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Outline
 Challenges  for Formal Verification imposed by 

Weakly-Programmable IPs (WPIP)

 Interval Property Checking

 Specification Methodology

 Gap-Free Specifications

 Operational ISA model

 Operation-oriented specification

 Software Constraints

 Completeness considerations

 Applications
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Example WPIP FlexiTreP
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Example WPIP FlexiTreP
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Challenges:

 Deep pipelines

 hard to control operations in 
uppermost stages

 Out-of-order memory access

 Implicit use of software constraints for 
optimization of the pipeline 

 Huge number of configurations 

 ISA model not available
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Standard design flow for ASIPs
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Bottom-up Design Flow for WPIPs
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SAT-based Property Checking

Slide-8

Iterative Circuit Model:  from i = t to  i = t + k

t, t t+1, t+1

Xt
Xt+1
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Yt

t+k, t+k

Xt+k

s’t+1= st+2

Yt+1 Yt+k

Boolean function to represent property
p = 1?

s’t = st+1

Boolean satisfiability problem (SAT)
SAT modulo Theory (SMT) problem
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SAT-based Property Checking

 Unsatisfiability guarantees unbounded validity of G(p)
 p is specified by a timed Boolean predicate (TBP) in terms of 

design signals consisting of: 
 Boolean connectives (∧,∨,…)

 Generated next state operator Xt

 A TBP p refers to bounded inspection interval of time [tf,tl]  
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RT-level module verification: operation by operation

Typical methodology for Property Checking 
of SoC modules:

 Adopt an operational view of the design

 Each operation can be associated with 
certain important control states in 
which the operation starts and ends

 Specify a set of properties for every 
operation, i.e., for every important 
control state

 Verify the module operation by 
operation by moving along the 
important control states of the design

 The module is verified when every 
operation has been covered by a set of 
properties  

Control 1

Control 2

n cycles

Slide-1029.03.2010



Designing Correct Circuits 2010

Property Checking of processor pipeline

property instr_XYZ

assume:

at t: next_instr_can_be_issued();

at t: command_dec(XYZ,res,op1,op2);

during[t,t+3]: no_reset;

during[t,t+3]: no_interrupt;

…

prove:

at t+3: res == compute_res(XYZ,op1,op2);  

at t+3: stable_other_regs(res);

at t+1: next_instr_can_be_issued();

end

"assumptions"

"commitments"

Goal: Prove that instructions are performed correctly

Spec: Safety properties of type: G(ac) with bounded 
inspection interval

Example: Property in ITL (Interval Language)
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Control 1

Control 2

/ data_path_control_signals

data path

CPU verification: instruction by instruction

Property 1:   G(acontrol 1  ccontrol 2)

Property 2:   G(acontrol 2  ccontrol …)

n cycles
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RT-level module verification: operation by operation

Typical methodology for property checking 
of SoC modules:

 Adopt an operational view of the design

 Each operation can be associated with 
certain important control states in 
which the operation starts and ends

 Specify a set of properties for every 
operation, i.e., for every important 
control state

 Verify the module operation by 
operation by moving along the 
important control states of the design

 The module is verified when every 
operation has been covered by a set of 
properties  

Control 1

Control 2

n cycles
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How to guarantee
that every 
scenario is 
covered?
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Mutation coverage

A set of (operational) properties P is complete for a design 
C with respect to a set of mutations M={C1,…,Cn}, if C
satisfies the properties in P and for every mutation Ci at 
least one property fails.

Problems:

 Criterion design-dependent

 Do the mutations reflect designer mistakes?

29.03.2010 Slide-14



Designing Correct Circuits 2010

Completeness

A set of (operational) properties P is complete if every two 
designs C1, C2 satisfying the properties in P are sequentially 
equivalent.
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∧p(x,s2,o2)
p∈P

empty model for 
C1

empty model for 
C2

x

∧p(x,s1,o1)
p∈P

1!

1!

1?

K. Claessen: “A Coverage 
Analysis for Safety Property 
Lists”, FMCAD 2007

J. Bormann and H. Busch: 
„Method for determining the 
quality of a set of properties”
European Patent Application, 
Publication Number
EP1764715,  2005.
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Completeness
 Practical extensions:

 Allow explicit constraints on 
inputs of designs

 Weaken sequential equivalence 
condition by introduction of 
determination requirements

 Decompose proof with respect to the given properties p∈P.

 Sucessor /Case-Split Test: 
Every input trace can be covered with a uniquely 
determined sequence of properties (pi | i ∈ ℕ) such that 
the determination intervals match without gaps.

 Determination Test:
Every property uniquely determines the outputs within 
its determination interval.
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Completeness

 Decompose proof with respect to the given properties p∈P.

 Sucessor /Case-Split Test: 
Every input trace can be covered with a uniquely 
determined sequence of properties (pi | i ∈ ℕ) such that 
the determination intervals match without gaps.

 Determination Test:
Every property uniquely determines the outputs within 
its determination interval.
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Operational ISA model
 Due to specific programming models WPIPs often lack a 

classical ISA model

 Instructions correspond to hundreds of classical RISC 
instructions (referred to a nuclei)

 Semantics often implicitly given by functional blocks 
(operations) involved in the execution

How to specify functional behavior of a WPIP?
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Operational ISA model
 The operational ISA model for a WPIP consists of:

 A relation OISA ⊆ I × O between the set of instructions I

and the set of (pipeline) operations O

 Timed Boolean predicates:

 instriFetched(): determines whether the instruction 
i ∈ I is issued into the pipeline at a time-point t

 opo(): specifies functionality of the operation o ∈ O 
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Operational ISA model
Manual specifications given by the verification engineer

 OISA ⊆ I × O

 instriFetched(): determines whether the instruction 
i ∈ I is issued into the pipeline at a time-point t

 opo(): specifies functionality of the operation o ∈ O

Everything else will be generated automatically!
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Operational ISA model
 Timed Boolean predicates that are automatically generated 

from operational ISA model:

 instriPerformed() = ∧(i,o) ∈ OISA opo()

 opoTriggered() = ∨(i,o) ∈ OISA instriFetched() 

 Per-Instruction properties:

 instriExec()= nextInstrState() ∧ instriFetched()
 instriPerformed() ∧ Xt(i) nextInstrState()

 Per-Operation properties:

 opoExec()= nextInstrState() ∧ opoTriggered()  opo()
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Just another
operation
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 Determine every pair of opk, opj k ≠ j 
that refer to the same resource with 
time slack t

 For all related instructions ik, ij store (ik, ij, opk, opj ,t) in 
conflict list

Hazards imply software constraints
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Hazards imply software constraints
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 For every conflict (ik, ij, opk, opj ,t) 
in conflict list decide:

 Store automatically generated constraint that forbids 
sequences where ik follows ij after t clock cycles

 Manually find weaker constraint

 swConstraintj,k()= instrik
Fetched()flagsik

()

…
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Software compliance with constraints
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 Strong abstraction feasible for checking compliance of 
software with detected and now explicitly specified 
constraints

…
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Software compliance with constraints
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…

FE op1 op2 op3 op4 opn

op1

op2

op3

op4 op5

opk
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 Strong abstraction feasible for checking compliance of 
software with detected and now explicitly specified 
constraints 
 Empty models for operations (only signal names)
 TBPs opkabstr() describe abstracted behavior

 Consider behavior of flagsik
() only

op2abstr()
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Completeness by construction
 Case split and successor tests obviously hold and this can 

easily be verified by a completeness checker 

Problem:

 TBPs for operations opo() only describe modified values for 
involved state holding elements

⇒ other registers/memory cells remain undetermined

 Description of default behavior is required

 keep value
 take default value

 Tedious identification of situations where default behavior 
needs to be applied is completely automated
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Experimental Results
 HW verification:

 MAP and FlexiTreP, two 
WPIPs for channel 
decoding were 
successfully verified.

 During the verification 
subtle HW bugs were 
discovered which had 
escaped sign-off 
simulation before

 FlexiTreP has been 
taped out successfully

 65nm low power technology
 41741 standard cells, 15 macros
 Die size without interface 0.74 mm2

 360Mhz, core power ~100mW@1.1V 
 Logic utilization 77%
 Silicon available since March 2009 
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Design characteristics
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MAP FlexiTreP

# Instructions 16 104

Lines of RTL Code 22689 114040

Lines of ADL Code 1521 8634

# Operations (properties) 28 83

# Generated properties 14 52

CPU Time regression 37,67 s 18h

Memory Usage 593 MB 14,3 GB

Intel(R) Xeon(R) CPU E5440  @ 2.83GHz / SUSE 11.1
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Bugs discovered by FV

 Wrong sign extensions: res = op1 + op2

 Wrong saturation condition in stage 13 out of 14

 Confirmed bug in RTL code generation for nested  if-then-
else statement of commercial ASIP design tool identified

 Scenario for a race condition of parallel value assignments 
to the same variable identified

 Software constraints have been ignored by some programs
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Results for automatic completion 

 FlexiTreP (for industrial application)

 Automatic completion of the OISA model revealed 
several inconsistencies/gaps within the property suite

 All inconsistencies have been successfully resolved

 All gaps have been closed

 MAP

 SW-constraints and TBPs for default behavior have 
originally been set up manually.

 Automatic analysis revealed that the manual process 
missed important software constraints 

 Completeness of the generated property set successfully 
proven with OneSpin 360 MV

 Additional manual effort one week
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