are sequentially
equivalent.

29.03.2010 Slide-15

∧p(x,s2,o2)
p∈P

empty model for
C1

empty model for
C2

x

∧p(x,s1,o1)
p∈P

1!

1!

1?

K. Claessen: “A Coverage
Analysis for Safety Property
Lists”, FMCAD 2007

J. Bormann and H. Busch:
„Method for determining the
quality of a set of properties”
European Patent Application,
Publication Number
EP1764715, 2005.

Designing Correct Circuits 2010

Completeness
 Practical extensions:

 Allow explicit constraints on
inputs of designs

 Weaken sequential equivalence
condition by introduction of
determination requirements

 Decompose proof with respect to the given properties p∈P.

 Sucessor /Case-Split Test:
Every input trace can be covered with a uniquely
determined sequence of properties (pi | i ∈ ℕ) such that
the determination intervals match without gaps.

 Determination Test:
Every property uniquely determines the outputs within
its determination interval.

29.03.2010 Slide-16

∧p(x,s2,o2)
p∈P

empty model
for C1

empty model
for C2

x

∧p(x,s1,o1)
p∈P

1!

1!

1?

Designing Correct Circuits 2010

Completeness

 Decompose proof with respect to the given properties p∈P.

 Sucessor /Case-Split Test:
Every input trace can be covered with a uniquely
determined sequence of properties (pi | i ∈ ℕ) such that
the determination intervals match without gaps.

 Determination Test:
Every property uniquely determines the outputs within
its determination interval.

29.03.2010 Slide-17

state

insig

outsig1

outsig2

Designing Correct Circuits 2010

Operational ISA model
 Due to specific programming models WPIPs often lack a

classical ISA model

 Instructions correspond to hundreds of classical RISC
instructions (referred to a nuclei)

 Semantics often implicitly given by functional blocks
(operations) involved in the execution

How to specify functional behavior of a WPIP?

29.03.2010 Slide-18

Designing Correct Circuits 2010

Operational ISA model
 The operational ISA model for a WPIP consists of:

 A relation OISA ⊆ I × O between the set of instructions I

and the set of (pipeline) operations O

 Timed Boolean predicates:

 instriFetched(): determines whether the instruction
i ∈ I is issued into the pipeline at a time-point t

 opo(): specifies functionality of the operation o ∈ O

29.03.2010 Slide-19

…

FE o1 o2 o3 o4 on

op1

op2

op3

op4 op5

opk

In
s
trre

g

Designing Correct Circuits 2010

Operational ISA model
Manual specifications given by the verification engineer

 OISA ⊆ I × O

 instriFetched(): determines whether the instruction
i ∈ I is issued into the pipeline at a time-point t

 opo(): specifies functionality of the operation o ∈ O

Everything else will be generated automatically!

Slide-20

Designing Correct Circuits 2010

Operational ISA model
 Timed Boolean predicates that are automatically generated

from operational ISA model:

 instriPerformed() = ∧(i,o) ∈ OISA opo()

 opoTriggered() = ∨(i,o) ∈ OISA instriFetched()

 Per-Instruction properties:

 instriExec()= nextInstrState() ∧ instriFetched()
 instriPerformed() ∧ Xt(i) nextInstrState()

 Per-Operation properties:

 opoExec()= nextInstrState() ∧ opoTriggered() opo()

29.03.2010 Slide-21

Just another
operation

Designing Correct Circuits 2010

 Determine every pair of opk, opj k ≠ j
that refer to the same resource with
time slack t

 For all related instructions ik, ij store (ik, ij, opk, opj ,t) in
conflict list

Hazards imply software constraints

29.03.2010 Slide-22

…

FE o1 o2 o3 o4

op1

op2

op3

op4 op5

opk

In
s
trre

g

shared
resource

Designing Correct Circuits 2010

Hazards imply software constraints

29.03.2010 Slide-23

 For every conflict (ik, ij, opk, opj ,t)
in conflict list decide:

 Store automatically generated constraint that forbids
sequences where ik follows ij after t clock cycles

 Manually find weaker constraint

 swConstraintj,k()= instrik
Fetched()flagsik

()

…

FE o1 o2 o3 o4

op1

op2

op3

op4 op5

opk

In
s
trre

g

shared
resource

Designing Correct Circuits 2010

Software compliance with constraints

29.03.2010 Slide-24

 Strong abstraction feasible for checking compliance of
software with detected and now explicitly specified
constraints

…

FE o1 o2 o3 o4

op1

op2

op3

op4 op5

opk

In
s
trre

g

shared
resource

Designing Correct Circuits 2010

Software compliance with constraints

29.03.2010 Slide-25

…

FE op1 op2 op3 op4 opn

op1

op2

op3

op4 op5

opk

In
s
trre

g

 Strong abstraction feasible for checking compliance of
software with detected and now explicitly specified
constraints
 Empty models for operations (only signal names)
 TBPs opkabstr() describe abstracted behavior

 Consider behavior of flagsik
() only

op2abstr()

Designing Correct Circuits 2010

Completeness by construction
 Case split and successor tests obviously hold and this can

easily be verified by a completeness checker

Problem:

 TBPs for operations opo() only describe modified values for
involved state holding elements

⇒ other registers/memory cells remain undetermined

 Description of default behavior is required

 keep value
 take default value

 Tedious identification of situations where default behavior
needs to be applied is completely automated

Slide-2629.03.2010

Designing Correct Circuits 2010

27

Experimental Results
 HW verification:

 MAP and FlexiTreP, two
WPIPs for channel
decoding were
successfully verified.

 During the verification
subtle HW bugs were
discovered which had
escaped sign-off
simulation before

 FlexiTreP has been
taped out successfully

 65nm low power technology
 41741 standard cells, 15 macros
 Die size without interface 0.74 mm2

 360Mhz, core power ~100mW@1.1V
 Logic utilization 77%
 Silicon available since March 2009

ARM1176

CORE

WIFLEX

ASIP

UWB-LDPC

SME Mephisto
TRX

OFDM

ARM1176 + SME

RX-BIT

+

HARQ

TRX

OFDM

TRX

OFDM

TRX

OFDM

MephistoMephisto

Mephisto SME

SME

Mephisto

SME

EXT SME

80C51

T
X

-B
IT

N
o
C

 p
erf

LETI MAGALI MPSoC Chip
4G mobile baseband IP demonstrator

Designing Correct Circuits 2010

Design characteristics

29.03.2010 Slide-28

MAP FlexiTreP

Instructions 16 104

Lines of RTL Code 22689 114040

Lines of ADL Code 1521 8634

Operations (properties) 28 83

Generated properties 14 52

CPU Time regression 37,67 s 18h

Memory Usage 593 MB 14,3 GB

Intel(R) Xeon(R) CPU E5440 @ 2.83GHz / SUSE 11.1

Designing Correct Circuits 2010

Bugs discovered by FV

 Wrong sign extensions: res = op1 + op2

 Wrong saturation condition in stage 13 out of 14

 Confirmed bug in RTL code generation for nested if-then-
else statement of commercial ASIP design tool identified

 Scenario for a race condition of parallel value assignments
to the same variable identified

 Software constraints have been ignored by some programs

29

Designing Correct Circuits 2010

Results for automatic completion

 FlexiTreP (for industrial application)

 Automatic completion of the OISA model revealed
several inconsistencies/gaps within the property suite

 All inconsistencies have been successfully resolved

 All gaps have been closed

 MAP

 SW-constraints and TBPs for default behavior have
originally been set up manually.

 Automatic analysis revealed that the manual process
missed important software constraints

 Completeness of the generated property set successfully
proven with OneSpin 360 MV

 Additional manual effort one week
Slide-30

