
Formal Validation and Verif ication of
Networks-on-Chips
Status and Perspect ive

Jul ien Schmaltz
Freek Verbeek
Tom van den Broek

Networks-on-Chips

• MPSoCs - Multi-Processors Systems-on-Chips
• Trend: Networks replace buses

MultiProcessor SoCs

• Intel’s 80-core Research Chip

• Teraflops, 62 Watts

• 100 millions transistors, 275 mm2

• 25% node area for router

• ASCI Red Supercomputer

• Teraflops (Dec. 1996)

• 10, 000 Pentium Pro

• 104 cabinets, 230 m2

Motivation

• Networked based SoCs
• Communication infrastructure crucial to system performance and

correctness
• NoCs run under constrained environment

– limited heat budget
– must work perfectly (e.g. no loss)

• Network architectures key to supercomputing
• NoCs architectures key to on-chip supercomputing ?

Global Objective

• Verified complex on-chip networks
• General methodology to support the design of correct complex

on-chip network architectures

In this talk

• Description of our target methodology
• Recent results towards this target
• Next steps towards our goal

Part I

Our target

Application domain

• Focus on the communication infrastructure / architecture
• Highly parametric analysis

– size of the network
– size of messages
– topology
– routing algorithm
– switching policy
– injection method
– ...

• Prove global properties of networks
– no message loss
– no deadlock/livelock
– evacuation
– performance
– ...

Method elements

• Generic or meta-model
– constituents
– architectures
– proof obligations and theorems

• Temporal abstractions
– define maximum travel distance per time unit

The GeNoC approach

Generic
Model

Generic
Theorems

Executable
NoC Model

Instantiated
Theorems

Deadlock
freedom

Functional
Correctness

Evacuation

specify

discharge
proof obligations

The Generic Model: Constituents

Topology

Injection

Scheduler

Router

The Generic Model: Proof obligations (or constraints)

Local constraints sufficient to prove global generic theorems.

Topology Router

Injection
Scheduler

“R:PxPP”

“A message moves, unless it is stuck”

“All messages are injected at time
slot 0”

“Sinks have no outgoing edges”

The Generic Model: Generic theorems

Routing Function
Constraints

Switching Method
Constraints

Injection Policy
Constraints

Generic Theorem

The Generic Model: Generic theorems

Instantiated
Theorem

 Instantiated
Constraints

Instantiated
Constraints

Instantiated
Constraints

Routing Function
Constraints

Switching Method
Constraints

Injection Policy
Constraints

Generic Theorem

The GeNoC Model: Architecture template

Let σ be a configuration containing a state and messages
Let M be a set of messages to be sent over the NoC

σ iff σ.M = ∅ // empty list of messages

σ iff deadlocked(Routing(Injection(σ)))

GeNoC(take-a-step(σ))

GeNoC (σ) =

The Deadlock and Evacuation Theorems - DATE’10

• Deadlock Theorem
– Routing function R is deadlock-free if and only if there is no

cycle in its port dependency graph

• Evacuation Theorem
– All messages eventually leave the network if and only if

function GeNoC terminates

• New constraints
– Ports dependency graph must be consistent with the routing

function (topology as well)
– Scheduling policy must decrease the termination measure if

no deadlock
– Injection methods injects all messages at time 0

• Application
– Arbitrary large 2D-mesh with XY routing

The Refinement Theorem - FMCAD’09

• Two architectures and a mapping between them
– Source routing (route encoded in message)
– Distributed routing (route computed step-by-step)
– Function transform remove encoded route from messages

• The Refinement Theorem
– For all states s and message lists m, we have
– transform(GeNoC_S(s,m)) = GeNoC_D(s,m)

• New constraints
– Encoded route matches step-by-step computation

• Application
– Arbitrary large 2D-mesh with XY routing

• N.B.: use a different definition template !

Method elements

• Generic or meta-model
– constituents
– architectures
– proof obligations and theorems

• Temporal abstractions
– define maximum travel distance per time unit

The temporal abstractions (1): t ime = source to destination

Green chosen first and reaches its destination in one step

The temporal abstractions (1): t ime = source to destination

Green chosen first and reaches its destination in one step

The temporal abstractions (1): t ime = source to destination

Then blue reaches its destination in one step

• Restrictions
– No deadlock possible
– Non minimal adaptive routing not possible

• Routes computed from source to destination
• Scheduling decision from source to destination
• Global Properties

– routes are valid
– messages reach their expected destination

• Example
– TDMA scheduling of AEthereal from NXP

The temporal abstractions (1)

Messages advance of at most one hop in one step

The temporal abstractions (2): t ime = current to next

Messages advance of at most one hop in one step

The temporal abstractions (2): t ime = current to next

Messages advance of at most one hop in one step

The temporal abstractions (2): t ime = current to next

Messages advance of at most one hop in one step

The temporal abstractions (2): t ime = current to next

Messages advance of at most one hop in one step

The temporal abstractions (2): t ime = current to next

• Deadlock possible
• Routes computed from current to destination
• Scheduling decisions from current to next
• Global Properties (preserved)

– routes are valid
– messages reach their expected destination

• Global properties (new)
– no deadlock
– no livelock
– evacuation

• Still ...
– Complete routes known at all times
– Node reads neighbour to check available space

The temporal abstractions (2): t ime = current to next

Messages cross at most one node in one step

The temporal abstractions (3): t ime = one router

Messages cross at most one node in one step

The temporal abstractions (3): t ime = one router

Messages cross at most one node in one step

The temporal abstractions (3): t ime = one router

Messages cross at most one node in one step

The temporal abstractions (3): t ime = one router

Messages cross at most one node in one step

The temporal abstractions (3): t ime = one router

Messages cross at most one node in one step

The temporal abstractions (3): t ime = one router

• Messages on links can be lost
• Read signals to take decision
• Routes computed from current to next
• Scheduling decisions from current to next
• Global properties (preserved)

– routes are valid
– messages reach their expected destination
– no deadlock
– no livelock
– evacuation

• Global properties (new)
– no message lost
– correctness of handshake protocol

The temporal abstractions (3): t ime = one router

The temporal abstractions: Summary

s

d

s

d

s

d

in one step from source to destination

in one step from current to next

in one step from input to output

Routing: source to destination

Scheduling: source to destination

Routing: source to destination

Scheduling: current to next

Routing: current to next

Scheduling: current to next

Find proof obligations sufficient to maintain stuttering (bi)simulations
between the architecture templates of two abstraction levels

The temporal abstractions: objective

Part I I

Temporal abstraction (2): t ime = one hop

Architecture template at temporal abstraction (2)

Let σ be a configuration containing a state and messages
Let M be a set of messages to be sent over the NoC

σ iff σ.M = ∅ // empty list of messages

σ iff deadlocked(Routing(Injection(σ)))

GeNoC(Scheduling(Routing(Injection(σ))))

GeNoC (σ) =

inject messagesRoutes
from current to destination

Advance of
one hop if possible

Deadlock

Deadlock

Deadlock

Deadlock

Deadlock

Deadlock is an emerging property

• There is no deadlock iff there is no configuration where all
messages are blocked

• A message is blocked iff its next hop is full

• Deadlock-free theory:
– there is no deadlock configuration iff the routing function has

an acyclic dependency graph

• New proof obligations about the dependency graph (G)
1. Each dependency in the network is an edge in G
2. All edges of G are dependencies
3. Graph G is acyclic.

Deadlock generic theorem

NoC example: 2D-mesh Hermes NoC

Routing:

XY Routing

Switching policy

Wormhole

Packet

Injection

Immediate

Topology

• Specify XY routing algorithm

• Specify dependency graph

Specifying routing algorithm and dependency graph

Dependency: No dependency:

• Prove graph acyclic
– proof based on the concept of flows

Proving dependency graph acyclic (arbitrary large network)

North flow:
• Increase the y-coordinate
or
• Stop

East flow:
• Increase the x-coordinate
or
•Go into a vertical flow
or
• Stop

Part I I I

Temporal abstractions (3) / Time = one router

• Architecture template based on generic router
• Source routing architecture
• Distributed routing architecture
• Refinement theorem

Temporal abstraction (3)

Address

StatusFieldackRx

Rx

Data

Id Port
Name DirectionAddress

Port

Buffer

Data Output

StatusFieldackTx

Tx

Data

Id Port
Name Direction

Input Stage

Routing Control

Flow Control

Output Stage

Port

Buffer

Data Input

Architecture template at temporal abstraction (3): router model

Architecture template at temporal abstraction (3) *

Let σ be a configuration containing a state and messages
Let M be a set of messages to be sent over the NoC

σ iff σ.M = ∅ // empty list of messages

σ iff deadlocked(Routing(Injection(σ)))

GeNoC(Apply-Router-All(σ))))

GeNoC (σ) =

Execute the router model
at all nodes

* We do not have exactly that model yet

mlocal ports

south

north

west east

local ports

south

north

west east

local ports

south

north

west east

local ports

south

north

west east

0 0 1 0

1 10 1

E N L

Architecture (1): Source routing / route encoded in messages

E N L

local ports

south

north

west east

local ports

south

north

west east

local ports

south

north

west east

local ports

south

north

west east

0 0 1 0

1 10 1

m

Architecture (1): routing decision read in messages

N L

local ports

south

north

west east

local ports

south

north

west east

local ports

south

north

west east

local ports

south

north

west east

0 0 1 0

1 10 1

m

Architecture (1): new head of routes

0 1

local ports

south

north

west east

local ports

south

north

west east

local ports

south

north

west east

local ports

south

north

west east

0 0 1 0

1 1

m

Architecture (2): Distributed routing

0 1

local ports

south

north

west east

local ports

south

north

west east

local ports

south

north

west east

local ports

south

north

west east

0 0 1 0

1 1

m

Architecture (2): Distributed routing / local routing logic

m

local ports

south

north

west east

local ports

south

north

west east

local ports

south

north

west east

local ports

south

north

west east

0 0 1 0

1 10 1

Architecture (2): Distributed routing / local routing logic

• Distributed routing architecture refinement of source routing one
– Given the same inputs, produces same outputs
– Messages use identical paths

• Function transform removes encoded route from messages

• Proved following diagram

Refinement theorem (1)

sr

dr

sr’

dr’

transform transform

source routing step

distributed routing step

• Proof between generic models

• Main proof obligation
– head of the pre-computed route = local calculation

Refinement theorem (2)

Part IV

Next steps / current work

• Deterministic routing
– acyclic dependency graph iff no deadlock
– Dally and Seitz (87’)

• Adaptive routing
– exists subrouting function with acyclic extended dependency

graph iff no deadlock
– adaptive routing function with cyclic dependencies are OK
– Duato (93’)

• Formalized in ACL2 our own conditions
– based on port dependency graphs
– deterministic and adaptive routing
– wormhole and store-and-forward networks
– used temporal abstraction (2) / (S) = current to next

Formalizing theories for deadlock-free routing

• Deterministic routing
– acyclic dependency graph iff no deadlock
– linear search for cycles is enough

• Adaptive routing in store-and-forward networks
– exists routing subfunction with acyclic extended dependency

graph iff no deadlock (Duato)
– all subgraphs have an escape iff no deadlock (our condition)
– algorithm with time complexity in O(|E|)

• Adaptive routing in wormhole networks
– algorithm for sufficient condition in O(|E|)
– checking necessary and sufficient condition is NP-complete ?

• Implementations of algorithms still not efficient enough

Verif ied algorithm to prove these condit ions

Part I I I

General Conclusion and Future Work

Summary

• A meta-model
– Local proof obligations imply global properties
– Functional correctness, deadlock and evacuation
– Generic constituents and concrete instances

• Expressed in math and in the logic of ACL2
– Executable instances
– Same models for proofs and simulations
– Simulation traces comparable to RTL

• Wide range of applications
– The HERMES NoC: academic design
– Spidergon: industrial design
– Nostrum (Grenoble VDS group): non minimal adaptive routing

Future Work

• Unification of definition templates

• Link with RTL
– Refine until RTL (cycle accurate)
– Relate temporal layers (next hop full = handshake fails)

• Deadlock
– Implement algorithms to automatic analysis of instances
– These algorithms are verified and efficient
– Weaken injection method’s proof obligation
– Refine termination measure (bound on evacuation time)

THANKS !!

