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Networks-on-Chips

• MPSoCs - Multi-Processors Systems-on-Chips
• Trend: Networks replace buses



MultiProcessor SoCs

• Intel’s 80-core Research Chip

• Teraflops, 62 Watts

• 100 millions transistors, 275 mm2

• 25% node area for router

• ASCI Red Supercomputer

• Teraflops (Dec. 1996)

• 10, 000 Pentium Pro

• 104 cabinets, 230 m2



Motivation

• Networked based SoCs
• Communication infrastructure crucial to system performance and 

correctness
• NoCs run under constrained environment

– limited heat budget
– must work perfectly (e.g. no loss)

• Network architectures key to supercomputing
• NoCs architectures key to on-chip supercomputing ?



Global Objective

• Verified complex on-chip networks
• General methodology to support the design of correct complex 

on-chip network architectures



In this talk

• Description of our target methodology
• Recent results towards this target
• Next steps towards our goal



Part I

Our target



Application domain

• Focus on the communication infrastructure / architecture
• Highly parametric analysis

– size of the network
– size of messages
– topology
– routing algorithm
– switching policy
– injection method
– ...

• Prove global properties of networks
– no message loss
– no deadlock/livelock
– evacuation
– performance
– ...



Method elements

• Generic or meta-model
– constituents
– architectures
– proof obligations and theorems

• Temporal abstractions
– define maximum travel distance per time unit 



The GeNoC approach
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The Generic Model:  Constituents

Topology

Injection

Scheduler

Router



The Generic Model:  Proof obligations (or constraints)

Local constraints sufficient to prove global generic theorems.

Topology Router

Injection
Scheduler

“R:PxPP”

“A message moves, unless it is stuck”

“All messages are injected at time 
slot 0”

“Sinks have no outgoing edges”



The Generic Model:  Generic theorems

Routing Function
Constraints

Switching Method
Constraints

Injection Policy
Constraints

Generic Theorem



The Generic Model:  Generic theorems

Instantiated 
Theorem

 Instantiated 
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The GeNoC Model:  Architecture template

Let σ be a configuration containing a state and messages
Let M be a set of messages to be sent over the NoC

σ iff σ.M = ∅ // empty list of messages

σ iff deadlocked(Routing(Injection(σ)))

GeNoC(take-a-step(σ))

GeNoC (σ) = 



The Deadlock and Evacuation Theorems - DATE’10

• Deadlock Theorem
– Routing function R is deadlock-free if and only if there is no 

cycle in its port dependency graph

• Evacuation Theorem
– All messages eventually leave the network if and only if 

function GeNoC terminates

• New constraints
– Ports dependency graph must be consistent with the routing 

function (topology as well)
– Scheduling policy must decrease the termination measure if 

no deadlock 
– Injection methods injects all messages at time 0

• Application
– Arbitrary large 2D-mesh with XY routing



The Refinement Theorem - FMCAD’09

• Two architectures and a mapping between them
– Source routing (route encoded in message)
– Distributed routing (route computed step-by-step)
– Function transform remove encoded route from messages

• The Refinement Theorem
– For all states s and message lists m, we have
– transform(GeNoC_S(s,m)) = GeNoC_D(s,m)

• New constraints
– Encoded route matches step-by-step computation

• Application
– Arbitrary large 2D-mesh with XY routing

• N.B.: use a different definition template !



Method elements

• Generic or meta-model
– constituents
– architectures
– proof obligations and theorems

• Temporal abstractions
– define maximum travel distance per time unit 



The temporal abstractions (1):  t ime = source to destination

Green chosen first and reaches its destination in one step
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The temporal abstractions (1):  t ime = source to destination

Then blue reaches its destination in one step



• Restrictions
– No deadlock possible
– Non minimal adaptive routing not possible

• Routes computed from source to destination
• Scheduling decision from source to destination
• Global Properties

– routes are valid
– messages reach their expected destination

• Example
– TDMA scheduling of AEthereal from NXP

The temporal abstractions (1)



Messages advance of at most one hop in one step

The temporal abstractions (2):  t ime = current to next
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Messages advance of at most one hop in one step

The temporal abstractions (2):  t ime = current to next



• Deadlock possible
• Routes computed from current to destination
• Scheduling decisions from current to next
• Global Properties (preserved)

– routes are valid
– messages reach their expected destination

• Global properties (new)
– no deadlock
– no livelock
– evacuation

• Still ...
– Complete routes known at all times
– Node reads neighbour to check available space

The temporal abstractions (2):  t ime = current to next



Messages cross at most one node in one step

The temporal abstractions (3):  t ime = one router
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Messages cross at most one node in one step

The temporal abstractions (3):  t ime = one router



• Messages on links can be lost
• Read signals to take decision
• Routes computed from current to next
• Scheduling decisions from current to next
• Global properties (preserved)

– routes are valid
– messages reach their expected destination
– no deadlock
– no livelock
– evacuation

• Global properties (new)
– no message lost
– correctness of handshake protocol

The temporal abstractions (3):  t ime = one router



The temporal abstractions: Summary

s

d

s

d

s

d

in one step from source to destination

in one step from current to next

in one step from input to output

Routing: source to destination

Scheduling: source to destination

Routing: source to destination

Scheduling: current to next

Routing: current to next

Scheduling: current to next



Find proof obligations sufficient to maintain stuttering (bi)simulations 
between the architecture templates of two abstraction levels

The temporal abstractions: objective



Part I I

Temporal abstraction (2):  t ime = one hop



Architecture template at temporal abstraction (2)

Let σ be a configuration containing a state and messages
Let M be a set of messages to be sent over the NoC

σ iff σ.M = ∅ // empty list of messages

σ iff deadlocked(Routing(Injection(σ)))

GeNoC(Scheduling(Routing(Injection(σ))))

GeNoC (σ) = 

inject messagesRoutes
from current to destination

Advance of
one hop if possible



Deadlock



Deadlock



Deadlock



Deadlock



Deadlock

Deadlock is an emerging property



• There is no deadlock iff there is no configuration where all 
messages are blocked

• A message is blocked iff its next hop is full

• Deadlock-free theory:
– there is no deadlock configuration iff the routing function has 

an acyclic dependency graph

• New proof obligations about the dependency graph (G)
1. Each dependency in the network is an edge in G
2. All edges of G are dependencies
3. Graph G is acyclic.

Deadlock generic theorem



NoC example: 2D-mesh Hermes NoC

Routing:

XY Routing

Switching policy

Wormhole

Packet

Injection

Immediate

Topology



• Specify XY routing algorithm

• Specify dependency graph

Specifying routing algorithm and dependency graph

Dependency: No dependency:



• Prove graph acyclic
– proof based on the concept of flows

Proving dependency graph acyclic (arbitrary large network)

North flow: 
• Increase the y-coordinate   
or
• Stop

East flow: 
• Increase the x-coordinate
or 
•Go into a vertical flow
or
• Stop



Part I I I

Temporal abstractions (3) /  Time = one router



• Architecture template based on generic router
• Source routing architecture
• Distributed routing architecture
• Refinement theorem

Temporal abstraction (3)



Address

StatusFieldackRx

Rx

Data
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Port
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Tx
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Id Port
Name Direction

Input Stage

Routing Control

Flow Control

Output Stage

Port

Buffer

Data Input

Architecture template at temporal abstraction (3):  router model



Architecture template at temporal abstraction (3) *

Let σ be a configuration containing a state and messages
Let M be a set of messages to be sent over the NoC

σ iff σ.M = ∅ // empty list of messages

σ iff deadlocked(Routing(Injection(σ)))

GeNoC(Apply-Router-All(σ))))

GeNoC (σ) = 

Execute the router model
at all nodes

* We do not have exactly that model yet
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Architecture (1):  Source routing /  route encoded in messages
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Architecture (2):  Distributed routing 
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Architecture (2):  Distributed routing /  local routing logic
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• Distributed routing architecture refinement of source routing one
– Given the same inputs, produces same outputs
– Messages use identical paths

• Function transform removes encoded route from messages

• Proved following diagram

Refinement theorem (1)

sr

dr

sr’

dr’

transform transform

source routing step

distributed routing step



• Proof between generic models

• Main proof obligation 
– head of the pre-computed route = local calculation

Refinement theorem (2)



Part IV

Next steps /  current work



• Deterministic routing
– acyclic dependency graph iff no deadlock
– Dally and Seitz (87’)

• Adaptive routing
– exists subrouting function with acyclic extended dependency 

graph iff no deadlock
– adaptive routing function with cyclic dependencies are OK
– Duato (93’)

• Formalized in ACL2 our own conditions
– based on port dependency graphs
– deterministic and adaptive routing
– wormhole and store-and-forward networks
– used temporal abstraction (2) / (S) = current to next

Formalizing theories for deadlock-free routing



• Deterministic routing
– acyclic dependency graph iff no deadlock
– linear search for cycles is enough

• Adaptive routing in store-and-forward networks
– exists routing subfunction with acyclic extended dependency 

graph iff no deadlock (Duato)
– all subgraphs have an escape iff no deadlock (our condition)
– algorithm with time complexity in O(|E|)

• Adaptive routing in wormhole networks
– algorithm for sufficient condition in O(|E|)
– checking necessary and sufficient condition is NP-complete ?

• Implementations of algorithms still not efficient enough

Verif ied algorithm to prove these condit ions



Part I I I

General Conclusion and Future Work



Summary

• A meta-model
– Local proof obligations imply global properties
– Functional correctness, deadlock and evacuation
– Generic constituents and concrete instances

• Expressed in math and in the logic of ACL2
– Executable instances
– Same models for proofs and simulations
– Simulation traces comparable to RTL

• Wide range of applications
– The HERMES NoC: academic design
– Spidergon: industrial design
– Nostrum (Grenoble VDS group): non minimal adaptive routing



Future Work

• Unification of definition templates

• Link with RTL
– Refine until RTL (cycle accurate)
– Relate temporal layers (next hop full = handshake fails)

• Deadlock
– Implement algorithms to automatic analysis of instances
– These algorithms are verified and efficient
– Weaken injection method’s proof obligation
– Refine termination measure (bound on evacuation time)



THANKS !!


