A Formalised Framework for Incremental Modelling of On-Chip Communication

Peter Böhm

University of Oxford Computing Laboratory

Designing Correct Circuits, March 2010

Goal

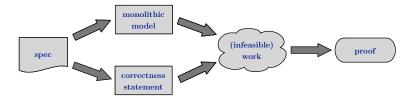
Design of verified high-performance, on-chip communication protocols

Problem

- Communication protocols traditionally hard to verify
- On-chip: increasing complexity (many-core architectures, System-on-Chips)
- ► High-performance: hard, advanced features to meet performance demands
- **Fundamental:** correct execution relies on correct data exchange

Need for functional verification

- Complex, monolithic model
 - High-performance features
 - Distributed, concurrent communication system
- Hard post-hoc verification process
 - large state space
 - complex correctness property (features)

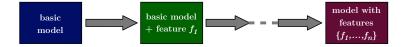


UNIVERSITY C

Incremental Modelling and Verification =

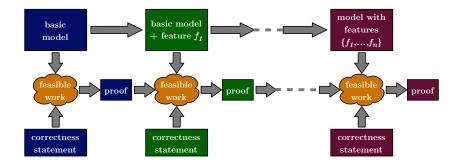
Idea: use sequence of incremental modelling steps to replace monolithic model

- Basic model with core functionality
- Incrementally add features in a structured, well defined way
- Features modelled independently using transformations
- Complexity encapsulated



Incremental Modelling and Verification -

- Basic model verified using traditional approach (feasible due to model size)
- Show correctness of every modelling step
- Leverage previous correctness properties
- Reuse previously proven properties (lemmas)



UNIVERSITY OF

How to create a sequence of incremental models?

- Mathematical framework for incremental modelling
 - Modelling approach
 - Generic composition operators
 - Specific transformations
- Formalisation in Isabelle/HOL

How to apply the methodology?

- Overview of case study: PCI Express Transaction Layer
 - Basic model
 - Specific transformations

General Idea

Model communications system components as state machines

- Mealy machines
- ► Define a generic structure for state space, input and output sets

Extend state machines with model of communication and composition

- Introduce an interface standard for the inputs and outputs
- Provides basis for the model of composition

Define generic transformations using composition operators

Mealy Machines

A state machine is given by a 6-tuple $(S,I,O,s0,\delta,\omega)$ where the components are given by

= = = =

- \blacktriangleright S, I, O are the sets for state space, the inputs, and the outputs, respectively.
- $s0 \in S$ is the initial state.
- $\delta: S \times I \to S$ is the step function of the automaton, thus $\delta(s, i)$ is the next configuration of the automaton with the configuration s and the input assignment i.
- $\omega: S \times I \to O$ is the output function of the automaton, thus $\omega(s,i)$ is the assignment of the output values if the state machine is in configuration s and the input assignment is i.

Sets of labelled tuples: structure the sets of a state machine

- Sets are collections of tuples
- Provide names for tuple components to access specific components

1= ====

Example (Record)

Assume $R = (a \in \mathbb{B}, b \in \mathbb{B})$ with $\mathbb{B} = \{T, F\}$.

Then,

Records

 $\blacktriangleright \ \mathcal{R} = \mathbb{B}^2$

• a :
$$\mathbb{B}^2 \to \mathbb{B}$$
 with $a((x, y)) = x$

•
$$b : \mathbb{B}^2 \to \mathbb{B}$$
 with $b((x, y)) = y$

• Given $r = (|a = F, b = T|) \in R$, then r.a = a((F, T)) = F

Records

Definition (Record)

A record set $R = (|l_0 \in S_0, \ldots, l_i \in S_i, \ldots, l_n \in S_n|)$ of (n+1)-tuples is a set \mathcal{R} with

= ====

$$\mathcal{R} = \{(s_0, \ldots, s_i, \ldots, s_n) \mid \forall j \in [0, n]. \, s_j \in S_j\} = \mathcal{S}_0 \times \ldots \times \mathcal{S}_i \times \ldots \times \mathcal{S}_n$$

together with labelling functions $I_i : \mathcal{R} \to \mathcal{S}_i$ for each tuple component:

$$\mathsf{I}_i((s_0, \ldots, s_i, \ldots, s_n)) = s_i$$

Notation:

- A record instance $r \in R$ is given by $(l_0 = s_0, \ldots, l_i = s_i, \ldots, l_n = s_n)$ with $s_j \in S_j$ for $j \in [0, n]$.
- Given a record instance $r \in R$, we write $r.l_i \in S_i$ for $I_i(r)$.

Communicating State Machines

Goal

- Model communication between network components via channels.
- ► Specify operators for composing state machines.

Uni-directional communication

$$inp_d.y = out_s.x = (\omega_s(s_s, inp_s)).x$$

- Define communication as a global function over a set of state machines
- Component aggregates of input and output records

Component Aggregates of Records = =

Example

Assume
$$\mathcal{RS} = \{R_0, \ldots, R_n\}$$
 with $R_i = (a \in \mathbb{B}, b \in \mathbb{B})$ and $n = 2$, then

$$\mathsf{Agg}(\mathcal{RS}) = \{r_0.a, r_0.b, r_1.a, r_1.b, r_2.a, r_2.b\}$$

Definition (Component Aggregate of Records)

Given a set of records $\mathcal{RS} = \{R_0, \ldots, R_n\}$, we define the component aggregate of \mathcal{RS} as $Agg(\mathcal{RS})$ with

$$\mathsf{Agg}(\mathcal{RS}) = \{r_i . x \mid r_i \in \mathcal{R}_i \land (\exists j. \ x = l_j)\}$$

Global Communication Function

Communication among a set of state machines

- Global function mapping inputs to outputs.
- Semantics: every data element produced by the output is communicated to the input given by the function.
- An external input of a state machine gets defined by the output function of another state machine.

Definition

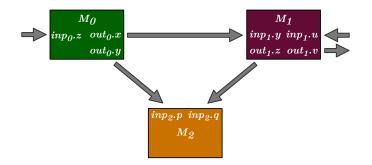
Given a set of state machines $\mathcal{M} = \{M_0, \ldots, M_n\}$ with input records I_i and output records O_i . We define the communication as a partial function $\operatorname{com}_{\mathcal{M}} : \operatorname{Agg}(\{I_i \mid i \in [0, n]\}) \to \operatorname{Agg}(\{O_i \mid i \in [0, n]\})$ such that

$$\mathsf{com}_{\mathcal{M}}(inp_i.y) = \begin{cases} out_j.x &: \text{output } x \text{ of } M_j \text{ is send to } M_i \text{ using input } y \\ \text{undefined} &: otherwise \end{cases}$$

Global Communication Function: Example

Example

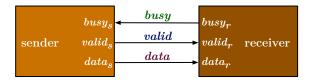
- $\mathcal{M} = \{M_0, M_1, M_2\}, M_i = (S_i, I_i, O_i, s0_i, \delta_i, \omega_i)$
- $\blacktriangleright \mathsf{com}_{\mathcal{M}} = \{(inp_1.y, out_0.x), (inp_2.p, out_0.y), (inp_2.q, out_1.z)\}$



Interface Convention

Simple handshake

- Introduce standard interface specification between components as basis for composition operators
- ▶ $busy \in \mathbb{B}$, $valid \in \mathbb{B}$, $data \in \mathcal{D}$ where \mathcal{D} is the set of data elements to be communicated.



Semantics

- ▶ If sender wants to send data element x: $valid_s = T$ and $data_s = x$
- If $busy_r = F$: receiver samples data in the same time step.
- If busy_r = T: receiver is busy and cannot sample data. Sender has to provide data until busy_r = F, or data is not communicated.

A Generic Buffer

- Use polymorphism to define generic constructs
- ► Use the option data type for the data signal to formalise valid and data signals. Then the valid signal corresponds to data = Some x

Definition ((α) buffer of finite size)

A generic buffer of finite size $l\in\mathbb{N}$ is given by the state machine $(S,I,O,s0,\delta,\omega)$ with

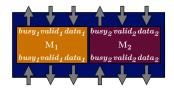
$$\begin{split} S &= (| data \in (\alpha) \text{list, } length \in \mathbb{N} |) \\ I &= (| busy \in \mathbb{B}, data \in \alpha \text{ option} |) \\ O &= (| busy \in \mathbb{B}, data \in \alpha \text{ option} |) \\ s0 &= (| data = \text{Nil}, length = l |) \\ \delta &= \lambda s \in S. \ \lambda i \in I. \ \text{let} \\ s' &= \text{if } \neg (i.busy \lor s.data = \text{Nil}) \ \text{then } s' = (\text{tail } s.data) \ \text{else } s' = s.data \\ s'' &= \text{if } (i.data = \text{Some } x) \ \text{then } s'' = s' @[x] \ \text{else } s'' = s' \\ & \text{in } (| data = s'', length = s.length |) \\ \omega &= \lambda s \in S. \ \lambda i \in I. \ \text{let} \\ out &= \text{if } \neg (s.data = \text{Nil}) \ \text{then Some } (\text{head } s.data) \ \text{else None} \\ & \text{in } (| busy = (\text{length } s.data = l), data = out |) \end{split}$$

Parallel and Sequential Composition

- Standard (straightforward) composition operators
- Mainly used to compose stack layers

Parallel Composition

- ► **Goal:** Execute two state machines *M*₁, *M*₂ in parallel
- All inputs and outputs are inputs and outputs of the composed state machine.



Definition (Parallel Composition Operator)

The parallel composition M_1 par M_2 of state machines M_1 and M_2 with $M_i = (S_i, I_i, O_i, s\theta_i, \delta_i, \omega_i)$ is defined as $(S, I, O, s\theta, \delta, \omega)$ with

$$\begin{aligned} (S, I, O) &= ((|m_1 \in S_1, m_2 \in S_2|), (|m_1 \in I_1, m_2 \in I_2|), (|m_1 \in O_1, m_2 \in O_2|) \\ s0 &= (|m_1 = s0_1, m_2 = s0_2|) \\ \delta &= \lambda s \in S. \ \lambda i \in I. \ (|m_1 = \delta_1 \ s.m_1 \ i.m_1, m_2 = \delta_2 \ s.m_2 \ i.m_2|) \\ \omega &= \lambda s \in S. \ \lambda i \in I. \ (|m_1 = \omega_1 \ s.m_1 \ i.m_1, m_2 = \omega_2 \ s.m_2 \ i.m_2|) \end{aligned}$$

Parallel and Sequential Composition

Sequential Composition

- ► Goal: Execute two state machines *M*₁, *M*₂ sequentially
- Data outputs of M_1 are connected to the inputs of M_2
- Remaining inputs and outputs are inputs and outputs of the composed state machine

Parallel and Sequential Composition

Definition (Sequential Composition Operator)

The sequential composition $M_1 {\rm seq} M_2$ of state machines M_1 and M_2 with $M_i = (S_i, I_i, O_i, s \theta_i, \delta_i, \omega_i)$ is defined as $(S, I, O, s \theta, \delta, \omega)$ with

$$\begin{split} (S, I, O) &= ((\|m_1 \in S_1, m_2 \in S_2\|), I_1, O_2) \\ s0 &= (\|m_1 = s0_1, m_2 = s0_2\|) \\ \delta &= \lambda s \in S. \ \lambda i \in I. \ (\|m_1 = \delta_1 \ s.m_1 \ int_1, m_2 = \delta_2 \ s.m_2 \ int_2\|) \\ \omega &= \lambda s \in S. \ \lambda i \in I. \ (\|m_1 = \omega_1 \ s.m_1 \ int_1, m_2 = \omega_2 \ s.m_2 \ int_2\|) \end{split}$$

where

$$\begin{array}{l} int_1 = (\lfloor busy = (\omega_2 \ s.m_2 \ (\lfloor busy = i.busy, valid = \mathrm{F}, data = x \rfloor)).busy, \\ valid = i.valid, data = i.data \) \ \text{for some } x \\ int_2 = (\lfloor busy = i.busy, valid = (\omega_1 \ m_1 \ int_1).valid, data = (\omega_1 \ m_1 \ int_1).data \) \end{array}$$

Note:

- Definition relies on the assumption that the busy output signal is independent from the valid and data input signals.
- ► Assumption needs to be discharged when sequential composition is used.

Mathematical Framework - Specific Operators

Combinatorial Function Composition

Goal: control and/or modify data output of a state machine.

State space

 $S = (| \mathbf{m} \in M_f, e \in \mathcal{E} |)$ where \mathcal{E} is a state space extension specific to the function f.

Input/Output domain

 $I = I_f, O = (|busy \in \mathbb{B}, valid \in \mathbb{B}, data \in \mathcal{F}|)$ where \mathcal{F} is the range of the function f.

- Combinatorial function $f : \mathcal{D} \to \mathcal{F}$ where \mathcal{D} is the data output range of M_f .
 - Combinatorial in the sense that data elements are not stored.
 - ► Step function for *f* to update state space element *e*.
 - ▶ Output function for *f* that depends on *e* and the input signal, i. e. the output signals of *M_f*.

Mathematical Framework - Specific Operators

Generic Multiplex/Arbitrate Composition

Goal: controlled, parallel execution of n + 1 state machines M_i while maintaining the input and output interface.

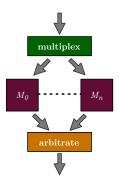
State space

 $S = (|m_0 \in S_0, \ldots, m_n \in S_n, e \in \mathcal{E}|)$ where \mathcal{E} is a state space extension specific to a concrete instance of the operator.

Input domain

 $I = (busy \in \mathbb{B}, valid \in \mathbb{B}, data \in \bigcup_i \mathcal{D}_i)$ where \mathcal{D}_i is the data domain of M_i . Output domain is defined analogously.

- ► Multiplex relation mux ⊆ (S × I) × [0, n] to select the internal component(s) given input signal values.
- ► Arbitrate function arb : (S × I) → [0, n] to select the component that outputs data.

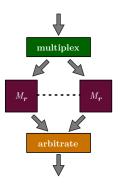


Replicate Composition

Goal: controlled, parallel execution of n + 1 copies of a state machine M_r .

= ==

- Similar to the generic multiplex/arbitrate, but more restrictive
- Advantage: more correctness results
- ▶ State space $S = (|m_0 \in S_r, ..., m_n \in S_r, e \in \mathcal{E}|)$
- Input/Output domain $I = I_r, O = O_r$
- ► Multiplex function mux : (S × I) → [0, n] (instead of relation)
- ► Arbitrate function arb : (S × I) → [0, n] analogous to multiplex/arbitrate composition



Signals and Execution Semantics

- Intuitive, standard definition
- Abstract, discrete time domain: \mathbb{N}

Definition (Signal)

A signal sig is a function from time \mathbb{N} to a data domain \mathcal{D} . We write sig^t for sig(t).

Definition (Execution and Output Trace)

Given a state machine $M = (S, I, O, s\theta, \delta, \omega)$ and input values $i^t \in I$ for $t \in \mathbb{N}$, we define the execution trace $trc_M : \mathbb{N} \to S$ and the output trace $out_M : \mathbb{N} \to O$ as

$$trc_{M}^{t} = \begin{cases} s0 & : t = 0\\ \delta \ trc_{M}^{t-1} \ i^{t-1} & : otherwise\\ out_{M}^{t} = \omega \ trc_{M}^{t} \ i^{t} \end{cases}$$

Correctness:

- Functional correctness (no data loss or modification)
- No reordering

Buffer Correctness

Liveness

Environment assumption:

busy input not constantly active

Lemma (Correctness of the Buffer FSM)

Given input signals $i^t \in I$, a generic buffer (α) buffer satisfies that

$$\forall x \in \alpha. \ \neg i.busy^t \land (i.data^t = \text{Some } x) \implies \exists k. \ (out_M^{t+k} = \text{Some } x)$$

= =====

Note

- Analogous lemma with $x_1, x_2 \in \alpha$ shows in-order property.
- Easy lemma to show that data outputs independent of busy input.

Basic Compositions

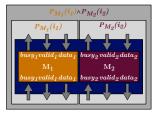
 Correctness properties of the components are maintained.

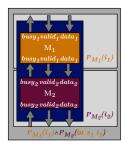
A = D = D = A

- Satisfies conjunction of the individual correctness properties.
- Environment assumptions of both state machines have to be satisfied.

Sequential Composition

- Satisfies conjunction of the correctness with the respective substitutions in P_{M2} using ω₁.
- Analogously for the busy input of M₁ (definition of sequential composition)
- ▶ Data output of M₁ has to satisfy the environment assumptions of M₂ and vice versa for the *busy* input.





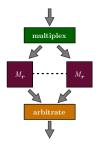
UNIVERSITY OF

Idea: Push correctness from inner components to system

Assumptions:

Replication Operator

- M_r is correct and ensures liveness
- The multiplex function is correct for valid inputs
- ► The arbitration function is fair with respect to an active valid signal from some M_r



Theorem (Functional Correctness and Liveness)

The replication operator preserves the functional correctness and the liveness of M_r given the above assumptions.

PCI Express

Protocol characteristics

- Point-to-point, packet-based communication
- Protocol stack layers: Transaction, data-Link, physical Layer

A = = = = +

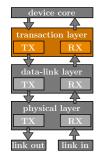
► Each layer: transmit (TX) and receive part (RX)

Memocode'09: Derivation of transaction layer

- Focus on hard transaction layer parts flow control, packet reordering, virtual channels
- Transformation-based modelling approach
- Formalization in Isabelle/HOL

Here: Summary of

- Basic model
- Flow control

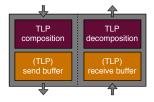


UNIVERSITY O

Data units: transaction layer packets (TLPs)

Model

- TLP composition/decomposition
- Send/receive buffers



Correctness

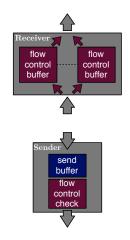
- TLP composition/decomposition (only combinatorial, easy)
- Apply correctness of generic buffer
 - Liveness
 - Ordering (no overtaking or packet loss)
 - Correct busy signal
- Sequential composition of TX, channel, and RX

Flow Control - A Specific Transformation

Goal: Sender checks locally if receiver has enough buffer space.

Principle

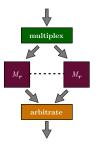
- Credit-based (header 1 credit, dw 1 credit)
- Receiver: Flow control buffers
 - For each message type (posted, non-posted, completion)
 - Header and payload (not every packet as payload)
 - Frequent updates to link neighbour
- Sender: Checks if space is available
 - Maintains available space counters
 - Checks before message transmission



Flow Control - A Specific Transformation

Receiver: Instantiate replication operator

- ▶ n = 3 with (TLP, timestamp) flow control buffer
- ► Multiplex function is *TLP* to [0 : 2] plus add time stamp
- ► Arbitrate function is n such that timestamp(n) < timestamp(m) for all m ≠ n</p>



Flow control buffer: Instantiate multiplex/arbitrate operator

- ▶ n = 2 with (TLPHeader, timestamp) and (TLPData) data buffer
- Multiplex relation is $\{0\}$ if TLP has no data and $\{0,1\}$ if TLP has data
- Arbitrate relation analogous to multiplex relation with respect to busy input

Sender: Instantiate combinatorial function operator

▶ Combinatorial function is counter test; raise *busy* if there is not enough space

- PCI Express Summary
 - Industrial-sized high-performance communication protocol
 - ► Incremental modelling of large parts of the transaction layer and data-link layer
 - Independent specification of complex features
 - Transaction layer
 - Flow control
 - TLP reordering
 - Packet priorities using virtual channels

Data-link layer

- Data-link layer packet arbitration
- ACK/NAK protocol
- CRC check
- Case study results published in MEMOCODE'09 and HFL'09

New methodology for an incremental modelling and verification process

- Control the model complexity by adding features incrementally
- ► Formalised framework with correctness results for the generic constructs
- ► Generalised design principle for transformations using composition operators
- HOL as design/modelling language

Long-term aim

- Increase efficiency of the model building process
- Model with significant merits against ad-hoc models
 - Functional verified
 - Independent from implementation or design architecture
 - Long-term reference model

Theorem prover

- Reduce or eliminate manual theorem proving
- Ideally modelling tool with knowledge management features

PCI Express

Future Work

- Support for power management and interrupts
- Derivation of switches (support for complex topologies)

Design and verification methodology

- Support for (automatic) refinement steps (data refinement)
- Integration of automated verification tools (model checking, SMT Solver)

= =====

Link to HDL? (SystemVerilog)