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Introduction

Motivation

Goal

I Design of verified high-performance, on-chip communication protocols

Problem

I Communication protocols traditionally hard to verify

I On-chip: increasing complexity (many-core architectures, System-on-Chips)

I High-performance: hard, advanced features to meet performance demands

I Fundamental: correct execution relies on correct data exchange

Need for functional verification
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Introduction

Traditional Approach

Traditional verification approach usually infeasible

I Complex, monolithic model

I High-performance features

I Distributed, concurrent communication system

I Hard post-hoc verification process

I large state space

I complex correctness property (features)

(infeasible)
work proofspec

monolithic
model

correctness
statement

spec

monolithic
model

correctness
statement
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Introduction

Incremental Modelling and Verification

Idea: use sequence of incremental modelling steps to replace monolithic model

I Basic model with core functionality

I Incrementally add features in a structured, well defined way

I Features modelled independently using transformations

I Complexity encapsulated

basic
model

basic model 
+ feature f1

model with 
features 

{f1,...,fn} 
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Introduction

Incremental Modelling and Verification

Idea: spread verification over modelling process

I Basic model verified using traditional approach (feasible due to model size)

I Show correctness of every modelling step

I Leverage previous correctness properties

I Reuse previously proven properties (lemmas)

basic
model

basic model 
+ feature f1

model with 
features 

{f1,...,fn} 

correctness
statement

feasible
work proof feasible

work

correctness
statement

proof feasible
work

correctness
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Introduction

This Talk

How to create a sequence of incremental models?

I Mathematical framework for incremental modelling

I Modelling approach

I Generic composition operators

I Specific transformations

I Formalisation in Isabelle/HOL

How to apply the methodology?

I Overview of case study: PCI Express Transaction Layer

I Basic model

I Specific transformations
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Mathematical Framework - Modelling Approach

General Idea

Model communications system components as state machines

I Mealy machines

I Define a generic structure for state space, input and output sets

Extend state machines with model of communication and composition

I Introduce an interface standard for the inputs and outputs

I Provides basis for the model of composition

Define generic transformations using composition operators
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Mathematical Framework - Modelling Approach

Mealy Machines

Definition (Mealy Machine)

A state machine is given by a 6-tuple (S , I ,O , s0, δ, ω) where the components are
given by

I S , I , O are the sets for state space, the inputs, and the outputs, respectively.

I s0 ∈ S is the initial state.

I δ : S × I → S is the step function of the automaton, thus δ(s, i) is the next
configuration of the automaton with the configuration s and the input
assignment i.

I ω : S × I → O is the output function of the automaton, thus ω(s, i) is the
assignment of the output values if the state machine is in configuration s and
the input assignment is i.
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Mathematical Framework - Modelling Approach

Records

Sets of labelled tuples: structure the sets of a state machine

I Sets are collections of tuples

I Provide names for tuple components to access specific components

Example (Record)

Assume R = (|a ∈ B, b ∈ B |) with B = {T,F}.
Then,

I R = B2

I a : B2 → B with a((x, y)) = x

I b : B2 → B with b((x, y)) = y

I Given r = (|a = F, b = T |) ∈ R, then r.a = a((F,T)) = F
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Mathematical Framework - Modelling Approach

Records

Definition (Record)

A record set R = (| l0 ∈ S0, . . . , li ∈ Si, . . . , ln ∈ Sn |) of (n+ 1)-tuples is a set R
with

R = {(s0, . . . , si, . . . , sn) | ∀j ∈ [0, n]. sj ∈ Sj} = S0 × . . .× Si × . . .× Sn

together with labelling functions li : R → Si for each tuple component:

li((s0, . . . , si, . . . , sn)) = si

Notation:

I A record instance r ∈ R is given by (| l0 = s0, . . . , li = si, . . . , ln = sn |) with
sj ∈ Sj for j ∈ [0, n].

I Given a record instance r ∈ R, we write r.li ∈ Si for li(r).
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Mathematical Framework - Modelling Approach

Communicating State Machines

Goal

I Model communication between network components via channels.

I Specify operators for composing state machines.

Uni-directional communication

source

Ms

destination

Md
outs.x inpd.y

inpd.y = outs.x = (ωs(ss, inps)).x

I Define communication as a global function over a set of state machines

I Component aggregates of input and output records
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Mathematical Framework - Modelling Approach

Component Aggregates of Records

Example

Assume RS = {R0, . . . ,Rn} with Ri = (|a ∈ B, b ∈ B |) and n = 2, then

Agg(RS) = {r0.a, r0.b, r1.a, r1.b, r2.a, r2.b}

Definition (Component Aggregate of Records)

Given a set of records RS = {R0, . . . ,Rn}, we define the component aggregate of
RS as Agg(RS) with

Agg(RS) = {ri.x | ri ∈ Ri ∧ (∃j. x = lj)}
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Mathematical Framework - Modelling Approach

Global Communication Function

Communication among a set of state machines

I Global function mapping inputs to outputs.

I Semantics: every data element produced by the output is communicated to the
input given by the function.

I An external input of a state machine gets defined by the output function of
another state machine.

Definition

Given a set of state machines M = {M0, . . . ,Mn} with input records Ii and output
records Oi. We define the communication as a partial function
comM : Agg({Ii | i ∈ [0, n]})→ Agg({Oi | i ∈ [0, n]}) such that

comM(inpi.y) =

{
outj .x : output x of Mj is send to Mi using input y

undefined : otherwise
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Mathematical Framework - Modelling Approach

Global Communication Function: Example

Example

I M = {M0,M1,M2}, Mi = (Si, Ii,Oi, s0i, δi, ωi)

I comM = {(inp1.y, out0.x), (inp2.p, out0.y), (inp2.q, out1.z)}

M0 M1
out0.x inp1.y

M2

out0.y out1.z

inp2.p inp2.q

inp0.z inp1.u
out1.v
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Mathematical Framework - Modelling Approach

Interface Convention

Simple handshake

I Introduce standard interface specification between components as basis for
composition operators

I busy ∈ B, valid ∈ B, data ∈ D where D is the set of data elements to be
communicated.

sender receivervalidr
datar

busyrbusys
valids
datas

busy
valid
data

Semantics

I If sender wants to send data element x: valids = T and datas = x

I If busyr = F: receiver samples data in the same time step.

I If busyr = T: receiver is busy and cannot sample data.
Sender has to provide data until busyr = F, or data is not communicated.
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Mathematical Framework - Modelling Approach

A Generic Buffer

I Use polymorphism to define generic constructs

I Use the option data type for the data signal to formalise valid and data signals.
Then the valid signal corresponds to data = Some x

Definition ((α)buffer of finite size)

A generic buffer of finite size l ∈ N is given by the state machine (S , I ,O , s0 , δ, ω)
with

S = (|data ∈ (α)list, length ∈ N |)
I = (|busy ∈ B, data ∈ α option |)

O = (|busy ∈ B, data ∈ α option |)
s0 = (|data = Nil, length = l |)
δ = λs ∈ S . λi ∈ I . let

s′ = if ¬(i.busy ∨ s.data = Nil) then s′ = (tail s.data) else s′ = s.data
s′′ = if (i.data = Some x) then s′′ = s′@[x] else s′′ = s′

in (|data = s′′, length = s.length |)
ω = λs ∈ S . λi ∈ I . let

out = if ¬(s.data = Nil) then Some (head s.data) else None
in (|busy = (length s.data = l), data = out |)
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Mathematical Framework - State Machine Composition

Parallel and Sequential Composition

I Standard (straightforward) composition operators

I Mainly used to compose stack layers

Parallel Composition

I Goal: Execute two state machines
M1,M2 in parallel

I All inputs and outputs are inputs and
outputs of the composed state machine.

M1 M2

busy1valid1data1 busy2 valid2data2

busy1valid1data1 busy2 valid2data2

Definition (Parallel Composition Operator)

The parallel composition M1parM2 of state machines M1 and M2 with
Mi = (Si, Ii,Oi, s0 i, δi, ωi) is defined as (S , I ,O , s0 , δ, ω) with

(S , I ,O) = ((|m1 ∈ S1,m2 ∈ S2 |), (|m1 ∈ I1,m2 ∈ I2 |), (|m1 ∈ O1,m2 ∈ O2 |))
s0 = (|m1 = s0 1,m2 = s0 2 |)
δ = λs ∈ S . λi ∈ I . (|m1 = δ1 s.m1 i.m1,m2 = δ2 s.m2 i.m2 |)
ω = λs ∈ S . λi ∈ I . (|m1 = ω1 s.m1 i.m1,m2 = ω2 s.m2 i.m2 |)
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Mathematical Framework - State Machine Composition

Parallel and Sequential Composition

Sequential Composition

I Goal: Execute two state machines M1,M2

sequentially

I Data outputs of M1 are connected to the inputs
of M2

I Remaining inputs and outputs are inputs and
outputs of the composed state machine

M1

M2

busy1valid1data1

busy2 valid2data2

busy1valid1data1

busy2 valid2data2
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Mathematical Framework - State Machine Composition

Parallel and Sequential Composition

Definition (Sequential Composition Operator)

The sequential composition M1seqM2 of state machines M1 and M2 with
Mi = (Si, Ii,Oi, s0 i, δi, ωi) is defined as (S , I ,O , s0 , δ, ω) with

(S , I ,O) = ((|m1 ∈ S1,m2 ∈ S2 |), I1,O2)
s0 = (|m1 = s0 1,m2 = s0 2 |)
δ = λs ∈ S . λi ∈ I . (|m1 = δ1 s.m1 int1,m2 = δ2 s.m2 int2 |)
ω = λs ∈ S . λi ∈ I . (|m1 = ω1 s.m1 int1,m2 = ω2 s.m2 int2 |)

where

int1 = (|busy = (ω2 s.m2 (|busy = i.busy, valid = F, data = x |)).busy,
valid = i.valid, data = i.data |) for some x

int2 = (|busy = i.busy, valid = (ω1 m1 int1).valid, data = (ω1 m1 int1).data |)

Note:

I Definition relies on the assumption that the busy output signal is independent
from the valid and data input signals.

I Assumption needs to be discharged when sequential composition is used.
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Mathematical Framework - Specific Operators

Combinatorial Function Composition

Goal: control and/or modify data output of a state machine.

I State space
S = (|m ∈Mf , e ∈ E |) where E is a state space
extension specific to the function f .

I Input/Output domain
I = If , O = (|busy ∈ B, valid ∈ B, data ∈ F |)
where F is the range of the function f .

I Combinatorial function f : D → F where D is
the data output range of Mf .

I Combinatorial in the sense that data elements
are not stored.

I Step function for f to update state space
element e.

I Output function for f that depends on e and the
input signal, i. e. the output signals of Mf .

Mf

f
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Mathematical Framework - Specific Operators

Generic Multiplex/Arbitrate Composition

Goal: controlled, parallel execution of n+ 1 state machines Mi while maintaining
the input and output interface.

I State space
S = (|m0 ∈ S0, . . . , mn ∈ Sn, e ∈ E |) where E is
a state space extension specific to a concrete
instance of the operator.

I Input domain
I = (|busy ∈ B, valid ∈ B, data ∈

⋃
iDi |) where

Di is the data domain of Mi. Output domain is
defined analogously.

I Multiplex relation mux ⊆ (S × I )× [0, n] to
select the internal component(s) given input
signal values.

I Arbitrate function arb : (S × I )→ [0, n] to
select the component that outputs data.

M0

arbitrate

multiplex

Mn
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Mathematical Framework - Specific Operators

Replicate Composition

Goal: controlled, parallel execution of n+ 1 copies of a state machine Mr.

I Similar to the generic multiplex/arbitrate, but
more restrictive

I Advantage: more correctness results

I State space
S = (|m0 ∈ Sr, . . . , mn ∈ Sr, e ∈ E |)

I Input/Output domain
I = Ir, O = Or

I Multiplex function mux : (S × I )→ [0, n]
(instead of relation)

I Arbitrate function arb : (S × I )→ [0, n]
analogous to multiplex/arbitrate composition

Mr

arbitrate

multiplex

Mr
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Generic Correctness Results

Signals and Execution Semantics

I Argue about behaviour over time

I Intuitive, standard definition

I Abstract, discrete time domain: N

Definition (Signal)

A signal sig is a function from time N to a data domain D. We write sigt for sig(t).

Definition (Execution and Output Trace)

Given a state machine M = (S , I ,O , s0 , δ, ω) and input values it ∈ I for t ∈ N, we
define the execution trace trcM : N→ S and the output trace outM : N→ O as

trctM =

{
s0 : t = 0

δ trct−1
M it−1 : otherwise

outtM = ω trctM it
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Generic Correctness Results

Buffer Correctness

Correctness:

I Functional correctness (no data loss or modification)

I No reordering

I Liveness

Environment assumption:

I busy input not constantly active

Lemma (Correctness of the Buffer FSM)

Given input signals it ∈ I , a generic buffer (α)buffer satisfies that

∀x ∈ α. ¬i.busyt ∧ (i.datat = Some x) =⇒ ∃k. (outt+k
M = Some x)

Note

I Analogous lemma with x1, x2 ∈ α shows in-order property.

I Easy lemma to show that data outputs independent of busy input.
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Generic Correctness Results

Basic Compositions

Parallel Composition
I Correctness properties of the components are

maintained.

I Satisfies conjunction of the individual
correctness properties.

I Environment assumptions of both state
machines have to be satisfied.

M1 M2

busy1valid1data1 busy2 valid2data2

busy1valid1data1 busy2 valid2data2

PM1(i1) PM2(i2)

PM1(i1)∧PM2(i2)

Sequential Composition

I Satisfies conjunction of the correctness with
the respective substitutions in PM2 using ω1.

I Analogously for the busy input of M1

(definition of sequential composition)

I Data output of M1 has to satisfy the
environment assumptions of M2 and vice
versa for the busy input.

PM2(i2)

M1

M2

busy1valid1data1

busy2 valid2data2

busy1valid1data1

busy2 valid2data2

PM1(i1)

PM1(i1)∧PM2(ω s1 i1)  
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Generic Correctness Results

Replication Operator

Idea: Push correctness from inner components to system

Assumptions:

I Mr is correct and ensures liveness

I The multiplex function is correct for valid
inputs

I The arbitration function is fair with respect
to an active valid signal from some Mr

Mr

arbitrate

multiplex

Mr

Theorem (Functional Correctness and Liveness)

The replication operator preserves the functional correctness and the liveness of Mr

given the above assumptions.
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PCI Express

PCI Express

Protocol characteristics

I Point-to-point, packet-based communication

I Protocol stack layers: Transaction, data-Link, physical Layer

I Each layer: transmit (TX) and receive part (RX)

Memocode’09: Derivation of transaction layer

I Focus on hard transaction layer parts
flow control, packet reordering, virtual channels

I Transformation-based modelling approach

I Formalization in Isabelle/HOL

Here: Summary of

I Basic model

I Flow control
link out link in

transaction layer

data-link layer

physical layer

device core

TX RX

TX RX

TX RX
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PCI Express

Basic Model

Data units: transaction layer packets (TLPs)

Model

I TLP composition/decomposition

I Send/receive buffers

TLP
composition

(TLP)
send buffer

TLP
decomposition

(TLP)
receive buffer

Correctness

I TLP composition/decomposition (only combinatorial, easy)

I Apply correctness of generic buffer

I Liveness

I Ordering (no overtaking or packet loss)

I Correct busy signal

I Sequential composition of TX, channel, and RX
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PCI Express

Flow Control - A Specific Transformation

Goal: Sender checks locally if receiver has enough buffer space.

Principle

I Credit-based (header 1 credit, dw 1 credit)

I Receiver: Flow control buffers

I For each message type
(posted, non-posted, completion)

I Header and payload
(not every packet as payload)

I Frequent updates to link neighbour

I Sender: Checks if space is available

I Maintains available space counters

I Checks before message transmission

Receiver

flow 
control 
buffer

flow 
control 
buffer

Sender
send 
buffer
flow 

control 
check
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PCI Express

Flow Control - A Specific Transformation

Receiver: Instantiate replication operator
I n = 3 with (TLP , timestamp) flow control

buffer

I Multiplex function is TLP to [0 : 2] plus add
time stamp

I Arbitrate function is n such that
timestamp(n) < timestamp(m) for all m 6= n

Mr

arbitrate

multiplex

Mr

Flow control buffer: Instantiate multiplex/arbitrate operator

I n = 2 with (TLPHeader , timestamp) and (TLPData) data buffer

I Multiplex relation is {0} if TLP has no data and {0, 1} if TLP has data

I Arbitrate relation analogous to multiplex relation with respect to busy input

Sender: Instantiate combinatorial function operator

I Combinatorial function is counter test; raise busy if there is not enough space
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PCI Express

PCI Express Summary

I Industrial-sized high-performance communication protocol

I Incremental modelling of large parts of the transaction layer and data-link layer

I Independent specification of complex features

I Transaction layer

I Flow control

I TLP reordering

I Packet priorities using virtual channels

I Data-link layer

I Data-link layer packet arbitration

I ACK/NAK protocol

I CRC check

I Case study results published in MEMOCODE’09 and HFL’09
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Conclusion

Conclusion

New methodology for an incremental modelling and verification process

I Control the model complexity by adding features incrementally

I Formalised framework with correctness results for the generic constructs

I Generalised design principle for transformations using composition operators

I HOL as design/modelling language

Long-term aim

I Increase efficiency of the model building process

I Model with significant merits against ad-hoc models

I Functional verified

I Independent from implementation or design architecture

I Long-term reference model

Theorem prover

I Reduce or eliminate manual theorem proving

I Ideally modelling tool with knowledge management features
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Conclusion

Future Work

PCI Express

I Support for power management and interrupts

I Derivation of switches (support for complex topologies)

Design and verification methodology

I Support for (automatic) refinement steps (data refinement)

I Integration of automated verification tools (model checking, SMT Solver)

I Link to HDL? (SystemVerilog)
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