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Preface

This volume contains material provided by the speakers to accompany their presentations at 
the Eighth International Workshop on Designing Correct Circuits, held on the 20th and 21st 
March 2010 in Paphos, Cyprus.  The workshop is a satellite event of the ETAPS group of 
conferences.  Previous workshops in the informal DCC series were held in Oxford (1990), 
Lyngby (1992), Båstad (1996),  Grenoble (2002), Barcelona (2004), Vienna (2006) and 
Budapest (2008).  Each of these meetings provided a stimulating occasion for academic and 
industrial researchers to get together for discussions and technical presentations, and the 
series as a whole has made a significant contribution to supporting our research community.

The 2010 DCC workshop again brings together researchers in formal methods for hardware 
design and verification.  It will allow participants to learn about the current state of the art in 
all these areas, and it is intended to further the debate about how more effective design and 
verification methods can be developed.

For some time now, research in hardware verification is being done in industrial laboratories, 
as well as in universities.  Industry is commonly focussed on relatively immediate verification 
goals, but also keeps our work grounded in practical engineering problems.  There is also a 
general feeling that hardware design in RTL is reaching the limits of its scalability, and 
alternative approaches are emerging, some based on existing software languages such as C, 
and others on high-level languages devised specifically for hardware design.  For these 
approaches to continue to scale, they will need increasingly to be used with rigour based on 
formal foundations.  To make progress on these longer-term problems in our field, academic 
and industrial researchers must continue to work together on the problems facing 
microprocessor and ASIC designers now and in the future.  A major aim of the DCC series of 
workshops has been to provide a congenial and relaxed venue for communication among 
researchers in our community.  We look forward to two great days of presentations and 
discussion in DCC2010.

I would like to express my particular gratitude to the members of the Programme Committee 
for their work in arranging the Workshop, and to all the speakers and participants for their 
contributions to Designing Correct Circuits.

Joe Stoy
February, 2010
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Formal Validation and Verification of

Networks-on-Chips: Status and Perspective

(Draft Paper)

Julien Schmaltz2,1, Freek Verbeek1,2, and Tom van den Broek1 !

1 Radboud University Nijmegen
Institute for Computing and Information Sciences
PO Box 9010 6500GL Nijmegen, The Netherlands

2 Open University of the Netherlands
School of Computer Science

PO Box 6401DL Heerlen, The Netherlands
Email: Julien.Schmaltz@ou.nl

Abstract. Increasing the performance of computing system today means
more parallelism. Systems are becoming multi-cores. The on-chip inter-
connect is a complex infrastructure having a crucial impact on the sys-
tem global performance and functionality. In this draft paper we present
recent results and work-in-progress towards a general compositional ap-
proach for the validation and verification of networks-on-chips. In par-
ticular, we discuss temporal abstractions, a refinement theorem between
two architectures described at the same temporal abstraction, and two
properties – namely deadlock and evacuation – proven on a model defined
at a more abstract temporal layer.

1 Introduction

Increasing the performance of modern electronic systems means increasing par-
allelism [4]. Several processing and memory cores are integrated on a single die
forming so-called Multi-Processors Systems-on-Chips (MPSoC). Platform based
design [12] is a popular approach that provides designers with a generic ar-
chitecture allowing the construction of new MPSoCs by assembling pre-designed
components. The latter are often highly parametric descriptions at a high-level of
abstraction. Abstractions and the interconnect become central issues in modern
MPSoCs design. With the increase of the number of interconnected cores, com-
plex on-chip networks are replacing buses [5, 1]. As for processing elements, the
formal guarantee of their correct behavior will become mandatory. Our ultimate
goal is to provide a formal methodology supporting the abstract specification
of NoCs and the proof that an implementation – eventually described at the
Register Transfer Level (RTL) – conforms to it. To this end we are developing

! This research is supported by NWO/EW project Formal Validation of Deadlock
Avoidance Mechanisms (FVDAM) under grant no. 612.064.811.
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models and proof methods that constitute the Generic NoC (GeNoC) design and
verification approach [8, 3].

GeNoC provides (1) a network model to specify the main characteristics
of a NoC (e.g., topology, routing); (2) architectural models defining interac-
tion schemes of the constituents; (3) correctness theorems for these architectural
models; and (4) sufficient constraints – or proof obligations – on the constituents
from which the proof of the correctness theorems follows. GeNoC is generic in
the sense that the constituents are not given any specific definition but only
characterized by their proof obligations. The validation of a particular NoC re-
duces to (1) giving a concrete definition to the constituents and (2) discharging
the corresponding instantiated constraints. GeNoC has been implemented in the
logic of the ACL2 theorem proving system [7] and applied to several case-studies,
e.g., the HERMES [2] and Spidergon [3] designs.

In this draft paper, we present a compositional approach for the design and
validation of NoCs. The focus is on the extension of the GeNoC approach with
refinement theorems between architectures and an explicit notion of time and
corresponding temporal abstractions. Note that this paper presents more the
direction we are following and not a final result.

Section 2 presents this global approach and introduces three temporal ab-
stractions. The lowest one is detailed in Section 3 that discusses two architectures
and a refinement theorem between them. We only give an overview of this work.
More details can be found in two recent publications [10, 11]. Section 4 considers
the next more abstract temporal layer. It focuses on two global properties that
guarantee the absence of deadlock and evacuation, i.e., all injected messages
leave the network. We present the essential aspects related to these two prop-
erties. More details can be found in a recent publication [14]. Finally, Section 5
relates Sections 3 and 4 to the approach described in Section 2. It also concludes
this paper with our current perspectives and future work.

2 A Compositional Approach

2.1 The Compositional Model

The compositional model is pictured in Fig.1. It is composed of four parts: (1)
the NoC constituents; (2) the NoC Architectures; (3) the NoC Theorems; and
(4) the User Input.

The NoC Constituents are the essentials parts common to any network. The
routing algorithm computes for each message its next hop according to its current
position an its destination. The scheduling policy handles the data flow. It decides
if a message can progress to its next hop. The data link layer is responsible for the
exchange of data between the current and the next position. The injection method
controls access to the network. The last elemens of the constituents are the
characteristic parameters, e.g., topology, buffer size, message length. Note that
these parameters are most of the times left symbolic for a parametric analysis.
All the constituents are generic. They are not given any concrete definition. Each
one of them is constrained by a set of proof obligations.
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Fig. 1. Compositional Model

The NoC Architectures represent different ways of combining the constituents.
One architecture could compute complete routes from source to destination be-
fore sending messages (source routing) while in another one routes are computed
hop-by-hop (distributed routing). We will give more details about these two ex-
amples later (Section 3).

The NoC Theorems are global properties of one architecture or a refinement
theorem between two distinct ones. Our model has currently three global prop-
erties and one refinement theorem. Global properties express (a) functional cor-
rectness, i.e., all messages that reach a destination reach the expected destination
without modification of their content; (b) deadlock-freedom; and (c) evacuation,
i.e., all messages eventually leave the network. The refinement theorem relates a
source routing architecture to a distributed routing one. All these theorems are
direct consequences of the proof obligations and do not depend on the particular
definition of the constituents. Therefore they hold for all particular definitions
satisfying the proof obligations.

This suggests the following methodology and defines the user input. First
one should give a concrete definition to the constituents. For instance, an XY-
routing algorithm in a 2D-mesh with packet switching as scheduling policy and
where all messages are injected at time 0. Then the corresponding instances of
the proof obligations are automatically generated. After discharging all of them
it automatically follows that the corresponding instances of all architectures
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Fig. 2. Temporal Abstractions

satisfy the corresponding instances of all theorems. At the end the User Input
consists in (1) giving a definition to the constiutents and (2) discharging the
corresponding proof obligations. The rest is fully automatic.

2.2 Temporal Abstractions

We consider the temporal abstractions shown in Figure 2. Each layer depends
on the definition of an atomic action. In the most abstract one, in one time unit,
a message will traverse the complete network from its source to its destination.
A first refinement of this abstraction restricts the time step to at most one
hop. Finally, the lowest layer makes the internal structure of a node visible, in
particular, the router component. The application of the function representing
the router defines the time unit. In this paper, we discuss the lowest layers. The
next Section details the lowest layer in Figure 2. In Section 4 we detail its first
abstraction. More information about the most abstract layer can be found in the
original GeNoC paper [8].

3 Refinements at the Lowest Temporal Layer

This section details the compositional model viewed at the level of a router. It
defines the NoC constituents of that layer and two architectures. It then shows
a refinement theorem between them.
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3.1 NoC Constituents

We assume a generic architecture composed of an arbitrary – but finite – number
of nodes and a finite number of connections between any two nodes. Each node is
uniquely identified by its position. A node includes a local memory and a router.
A router is defined by a set of ports and four functions: input and output units,
routing control, and flow control (see Fig. 3). All nodes are identical.

Ports, topology and state The main elements of a port are the data and con-
trol signals, and internal buffers (Fig. 3). A port is a tuple 〈addr , stat , data, buff 〉,
where addr is a unique address, stat stores the values of the control signals and
other state components of a port, data denotes the values of the data signals,
and buff represents the value of the buffers associated with the port. An address
is a tuple 〈coor , pid , dir 〉, where coor is the unique identifier of the node the
port belongs to, pid is the name of the port (e.g., west, south), and dir is the
direction, i.e., ’i’ for an input port or ’o’ for an output port. The topology is
a list where each element is a pair of port addresses (pi, pj), which means that
port pi is connected to port pj . A node is defined as the set of ports, where the
address of each port p is the same. These ports define the state of the node. The
set of all ports of a network defines the state of the network.

Input and output units These two functions define the low level protocols
(e.g., handshake) which use the control signals to transfer the content of the
data signals to the internal buffers in case of an input port, or to transfer the
content of the buffers to the data signals in case of an output port.

Routing control This function applies the routing logic (e.g., dimension order
routing [6]) to one or more ports of a node. It returns a list of routed ports,
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i.e., ports together with routing information. The only function that needs to be
instantiated is function routing-logicwhich implements the routing algorithm.

Flow control This function implements the switching technique, e.g., packet,
circuit, or wormhole. In case of conflict, this function also resolves priorities.
Function flowcontrol extracts from the routed ports the messages that are ready
to be transmitted. The core function that needs to be instantiated is function
switch-ports which effectively schedules messages. Those scheduled messages are
moved to the output ports computed by the routing control function.

Global definition All these functions form function router (Figure 4), which
updates a node state. Note that a node is equipped with a memory which is avail-
able to each port and each function. Argument nstmem represents that memory.
To simplify the presentation, we assume that such a memory element is given as
input argument of any function that accesses it. This argument is not explicitly
mentioned any further.

router (nst,nstmem) :

let (nst nstmem) be

RouteControl ((ProcessInputs nst), nstmem))

in

let (nst nstmem) be

Flowcontrol(nst,nstmem) in

return (ProcessOutputs nst), nstmem

Fig. 4. Function router

3.2 Architecture Template

Function GeNoC t (Figure 5) is the core of the architecture template for our low-
est temporal abstraction. It works as a simulator which applies function router
to each node. Each recursive call defines a simulation step. Input argument simL
defines the length of the simulation. Function GeNoC t takes as additional ar-
guments the set of messages to be sent (m), the current state of the network
(ntkst), an accumulator of messages that have reached their destination (arr,
initially empty), the current simulation step (z, initially 0), and the topology
(topo). It returns the list of arrived messages, the list of delayed messages, and
the state of the network at the end of the simulation.

Function depart controls message injection. According to an architecture-
dependent criterion, it determines which messages can be in the network. These
messages have either already left their source or depart inserts them in the
local input port of their source node. Function depart returns a list of updated
nodes (dep) and a list of delayed messages (del). Function step-ntk (see below)
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GeNoC_t(m, ntkst, arr, z, topo, simL) :

if simL = 0 return arr,m,ntkst

else

let (dep, del) be

depart(ntkst, m, z)

in

let newntkst be

step-ntk(dep, topo)

in

GeNoC_t(del,newntkst, add(z,arr), z + 1,topo, simL-1)

Fig. 5. Architecture Template

applies function router to each node. This produces a list of updated nodes.
Those messages that are at their destination are extracted from this new state
and appended to accumulator arr. The next recursive call processes the delayed
messages, the updated nodes, and time is incremented by 1.

Function step-ntk (Figure 7) is defined by two architecture dependent func-
tions. Function step-ntk-arch (Figure 6) encapsulates the representation of the
router on which the architecture is based. Function updateNeighbours simu-
lates the transfer of data from output data signals to input data signals, e.g.,
simulate the wires between the nodes. It accomodates for particular details of
one architecture.

Function step-ntk-arch (Figure 6) takes as arguments a list of nodes to
be processed (ntslist) and the current network state (ntkst). It updates the
network state. For each node, it applies function router. Function ports-update
effectively updates the state of the nodes.

step-ntk-arch (ntslist, ntkst):

if ntslist = null return ntkst else

let newnst be router(ntslist[0]) in

let newntkst be

step-ntk-arch(ntslist[1..], ntkst) in

return ports-update(newntkst,newnst)

Fig. 6. Function step-ntk-arch

Function step-ntk extracts the node structures from the list of ports (func-
tion ports-nodelist). It then calls step-ntk-arch to actually simulate each
router. Finally, wires are updated by calling function updateNeighbours.

In summary, the architecture template has three architecture dependent func-
tions:
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step-ntk(ntkst, topo):

let newntkst be

step-ntk-arch (ports-nodelist(ntkst), ntkst) in

updateNeighbours(newntkst,topo)

Fig. 7. Function step-ntk

– function depart specifying the criteria to access the network
– function router specifying the router of a given architecture
– function updateNeighbours specifying how wires must be updated

The architecture template suggests a distributed routing network. Packets
only contain information about their destination. At each intermediate step,
the Routing Control part of the router decides the next hop. In the following
subsection, we define a variation where routes are computed before injecting
packets into the network. A packet then contains its route as well.

3.3 Source Routing Architecture

The source routing architecture is defined by the following three functions:
depart-sr, router-sr, and updateNeighbours-sr. They define a refinement
of function GeNoC named GeNoC-sr and follow the templates given in Sec-
tion 3.2. Note that most of these functions are still generic. They are still not
given an explicit definition.

Function depart-sr According to an architecture-dependent criterion, it de-
termines which packets can be in the network. As the architecture is based on
source routing, function depart-sr computes for each packet a route from source
to destination and appends this route to the packet. Whenever the user criterion
is satisfied, it inserts this extended packet in the local input port of its source
node.

Function router-sr As shown in Figure 3, a router is composed of four parts.
The routing control part is the only part that is modified. The rest is kept
generic. The source routing control is defined by simply reading the next hop as
the first element of the route of each packet. No computation is necessary.

Function updateNeighbours-sr This function updates the wires of the nodes,
i.e., it simulates the transfer of data along wires. In addition it removes in each
packet the first element of its route.

3.4 Refinement Theorem

The theorem connecting the two models is shown in Figure 8. Function transform
simply removes all routes from extended packets. This theorem states that after
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the application of function transform the lists of arrived packets, the lists of
packets still en route in the network, and the final network state produced by
GeNoC equals those produced by GeNoC-sr.

Theorem:

let (arr, m, ntkst) be

GeNoC(m, ntkst, arr, z, topo, simL) in

let (arr-sr, m-sr, ntkst-sr) be

GeNoC-sr(m, ntkst, arr, z, topo, simL) in

transform(arr-sr) = arr and

m-sr = m and

transform(ntkst-sr) = ntkst

Fig. 8. Equivalence theorem

The main proof obligation required to prove this theorem states that at each
intermediate step reading the pre-computed route must be equal to the route
computed in the distributed architecture. Details on these architectures and the
refinement theorem can be found in previous publications [9, 11].

4 Deadlock and Evacuation

This section details the compositional model viewed at a level where a time unit
is defined by one hop. We then introduce two global properties and their proof
obligations. The properties deal with deadlock freedom and evacuation.

4.1 Abstract Model and Architecture

A travel t is a data structure which stores the progress of sending a message
across a network. It is a triple < id, c, d > where id is a unique identifier for the
travel, c denotes the current location of the message, and d is the destination
port. T denotes the list of travels that is sent across the network.

To keep the list of travels well-formed, destinations have to be reachable from
their source. To this end, function s !R d returns true if s is reachable from
d. This function is application dependent and must be instantiated. It is quite
technical and not essential. We will therefore not detail it any further.

A state ST is a data structure which stores the current network state. The
state is defined as the list of all the ports of the network. Each port is associated
to the list of its buffers.

A configuration σ is a tuple <T, ST, A>, where T is a list of travels that are
sent across the network, ST is a network state and A is a list of arrived travels.
The travels T of configuration σ are denoted by σ.T . The set of all configurations
is denoted by Σ.

9



Function I : Σ #→ Σ represents the injection method. Given a configuration,
it decides which travels from T are ready for departure and injects these into
the network.

Function R : P × P #→ P represents the routing function of a switch. From
the current position and the destination it computes the next hop. We generalize
this function to apply to a configuration and to compute all hops from source to
destination. We then write R : Σ #→ Σ. It computes for each travel in σ.T the
route from its current location to the destination.

Function S : Σ #→ Σ represents the switching policy. It takes as parameter the
current configuration and computes the configuration after one switching step,
i.e., after each message that can make progression has advanced by at most one
hop. If a message arrives at its destination, the corresponding travel is removed
from T and added to A.

A deadlock-configuration is a configuration σ in which there exists no message
that can make progression. This is denoted by Ω(σ). An interconnection network
is deadlock-free if and only if there exists no deadlock-configuration.

4.2 Abstract Architecture Template

GeNoC takes as input argument an initial configuration, noted σ. The latter
contains the list of messages to be sent on the network (T), the current value
of the network state (ST), and the list of messages that have reached their
destination (A). Function GeNoC recursively applies the composition of the three
constituents to the initial configuration. The computation stops either when all
messages have reached their destination or when the current configuration is in
a deadlock. If the current configuration is not in deadlock, the switching policy
must decrease the termination measure. This proves GeNoC always terminates.

Function GeNoC is defined as follows:

GeNoC (σ) def=

σ iff σ.T = ∅
σ iff Ω(R(I(σ)))
GeNoC (S(R(I(σ)))) iff otherwise

4.3 Constraints for deadlock-freedom

Dally and Seitz [6] proposed a necessary and sufficient condition for deadlock-
free routing. They prove that a deterministic routing function is deadlock-free if
and only if it has no cycle in its channel dependency graph. We have formalized a
slightly different condition in GeNoC (See [13] for details). Dally and Seitz define
their function at the level of processing nodes. We define our routing function at
the level of ports. Let R : P×P #→ P be a routing function. The port dependency
graph is a graph with as vertices the ports of the interconnection network and
as edges the pairs of ports connected by the routing function.

Theorem 1. R is deadlock-free if and only there is no cycle in its port depen-
dency graph.
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The proof of this necessary and sufficient condition is structured in such a way
that it only depends on a fixed set of constraints over the dependency graph, the
routing function, and the definition of reachable destination. Let ER

dep represent
the edges of the port dependency graph. These constraints are the following:

∀s, d∀p ∈ R(s, d) · s !R d =⇒ (s, p) ∈ ER
dep (1)

∀(po, p1) ∈ ER
dep∃d · p0 !R d ∧ p1 ∈ R(p0, d) (2)

∀P ′ ⊆ P · ¬ cycledep(P
′) (3)

Constraint (1) states that each pair of ports connected by R must be an edge. We
consider pairs resulting from reachable destinations only. Constraint (2) states
that for each edge (p0, p1) a reachable destination port must exist such that R
routes from p0 to p1. Constraint (3) states that there is no cycle in the port
dependency graph.

4.4 Constraints for evacuation

All messages evacuate the network if, when GeNoC terminates, the list of arrived
messages equals the list of messages that were sent. This defines the Evacuation
Theorem as follows:

Theorem 2. All messages eventually leave the network. Formally, we have the
following: GeNoC (σ).A = σ.T .

We assume all messages have been injected in the initial configuration. The
injection method does not inject any more messages:

I(σ) = σ (4)

Assuming Constraints (1) through (3) are satisfied, GeNoC terminates if
and only if all messages have evacuated the network. Hence, proving evacuation
reduces to proving termination of function GeNoC . To prove termination, we
define a termination measure, i.e., a value which decreases after each recursive
call. Proving evacuation reduces to instantiating a function µ(σ), which computes
a termination measure such that the following constraint holds:

σ.T -= ∅ ∧ ¬Ω(σ) =⇒ µ(S(R(σ))) < µ(σ) (5)

As long as there are messages in the network and there is no deadlock, the
measure provided by µ must decrease with each switching step.

5 Conclusion and Perspectives

We presented the compositional approach that we are currently developing. It is
based on a compositional model and temporal abstractions providing different
views of this model. We illustrated two of these abstraction layers. At the lowest
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one, we presented two architectures and exposed a refinement theorem between
them. We discussed deadlock freedom and evacuation at a more abstract layer.

Our current work focuses on connecting these two layers such that proper-
ties proven for one layer are preserved in the other one. We are also considering
additional layers corresponding to further refinements of the time unit. For in-
stance, the time unit could be defined as the application of one of the four stages
of the router described in Figure 3. Further refinements would aim at a cycle
accurate model where a time unit coincides with a clock cycle. Our ultimate
goal is to extract sufficient constraints on the constituents from which it would
automatically follow that properties proven on the most abstract temporal layer
are preserved in the most concrete one.
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Peter Böhm
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Introduction

Motivation

Goal

I Design of verified high-performance, on-chip communication protocols

Problem

I Communication protocols traditionally hard to verify

I On-chip: increasing complexity (many-core architectures, System-on-Chips)

I High-performance: hard, advanced features to meet performance demands

I Fundamental: correct execution relies on correct data exchange

Need for functional verification

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 2/33
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Introduction

Traditional Approach

Traditional verification approach usually infeasible

I Complex, monolithic model

I High-performance features

I Distributed, concurrent communication system

I Hard post-hoc verification process

I large state space

I complex correctness property (features)

(infeasible)
work proofspec

monolithic
model

correctness
statement

spec

monolithic
model

correctness
statement
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Introduction

Incremental Modelling and Verification

Idea: use sequence of incremental modelling steps to replace monolithic model

I Basic model with core functionality

I Incrementally add features in a structured, well defined way

I Features modelled independently using transformations

I Complexity encapsulated

basic
model

basic model 
+ feature f1

model with 
features 

{f1,...,fn} 

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 4/33
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Introduction

Incremental Modelling and Verification

Idea: spread verification over modelling process

I Basic model verified using traditional approach (feasible due to model size)

I Show correctness of every modelling step

I Leverage previous correctness properties

I Reuse previously proven properties (lemmas)

basic
model

basic model 
+ feature f1

model with 
features 

{f1,...,fn} 

correctness
statement

feasible
work proof feasible

work

correctness
statement

proof feasible
work

correctness
statement

proof
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Introduction

This Talk

How to create a sequence of incremental models?

I Mathematical framework for incremental modelling

I Modelling approach

I Generic composition operators

I Specific transformations

I Formalisation in Isabelle/HOL

How to apply the methodology?

I Overview of case study: PCI Express Transaction Layer

I Basic model

I Specific transformations

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 6/33
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Mathematical Framework - Modelling Approach

General Idea

Model communications system components as state machines

I Mealy machines

I Define a generic structure for state space, input and output sets

Extend state machines with model of communication and composition

I Introduce an interface standard for the inputs and outputs

I Provides basis for the model of composition

Define generic transformations using composition operators

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 7/33

Mathematical Framework - Modelling Approach

Mealy Machines

Definition (Mealy Machine)

A state machine is given by a 6-tuple (S , I ,O , s0, δ, ω) where the components are
given by

I S , I , O are the sets for state space, the inputs, and the outputs, respectively.

I s0 ∈ S is the initial state.

I δ : S × I → S is the step function of the automaton, thus δ(s, i) is the next
configuration of the automaton with the configuration s and the input
assignment i.

I ω : S × I → O is the output function of the automaton, thus ω(s, i) is the
assignment of the output values if the state machine is in configuration s and
the input assignment is i.

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 8/33

18



Mathematical Framework - Modelling Approach

Records

Sets of labelled tuples: structure the sets of a state machine

I Sets are collections of tuples

I Provide names for tuple components to access specific components

Example (Record)

Assume R = (|a ∈ B, b ∈ B |) with B = {T,F}.
Then,

I R = B2

I a : B2 → B with a((x, y)) = x

I b : B2 → B with b((x, y)) = y

I Given r = (|a = F, b = T |) ∈ R, then r.a = a((F,T)) = F

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 9/33

Mathematical Framework - Modelling Approach

Records

Definition (Record)

A record set R = (| l0 ∈ S0, . . . , li ∈ Si, . . . , ln ∈ Sn |) of (n+ 1)-tuples is a set R
with

R = {(s0, . . . , si, . . . , sn) | ∀j ∈ [0, n]. sj ∈ Sj} = S0 × . . .× Si × . . .× Sn

together with labelling functions li : R → Si for each tuple component:

li((s0, . . . , si, . . . , sn)) = si

Notation:

I A record instance r ∈ R is given by (| l0 = s0, . . . , li = si, . . . , ln = sn |) with
sj ∈ Sj for j ∈ [0, n].

I Given a record instance r ∈ R, we write r.li ∈ Si for li(r).

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 10/33
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Mathematical Framework - Modelling Approach

Communicating State Machines

Goal

I Model communication between network components via channels.

I Specify operators for composing state machines.

Uni-directional communication

source

Ms

destination

Md
outs.x inpd.y

inpd.y = outs.x = (ωs(ss, inps)).x

I Define communication as a global function over a set of state machines

I Component aggregates of input and output records

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 11/33

Mathematical Framework - Modelling Approach

Component Aggregates of Records

Example

Assume RS = {R0, . . . ,Rn} with Ri = (|a ∈ B, b ∈ B |) and n = 2, then

Agg(RS) = {r0.a, r0.b, r1.a, r1.b, r2.a, r2.b}

Definition (Component Aggregate of Records)

Given a set of records RS = {R0, . . . ,Rn}, we define the component aggregate of
RS as Agg(RS) with

Agg(RS) = {ri.x | ri ∈ Ri ∧ (∃j. x = lj)}

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 12/33
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Mathematical Framework - Modelling Approach

Global Communication Function

Communication among a set of state machines

I Global function mapping inputs to outputs.

I Semantics: every data element produced by the output is communicated to the
input given by the function.

I An external input of a state machine gets defined by the output function of
another state machine.

Definition

Given a set of state machines M = {M0, . . . ,Mn} with input records Ii and output
records Oi. We define the communication as a partial function
comM : Agg({Ii | i ∈ [0, n]})→ Agg({Oi | i ∈ [0, n]}) such that

comM(inpi.y) =

{
outj .x : output x of Mj is send to Mi using input y

undefined : otherwise

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 13/33

Mathematical Framework - Modelling Approach

Global Communication Function: Example

Example

I M = {M0,M1,M2}, Mi = (Si, Ii,Oi, s0i, δi, ωi)

I comM = {(inp1.y, out0.x), (inp2.p, out0.y), (inp2.q, out1.z)}

M0 M1
out0.x inp1.y

M2

out0.y out1.z

inp2.p inp2.q

inp0.z inp1.u
out1.v

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 14/33
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Mathematical Framework - Modelling Approach

Interface Convention

Simple handshake

I Introduce standard interface specification between components as basis for
composition operators

I busy ∈ B, valid ∈ B, data ∈ D where D is the set of data elements to be
communicated.

sender receivervalidr
datar

busyrbusys
valids
datas

busy
valid
data

Semantics

I If sender wants to send data element x: valids = T and datas = x

I If busyr = F: receiver samples data in the same time step.

I If busyr = T: receiver is busy and cannot sample data.
Sender has to provide data until busyr = F, or data is not communicated.

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 15/33

Mathematical Framework - Modelling Approach

A Generic Buffer

I Use polymorphism to define generic constructs

I Use the option data type for the data signal to formalise valid and data signals.
Then the valid signal corresponds to data = Some x

Definition ((α)buffer of finite size)

A generic buffer of finite size l ∈ N is given by the state machine (S , I ,O , s0 , δ, ω)
with

S = (|data ∈ (α)list, length ∈ N |)
I = (|busy ∈ B, data ∈ α option |)

O = (|busy ∈ B, data ∈ α option |)
s0 = (|data = Nil, length = l |)
δ = λs ∈ S . λi ∈ I . let

s′ = if ¬(i.busy ∨ s.data = Nil) then s′ = (tail s.data) else s′ = s.data
s′′ = if (i.data = Some x) then s′′ = s′@[x] else s′′ = s′

in (|data = s′′, length = s.length |)
ω = λs ∈ S . λi ∈ I . let

out = if ¬(s.data = Nil) then Some (head s.data) else None
in (|busy = (length s.data = l), data = out |)

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 16/33
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Mathematical Framework - State Machine Composition

Parallel and Sequential Composition

I Standard (straightforward) composition operators

I Mainly used to compose stack layers

Parallel Composition

I Goal: Execute two state machines
M1,M2 in parallel

I All inputs and outputs are inputs and
outputs of the composed state machine.

M1 M2

busy1valid1data1 busy2 valid2data2

busy1valid1data1 busy2 valid2data2

Definition (Parallel Composition Operator)

The parallel composition M1parM2 of state machines M1 and M2 with
Mi = (Si, Ii,Oi, s0 i, δi, ωi) is defined as (S , I ,O , s0 , δ, ω) with

(S , I ,O) = ((|m1 ∈ S1,m2 ∈ S2 |), (|m1 ∈ I1,m2 ∈ I2 |), (|m1 ∈ O1,m2 ∈ O2 |))
s0 = (|m1 = s0 1,m2 = s0 2 |)
δ = λs ∈ S . λi ∈ I . (|m1 = δ1 s.m1 i.m1,m2 = δ2 s.m2 i.m2 |)
ω = λs ∈ S . λi ∈ I . (|m1 = ω1 s.m1 i.m1,m2 = ω2 s.m2 i.m2 |)

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 17/33

Mathematical Framework - State Machine Composition

Parallel and Sequential Composition

Sequential Composition

I Goal: Execute two state machines M1,M2

sequentially

I Data outputs of M1 are connected to the inputs
of M2

I Remaining inputs and outputs are inputs and
outputs of the composed state machine

M1

M2

busy1valid1data1

busy2 valid2data2

busy1valid1data1

busy2 valid2data2

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 18/33
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Mathematical Framework - State Machine Composition

Parallel and Sequential Composition

Definition (Sequential Composition Operator)

The sequential composition M1seqM2 of state machines M1 and M2 with
Mi = (Si, Ii,Oi, s0 i, δi, ωi) is defined as (S , I ,O , s0 , δ, ω) with

(S , I ,O) = ((|m1 ∈ S1,m2 ∈ S2 |), I1,O2)
s0 = (|m1 = s0 1,m2 = s0 2 |)
δ = λs ∈ S . λi ∈ I . (|m1 = δ1 s.m1 int1,m2 = δ2 s.m2 int2 |)
ω = λs ∈ S . λi ∈ I . (|m1 = ω1 s.m1 int1,m2 = ω2 s.m2 int2 |)

where

int1 = (|busy = (ω2 s.m2 (|busy = i.busy, valid = F, data = x |)).busy,
valid = i.valid, data = i.data |) for some x

int2 = (|busy = i.busy, valid = (ω1 m1 int1).valid, data = (ω1 m1 int1).data |)

Note:

I Definition relies on the assumption that the busy output signal is independent
from the valid and data input signals.

I Assumption needs to be discharged when sequential composition is used.
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Mathematical Framework - Specific Operators

Combinatorial Function Composition

Goal: control and/or modify data output of a state machine.

I State space
S = (|m ∈Mf , e ∈ E |) where E is a state space
extension specific to the function f .

I Input/Output domain
I = If , O = (|busy ∈ B, valid ∈ B, data ∈ F |)
where F is the range of the function f .

I Combinatorial function f : D → F where D is
the data output range of Mf .

I Combinatorial in the sense that data elements
are not stored.

I Step function for f to update state space
element e.

I Output function for f that depends on e and the
input signal, i. e. the output signals of Mf .

Mf

f

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 20/33
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Mathematical Framework - Specific Operators

Generic Multiplex/Arbitrate Composition

Goal: controlled, parallel execution of n+ 1 state machines Mi while maintaining
the input and output interface.

I State space
S = (|m0 ∈ S0, . . . , mn ∈ Sn, e ∈ E |) where E is
a state space extension specific to a concrete
instance of the operator.

I Input domain
I = (|busy ∈ B, valid ∈ B, data ∈ ⋃

iDi |) where
Di is the data domain of Mi. Output domain is
defined analogously.

I Multiplex relation mux ⊆ (S × I )× [0, n] to
select the internal component(s) given input
signal values.

I Arbitrate function arb : (S × I )→ [0, n] to
select the component that outputs data.

M0

arbitrate

multiplex

Mn
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Mathematical Framework - Specific Operators

Replicate Composition

Goal: controlled, parallel execution of n+ 1 copies of a state machine Mr.

I Similar to the generic multiplex/arbitrate, but
more restrictive

I Advantage: more correctness results

I State space
S = (|m0 ∈ Sr, . . . , mn ∈ Sr, e ∈ E |)

I Input/Output domain
I = Ir, O = Or

I Multiplex function mux : (S × I )→ [0, n]
(instead of relation)

I Arbitrate function arb : (S × I )→ [0, n]
analogous to multiplex/arbitrate composition

Mr

arbitrate

multiplex

Mr
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Generic Correctness Results

Signals and Execution Semantics

I Argue about behaviour over time

I Intuitive, standard definition

I Abstract, discrete time domain: N

Definition (Signal)

A signal sig is a function from time N to a data domain D. We write sigt for sig(t).

Definition (Execution and Output Trace)

Given a state machine M = (S , I ,O , s0 , δ, ω) and input values it ∈ I for t ∈ N, we
define the execution trace trcM : N→ S and the output trace outM : N→ O as

trctM =

{
s0 : t = 0

δ trct−1
M it−1 : otherwise

outtM = ω trctM it

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 23/33

Generic Correctness Results

Buffer Correctness

Correctness:

I Functional correctness (no data loss or modification)

I No reordering

I Liveness

Environment assumption:

I busy input not constantly active

Lemma (Correctness of the Buffer FSM)

Given input signals it ∈ I , a generic buffer (α)buffer satisfies that

∀x ∈ α. ¬i.busyt ∧ (i.datat = Some x) =⇒ ∃k. (outt+k
M = Some x)

Note

I Analogous lemma with x1, x2 ∈ α shows in-order property.

I Easy lemma to show that data outputs independent of busy input.

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 24/33
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Generic Correctness Results

Basic Compositions

Parallel Composition
I Correctness properties of the components are

maintained.

I Satisfies conjunction of the individual
correctness properties.

I Environment assumptions of both state
machines have to be satisfied.

M1 M2

busy1valid1data1 busy2 valid2data2

busy1valid1data1 busy2 valid2data2

PM1(i1) PM2(i2)

PM1(i1)∧PM2(i2)

Sequential Composition

I Satisfies conjunction of the correctness with
the respective substitutions in PM2 using ω1.

I Analogously for the busy input of M1

(definition of sequential composition)

I Data output of M1 has to satisfy the
environment assumptions of M2 and vice
versa for the busy input.

PM2(i2)

M1

M2

busy1valid1data1

busy2 valid2data2

busy1valid1data1

busy2 valid2data2

PM1(i1)

PM1(i1)∧PM2(ω s1 i1)  

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 25/33

Generic Correctness Results

Replication Operator

Idea: Push correctness from inner components to system

Assumptions:

I Mr is correct and ensures liveness

I The multiplex function is correct for valid
inputs

I The arbitration function is fair with respect
to an active valid signal from some Mr

Mr

arbitrate

multiplex

Mr

Theorem (Functional Correctness and Liveness)

The replication operator preserves the functional correctness and the liveness of Mr

given the above assumptions.
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PCI Express

PCI Express

Protocol characteristics

I Point-to-point, packet-based communication

I Protocol stack layers: Transaction, data-Link, physical Layer

I Each layer: transmit (TX) and receive part (RX)

Memocode’09: Derivation of transaction layer

I Focus on hard transaction layer parts
flow control, packet reordering, virtual channels

I Transformation-based modelling approach

I Formalization in Isabelle/HOL

Here: Summary of

I Basic model

I Flow control
link out link in

transaction layer

data-link layer

physical layer

device core

TX RX

TX RX

TX RX
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PCI Express

Basic Model

Data units: transaction layer packets (TLPs)

Model

I TLP composition/decomposition

I Send/receive buffers

TLP
composition

(TLP)
send buffer

TLP
decomposition

(TLP)
receive buffer

Correctness

I TLP composition/decomposition (only combinatorial, easy)

I Apply correctness of generic buffer

I Liveness

I Ordering (no overtaking or packet loss)

I Correct busy signal

I Sequential composition of TX, channel, and RX

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 28/33
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PCI Express

Flow Control - A Specific Transformation

Goal: Sender checks locally if receiver has enough buffer space.

Principle

I Credit-based (header 1 credit, dw 1 credit)

I Receiver: Flow control buffers

I For each message type
(posted, non-posted, completion)

I Header and payload
(not every packet as payload)

I Frequent updates to link neighbour

I Sender: Checks if space is available

I Maintains available space counters

I Checks before message transmission

Receiver

flow 
control 
buffer

flow 
control 
buffer

Sender
send 
buffer
flow 

control 
check
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PCI Express

Flow Control - A Specific Transformation

Receiver: Instantiate replication operator
I n = 3 with (TLP , timestamp) flow control

buffer

I Multiplex function is TLP to [0 : 2] plus add
time stamp

I Arbitrate function is n such that
timestamp(n) < timestamp(m) for all m 6= n

Mr

arbitrate

multiplex

Mr

Flow control buffer: Instantiate multiplex/arbitrate operator

I n = 2 with (TLPHeader , timestamp) and (TLPData) data buffer

I Multiplex relation is {0} if TLP has no data and {0, 1} if TLP has data

I Arbitrate relation analogous to multiplex relation with respect to busy input

Sender: Instantiate combinatorial function operator

I Combinatorial function is counter test; raise busy if there is not enough space
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PCI Express

PCI Express Summary

I Industrial-sized high-performance communication protocol

I Incremental modelling of large parts of the transaction layer and data-link layer

I Independent specification of complex features

I Transaction layer

I Flow control

I TLP reordering

I Packet priorities using virtual channels

I Data-link layer

I Data-link layer packet arbitration

I ACK/NAK protocol

I CRC check

I Case study results published in MEMOCODE’09 and HFL’09
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Conclusion

Conclusion

New methodology for an incremental modelling and verification process

I Control the model complexity by adding features incrementally

I Formalised framework with correctness results for the generic constructs

I Generalised design principle for transformations using composition operators

I HOL as design/modelling language

Long-term aim

I Increase efficiency of the model building process

I Model with significant merits against ad-hoc models

I Functional verified

I Independent from implementation or design architecture

I Long-term reference model

Theorem prover

I Reduce or eliminate manual theorem proving

I Ideally modelling tool with knowledge management features
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Conclusion

Future Work

PCI Express

I Support for power management and interrupts

I Derivation of switches (support for complex topologies)

Design and verification methodology

I Support for (automatic) refinement steps (data refinement)

I Integration of automated verification tools (model checking, SMT Solver)

I Link to HDL? (SystemVerilog)

A Formalised Framework for Incremental Modelling of On-Chip Communication, Peter Böhm DCC 2010 33/33
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Gap-Free verification of weakly programmable IPs
against their operational ISA model

Markus Wedler, Sacha Loitz, Wolfgang Kunz
Department of Electrical and Computer Engineering,
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ABSTRACT
This paper suggests an operational instruction set architec-
ture (OISA) model for specifying weakly programmable IPs
(WPIPs). WPIPs are application-specific programmable
System-on-Chip (SoC) modules such as application-specific
instruction set processors (ASIPs) whose individual instruc-
tions often implement large segments of an application algo-
rithm corresponding to hundreds of usual RISC instructions.
The pipeline structure of a WPIP design is usually deter-
mined by basic operations of the application algorithm. For
this reason, the pipeline is often designed in a bottom-up
manner where the components for the individual operations
are developed first. Our OISA model reflects this design
style by specifying the instruction semantics in terms of pre-
defined operations that are associated with specific pipeline
stages. The presented approach allows for a fully automatic
generation of a property set that uniquely specifies the en-
tire design. Moreover, the verification process used to design
the OISA model explicitly reveals software constraints that
are exploited for the optimization of the design.

1. INTRODUCTION
Formal property checking has become established in many

design flows and enhances the verification methodology for
System-on-Chip modules. Although formal techniques are
usually considered to be no more than useful supplements
to simulation-based verification there are also successes in
making property checking the pre-dominant verification ap-
proach. This, however, raises the coverage issue in property
checking. A methodology is required that creates a set of
properties which does not only locally focus on specific de-
sign issues but completely and uniquely describe the behav-
ior of the entire SoC module. Moreover, in order to make
such a ”gap-free” formal approach acceptable in practice it
must be robust with respect to a large range of architectures
and implementation styles being practiced in state-of-the-art
SoC design.

In the design of SoC modules we observe a shift from dedi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

cated hardware modules towards more flexible programmable
devices. The goal is to provide just enough flexibility while
optimizing performance and power consumption. Since gen-
eral purpose processors (GPPs) do not provide the required
hardware efficiency while dedicated hardware solutions are
too expensive and lack flexibility there is a trend towards
so called weakly programmable IP (WPIP) blocks with very
specific programming models.

The microarchitectures of such WPIPs fundamentally dif-
fer from the usual GPP pipelines. Frequently, the instruc-
tions of a WPIP correspond to hundreds of classical RISC
instructions and perform a certain well-defined part of the
algorithms targeted to the WPIP. These segments of algo-
rithms are also referred to as nuclei. The most prominent
difference with respect to standard microprocessors is the
absence of a classical ISA model specifying the effect of each
instruction on the state holding elements of the processor.

Instead of refining such an ISA model top-down towards
an optimized pipelined architecture, WPIP designers often
follow a bottom-up approach specifying the basic operations
of the pipeline first. In this bottom-up approach the seman-
tics of WPIP instructions is implicitly given through these
basic operations used to execute the instruction.

The above mentioned bottom-up design approach has a
strong impact on the applicability of formal verification tech-
niques for proving correctness of a WPIP design. The ab-
sence of a classical ISA model makes approaches based on
classical refinement checking or bisimulation [10] difficult
to apply. In this paper, we suggest an attractive alterna-
tive based on an operational ISA (OISA) model for WPIPs.
This model specifies the semantics of a WPIP instruction
by a collection of pipeline operations that need to be per-
formed whenever this particular instruction is executed. We
exploit that these operations usually have a well-defined im-
pact on the WPIP design state that can also be specified in
our OISA model. Additionally, our OISA model captures,
by means of explicit software constraints, all dependencies
between instructions that may be exploited by designers for
optimization of the WPIP implementation.

Based on the OISA model we will show how to automati-
cally generate a set properties which proves equivalence be-
tween the RTL code and the OISA model of the WPIP under
verification. Due to the weak programmability of the SoC
module software constraints turn out to be necessary for a
successful proof of the properties against the (potentially
manually) optimized RTL implementation. These software
constraints may be re-used during software verification for
checking compliance of software targeted to the WPIP with
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these constraints.

2. INTERVAL PROPERTY CHECKING
In this section we briefly recall the basic concepts of in-

terval property checking as it has been successfully used for
the verification of industrial SOC modules specified at the
RTL.

2.1 Property Language
There is a variety of temporal logics that may be used

for specifying the temporal behavior of a circuit such as
CTL*,CTL,LTL, and ACTL.

In order to make temporal logics more intuitive to cir-
cuit designers considerable efforts have been made to de-
velop specification languages combining the expressiveness
of temporal logics with syntactic features that ease property
writing for designers. As a result, standardized languages
such as PSL or System Verilog Assertions (SVA) are now
available.

In this work, we consider a class of properties called inter-
val properties or operation properties enabling a SAT-based
verification approach capable of handling large SoC modules
that are often beyond the capacity of classical (symbolic)
model checking techniques.

Interval properties are safety properties that relate the
signals of a design within a bounded time interval to each
other. We introduce interval properties as a specific sub-
class of LTL. In an industrial setting, interval properties are
commonly specified using the above standard specification
languages.

In the sequel, we consider the signals of the device under
verification (DUV) to be the atomic formulas of our property
language.

Definition 1. A timed Boolean predicate (TBP) is a
LTL formula that only uses the Boolean operators ∧,∨,¬
and the next step operator X . An interval property is a
safety property G (p) where p is a timed Boolean predicate.

The generalized next state operator X n denotes finite
nestings of the next state operator, i.e., X t(p)=X (X t−1(p))
for t > 0 and X 0(p) = p. We will use the following notations:

During [t1, t2](p) =
∧t2

t=t1
X t (p)

Within [t1, t2](p) =
∨t2

t=t1
X t (p)

Definition 2. A TBP is supposed to be in timed normal
form if the (generalized) next step operator X t is only applied
to atomic formulas.

It is straightforward that every TBP can be transformed
into an equivalent formula in timed normal form. Without
loss of generality we assume all TBPs to be in timed normal
form, in the sequel.

Definition 3. Let t1 denote the smallest and t2 the largest
exponent of the generalized next state operator in a TBP p.
The interval [t1, t2] is called the inspection interval of the
TBP p and the corresponding interval property G(p).

Obviously, it is X t1X t2(p)=X t1+t2(p). To further gener-
alize the next step operator we also allow negative expo-
nents X−t such that X tX−t(p)=p. This can be applied to
the notions timed normal form and inspection interval in a

straightforward way. For a TBP p with inspection window
[t1, t2], t1 < 0 the semantics of the formula G (p) is not ob-
vious, however, and needs to be specified. Since we cannot
reason about the history before the initial state of a Kripke
structure, we define the semantics of this property as follows:

Definition 4. Let p be a TBP with inspection interval
[t1, t2], t1 < 0 and let q be the timed normal form of the
TBP X−t1(p). The semantics of the interval property G (p)
is defined by the following equivalence

G (p) ≡ G (q).

Obviously, in the above definition q has the inspection
interval [0, t2 − t1] and therefore the semantics of G (p) is
well defined. Throughout this paper it becomes necessary
to distinguish between TBPs that reason about the past and
those that reason about the future only. This leads to the
following definition:

Definition 5. TBPs with inspection interval [0, t], t > 0
are denoted as future TBPs. TBPs with inspection interval
[−t, 0], t > 0 are denoted as past TBPs.

2.2 Basic Decision Procedure for IPC
The computational model used for proving interval prop-

erties is a so called iterative circuit model. In this model, a
finite number of copies δi, i = 0, . . . , n of the DUV’s transi-
tion function δ are concatenated via their present and next
state variables. Each instance δi of the transition function
is called a time frame of the iterative circuit model.

The size of this iterative circuit model corresponds to the
size n = t2 − t1 + 1 of the inspection interval [t1, t2] of the
interval property under consideration.

In other words, the size of the iterative circuit model only
depends on the ”length” of the property. This clearly dif-
ferentiates IPC from bounded model checking where the it-
erative circuit model may grow up to the diameter of the
circuit in the worst case.

If we consider the transition function to be represented by
a (bit vector) netlist we can refer to a signal s of the DUV
in time frame δi by si.

A timed Boolean predicate p can easily be converted into
a Boolean function in terms of the signals si of the itera-
tive circuit model. Every instance X t(s) of a signal s must
simply be replaced by st−t1 . Concatenation of the resulting
function p̂ with the iterative circuit model ∆ yields a func-
tion p̃ := ∆ ◦ p̂ in terms of the inputs ikt of all time frames
and the state variables xl

0 in time frame 0.
Obviously, the interval property G(p) is valid if p̃ is a

tautology. In practice, this is checked using a SAT/SMT
solver. However, spurious counterexamples also called false
negatives may be generated if the solver selects an assign-
ment for the state variables xl

0 that encodes an unreachable
state of the DUV.

In case of such a false negative the property can be strength-
ened with reachability information, e.g., provided in form
of an invariant φ. Fortunately, in practice it turns out that
most relevant properties of circuits can be proven using fairly
simple invariants that are easy to be determined automati-
cally, or manually by the verification engineer.

2.3 Operational methodology for IPC
In this section we describe a methodology for setting up

a set of IPC properties that completely verifies the behavior
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of a DUV. The methodology is guided by the overall goal to
relate the DUV to an abstract specification FSM also called
”conceptual” FSM. It pursues the following steps that will
be elaborated in the sequel.

1. Identification of important abstract control states of
the design.

2. Identification of possible (series of) transitions between
the important states.

3. Description of the output behavior of the DUV for
every transition.

Each phase results in a set of timed Boolean predicates
that will finally be composed together to form the complete
set of properties.

2.3.1 Important control states
In this phase, the verification engineer sets up a set of

timed Boolean predicates (TBPs) that each characterize an
important control state. It is up to the verification engineer
how he groups the states of the DUV into abstract control
states based on the existing specification documents.

This is a creative process conceptualizing about the design
and thus cannot be automated. We illustrate the concept of
important control states by a few examples.

• In order to check whether a device complies with a
specific bus protocol, its states may be mapped to pro-
tocol states indicating whether the bus should be idle
or performing a specific transaction. In the AMBA-
AHB protocol states like idle(), burst() and split() could
be specified as important control states.

• A processor could be described by a conceptual FSM
consisting of important states indicating whether the
processor is ready to execute the next instruction
(nextInstruction()), has to accept an interrupt
(interruptPending()), has to stall any of its pipelines
(stalledi()), needs to wait for a bus transaction to com-
plete (waitingForBus()) etc.

• An arbiter could transition between important states
indicating which client is granted (granti()) or whether
the corresponding resource is idle (idle()).

2.3.2 Transitions between important states
After the conceptual states of the DUV have been iden-

tified the verification engineer will specify transactions that
drive the DUV from one abstract state to another.

This shall be illustrated by means of an example. Since
the main focus of this paper is on application specific pro-
cessors (ASIPs) we consider again the second of the above
examples.

In the usual mode of operation the processor will execute
one instruction after the other. In other words, it will always
loop in the state nextInstruction() executing one instruction
after the other. Each of the instruction specified by the
instruction set architecture (ISA) of the processor may be
chosen as a transaction of the processor. A TBP that spec-
ifies the behavior of an addition instruction could be stated
as follows:

addInstrExecuted():=
nextInstruction() ∧ addFetched()

→ addPerformed()∧ X (nextInstruction()).

In this timed Boolean predicate the sub-expressions
addFetched() and addPerformed() are used to specify that the
addition instruction is fetched and how this instruction be-
haves.

In ISA models the behavior of general purpose proces-
sor instructions is typically described by the effect of the
instruction onto the general purpose and status registers of
the processor. However, there is not necessarily a one-to-one
correspondence between the registers of the DUV and the
ISA registers. Nonetheless, it should be possible for the ver-
ification engineer to devise TBPs for each of these registers.
In the sequel, we consider the TBP pc() for the program
counter and the TBPs regi() for the general purpose regis-
ters.

Based on these TBPs the effect of an instruction on the
state of the ISA model can be specified as follows:

addPerformed():=
X (pc())= pc()+2
∧ X (reg1()) =reg1()+reg2()

∧∧n
i=2 stable(regi()),

with stable(s):= X s = s.
Similar interval properties like G (addInstrExecuted()) can

be formulated for every instruction of the ISA. For multi-
cycle instructions the inspection interval may be extended
to the number of cycles required for the instruction to be
executed. Finally, the non-standard behavior is also spec-
ified in this manner, e.g., the transitions into the abstract
states for interrupt handling and stalls.

As a result, we obtain a property set that checks whether
the DUV refines its ISA model.

2.3.3 Description of output behavior
In this phase of the operational specification of a DUV

the properties of the previous section are augmented with
additional TBPs guaranteeing that the outputs of the block
are computed during some transition of the abstract speci-
fication model.

3. IPC FOR WEAKLY PROGRAMMABLE
IP

As already sketched in the introduction weakly programmable
IPs impose new challenges for the classical IPC based prop-
erty checking flow. The lack of a clean ISA model combined
with non-standard schemes for memory access hampers the
instruction-wise specification of the WPIP’s behavior. An-
other aspect to be taken into consideration is the pipeline
depth of WPIPs that is typically much deeper than for gen-
eral purpose processors. This results in larger inspection
intervals for the properties leading to complex decision prob-
lems for the underlying SAT engines. Furthermore we need
to consider a so called nucleus based design style where the
individual WPIP instructions subsume up to a few hundred
classical RISC instructions. Often, the specification of such
nuclei is only valid for a specific context in the program and
a specific configuration of the processor pipeline. This im-
poses the need for the specification engineer to also model
context and configuration while specifying a WPIP block.
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In this section, we outline an operation based specification
style for these blocks. The specification of every instruction
is decomposed into a number of atomic operations that are
assigned to a specific stage in the processor pipeline. In the
specifications for all these operations we consider all con-
texts and configurations that are allowed for the individual
operation. The following example illustrates this decompo-
sition for an SMBW instruction of the WPIP presented as
case study in [9]. This WPIP instruction implements an
algorithmic nucleus containing a zero overhead loop that
calculates a series of so called state metrics and is specified
as follows:

SMBW performed():=

decrOffsetSM() ∧ decrSrcAdr() ∧ loadCV()

∧ calculateSMBW() ∧ doSMIO)() ∧ decideZeroOverHeadLoop()

The operations used in this specification are likewise spec-
ified by timed boolean predicates and can be described as
follows:

• decrOffsetSM(): decrement the address of the state
metric register file.

• decrSrcAdr(): decrement the source address for the
next state metric calculation.

• loadCV(): load the so called channel values from the
address specified by decrSrcAdr() with respect to the
selected code rate. The latter is defined by a dedicated
configuration register.

• calculateSMBW(): calculate the 8 state metrics for the
loaded channel values. This includes the calculation
of so called branch metrics in a first step. For the
calculation of the 8 state metrics 21 additions and 8
minimum selections on 12 bit words are performed in
this operation in each iteration of the instruction.

• doSMIO(): store the calculated state metrics at the
memory address calculated in decrOffsetSM().

• decideZeroOverHeadLoop(): The SMBW instruction
is usually performed several times. For a more efficient
implementation a zero overhead loop is executing the
instruction for a specified number of iterations. Except
for the last iteration of this zero overhead loop the PC
is not incremented and the number of iterations that
have to be performed is decremented instead.

In this example, the semantics of the WPIP instruction
is implicitly specified by the semantics of the involved op-
erations. We formalize this by introducing the notion of an
operational ISA model.

Definition 6. Let I denote the set of instructions and O
denote the set of pipeline operations of a WPIP design. An
operational ISA (OISA) model of the WPIP consists of the
following items:

1. A relation OISA ⊂ I ×O.

2. A set of timed Boolean predicates instriFetched() that
specify when a specific instructions i ∈ I has to be
executed by the pipeline of the WPIP.

3. A set of future timed Boolean predicates opo() to specify
the semantics of the individual operations o ∈ O.

Based on the OISA model the timed Boolean predicates
specifying the instruction semantics for every instruction i ∈
I can be automatically generated as follows:

instriPerformed() :=
∧

(i,o)∈OISA opo().

This results in an instruction-based property for the stan-
dard behavior of the WPIP as given by the following TBP:
instriExecuted():=
nextInstruction() ∧ instriFetched()

→
instriPerformed()∧ X ti(nextInstruction()).
In this TBP ti indicates the latency of the instruction i.

However, in practice a monolithic verification of complete
instructions is hampered by the capacity limits of the prop-
erty checkers. In order to overcome this limitation we sug-
gest an alternative formulation by operation-based proper-
ties. The OISA model allows to generate triggering condi-
tions for every operation o ∈ O as follows:

opoTriggered() :=
∨

(i,o)∈OISA instriFetched().

Using these triggers we obtain the following properties:
opoExecuted():= nextInstruction() ∧ opoTriggered() → opo().

In the instruction-based properties for every t ∈ {ti|i ∈ I}
the commitments

X t(nextInstruction())

have been used to specify that the DUV returns to an ab-
stract state that allows for execution of the next instruction.
Note that we can treat this predicate in the same manner
as the other operations of the instruction. In this way, it
is guaranteed that the set of operation-based properties is
equivalent to the set of instruction-based properties that can
be generated from the OISA model.

In practice, we can reduce the specification effort of the
verification engineer drastically if we only require that the
timed Boolean predicates op() for the pipeline operations
specify the register/memory modifications that a specific op-
eration carries out in the DUV. In this case, it needs to be
checked that the operation does not have a side effect on
any of the unspecified registers. This will be discussed in
section 5.

4. CONFIGURATION AND CONTEXT DE-
PENDENT CONSTRAINTS

In the previous section, we introduced the operational ISA
model as a basis for IPC based property checking of weakly
programmable IP designs. So far, the pipeline operations
of the design have been assumed to be independent of each
other. This is not the case, however, in the presence of
shared resources such as global registers or memories used
by multiple operations that may even be located in different
pipeline stages. The resulting structural hazards need to be
resolved either in hardware or in software.

At this point, WPIP designers follow a strategy slightly
different from common GPP design practices. As long as
a structural hazard does not occur in the anticipated con-
texts and configurations its resolution is typically within the
responsibility of the software.

Fortunately, the properties specified in the previous sec-
tion can be used to detect such hazards. More precisely, at
least one of the properties will fail in case of such a hazard.
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Suppose two operations op1(), op2() in different pipeline
stages write to the same global register r. In the imple-
mentation this results in two concurrent assignments to the
corresponding hardware signals. Modern property checkers
provide predefined checks to detect such race conditions in
advance. Additionally, the IPC checker will provide coun-
terexamples for the interval properties G op1Executed() and
G op2Executed(). In this counterexample, both operations
will be triggered by two instructions with a time offset that
corresponds to the number of pipeline stages between the
operations. The property checker exposes the race condi-
tions as required to produce the respective counterexample.

If this counterexample is realistic for real application soft-
ware a bug in the hardware is detected and needs to be fixed.
However, in many cases such counterexamples only indicate
that the designer assumed certain, often undocumented, re-
strictions for the software and used them for hardware opti-
mization. In the case study of [9] such software constraints
were added to the properties in a time consuming manual
process.

In this work, we partially automate the detection of such
software constraints. In particular, we relieve the verifica-
tion engineer from the explicit specification of dependencies
between instructions. Instead, the verification engineer can
focus on those cases where more complex constraints regard-
ing the context of an instruction are required. This process
finally leads to a complete documentation and formal de-
scription of all software restrictions. They are added to the
property set for the hardware so that false alarms related to
the corresponding race conditions are avoided.

4.1 Hazard detection
The OISA model presented in the previous section can be

used for detection of potential hazards with the algorithm
presented in Table 1.

algorithm HazardDetection

inputs
OISA model: (O, I, OISA)

Set of registers of the DUV :R

begin
forall (o1, o2 ∈ O)

if ( ∃r ∈ R, timepoints t1, t2:

X tir is subexpression of ok() (k=1,2))

forall (i1, i2 ∈ I : (i1, o1) ∈ OISA ∧ (i2, o2) ∈ OISA)

if ( t1 > t2 or ( t1 = t2 and i1 = i2 and o1 6= o2))
addToConflictList(i1, i2, o1, o2, t1 − t2)

end algorithm

Table 1: Hazard detection based on OISA model

This algorithm parses the TBPs op() used in the OISA
model for the specification of the pipeline operations. With-
out loss of generality, we assume all these TBPs to be in
timed normal form. In this case it is sufficient to check
whether a pair of operation specifications op1(), op2() de-
pends on a common register r of the DUV. This is critical if
the operations are located in different stages of the pipeline,
or if they are triggered within the same instruction. In both
cases the corresponding instructions, operations and timing
offsets of the operations are stored in a list of conflicts.

For each entry (i1, i2, o1, o2, t) of the conflict list the verifi-

cation engineer has to define how the corresponding hazard
should be resolved. Two options are considered:

1. Add an automatically generated software constraint
(X−t instri2Fetched())→(¬ instri2Fetched()) to the veri-
fication environment.

2. Manually find a less restrictive constraint for the con-
text of the conflicting instructions that resolves the
hazard.

While the automatically generated constraints are appro-
riate in most situations some cases remain that require the
attention of the verification engineer. For example, in the
case i := i1 = i2 and t = 0 the automatic constraint is too
restrictive as it forbids the instruction i to be used in pro-
grams. Similarly, other combinations of instructions that
may be forbidden by the automatic constraints may be im-
portant for the application. In this case, it is up to the
verification engineer to find a weaker constraint modeling
the context of the two involved instructions that resolves
the hazard.

Often these constraint can easily be specified in terms of
some status registers used as flags f for the datapath of the
pipeline. In general we allow constraints to be specified as
a TBP of the form:

sw constraintik
():=instrik

fetched()→flagsik
() (k = 1, 2).

In this constraint the TBPs flagsik
() have to be specified

by the verification engineer and should describe the status
of the DUV that is required for proper execution of the
instructions ik. In order to avoid subsequent instructions
to eventually influence the validity of this constraint, we
restrict sw constraintik

() to be a past TBP.
By this means the verification engineer can specify a global

reachability constraint for the software. Under this con-
straint it should be possible to weaken the description of at
least one of the operations o1, o2 that caused the problem.
This results in TBPs o′1(), o′2() that should not both depend
on the common resource any more and have to be added
to the OISA model. Moreover, the pairs (ik, ok) ∈ OISA
should be replaced by the pairs (ik, o

′
k) ∈ OISA.

In the remainder of the paper we consider swConstraints()

to denote the conjunction of all the above constraints, re-
gardless of whether they are automatically generated or man-
ually specified by the verification engineer. When com-
pleting the verification of the hardware the operation-based
properties for this modified OISA model are augmented with
the constraints as stated below and re-checked against the
DUV.

opoExecuted():=
swConstraints() ∧nextInstruction() ∧ opoTriggered() → opo().

Finally, the conflict analysis of Table 1 is rerun. In this
run only conflicts resolved by the automatically generated
constraints are expected to pop up. If contrary to expec-
tations new potential hazards are reported this indicates a
mistake of the verification engineer when updating the cor-
responding operation descriptions in the OISA model. In
this case the manual update process for these operations is
repeated.
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5. COMPLETENESS
In the previous sections we have introduced an interactive

process for hardware verification of weakly programmable
IPs under generated software constraints. One critical ques-
tion of this approach is how to ensure that the complete
functional behavior of the weakly programmable IP has been
specified.

This question points to an active field of research with
many recent contributions [8, 7, 5, 12, 1, 6, 3, 2, 4]. Most of
the studied approaches relate the property set under consid-
eration towards the verified design and compute some sort of
mutation coverage. In this way completeness of a property
set becomes a design dependent metric. The approaches of
Claessen and Bormann [3, 2, 4] use a design independent no-
tion of completeness that will be used also in this work. We
briefly recall it using our notations of TBPs in the sequel.

Definition 7. A set of properties is complete if and only
if any two circuit implementations satisfying the property set
are sequentially equivalent modulo explicitly specified con-
straints C and determination requirements D.

A constraint c ∈ C is an arbitrary TBP while a deter-
mination requirement is a pair (s, ds) ∈ D consisting of a
signal s and a past TBP ds.

Note, that Claessen introduces the temporal operator free

to characterize undetermined behavior of a signal inside a
property, while Bormann uses a separate completeness spec-
ification which extends the proprietary Onespin property
language ITL and includes the specification of determina-
tion requirements.

The computational model for checking completeness of a
property set P of both above mentioned approaches con-
sists of two sets of independent variables S, S′ for the design
signals being referred to by at least one of the properties
p ∈ P .

However, the completeness check itself fundamentally dif-
fers. Claessen creates a monolithic model checking instance
that checks whether the validity of the property set implies
the global equality of every output o, o′ ∈ S of the design.
This results in the LTL formula

compl(P, o) := P (s, s′)→ G (o = o′)

for every output o of the design. In this instance P (s, s′)
refers to the conjunction of all properties in P instantiated
for both variable sets S and S′. During construction of
compl(P, o), undetermined signals s ∈ S indicated by the
free operator are immediately replaced by the corresponding
signal s′ ∈ S′.

By contrast, Bormann conducts a (temporal) inductive
proof of completeness for a set of operation properties. The
proof consists of local checks over bounded time intervals
that require investigation of one or two properties each. This
dramatically reduces the proof complexity and renders the
approach very attractive in an IPC environment. In partic-
ular the following checks are performed:

1. Case split test : For every property p ∈ P with con-
ceptual end state sp and every input trace (it, t =
0, ..., tmax) a property p′ ∈ P starting in the concep-
tual state sp exists such that assumption of p′ is ful-
filled by sp and the input sequence (it, t = 0, ..., tp).

2. Successor test : Checks that the successor property p′

as mentioned in the case split check is uniquely deter-
mined by the input sequence (it, t = 0, ..., tmax).

3. Determination test : Checks that for every property
p ∈ P the determination requirements are fulfilled
within the determination interval of p.

Note, that in the above characterization of the completeness
checks tmax corresponds to the size of the largest inspection
interval [0, . . . , tmax] used in P .

Moreover, it should be noted that by default, the deter-
mination interval of a property p corresponds to the inspec-
tion interval of p and may be modified by the verification
engineer by an explicit specification. For simplicity of the
presentation we do not detail on this technicality.

Case split and Successor test together guarantee that ev-
ery unbounded input trace can be covered by a unique se-
quence of properties (pk ∈ P, k ≥ 0) such that the assump-
tions of each of the properties pk are fulfilled provided that
all previous properties p′k, k

′ < k are valid. This allows for
a local evaluation of the determination requirements.

In the case of WPIP verification the case split and succes-
sor tests for the instruction-based formulation of the prop-
erties become trivial. Recall that forbidden instructions are
excluded by an explicit (software) constraint in C and that
we generate a single property per instruction. Moreover,
the instruction word is read from memory via inputs of the
WPIP. For proper decoding the instruction opcodes are sup-
posed to be pair-wise disjoint which is double-checked by the
case split check.

Setting up and fulfilling the determination tests is, how-
ever, incomparably harder for WPIPs. In comparison with
GPPs we face a lot more global registers that need to be
determined. Even worse, we may face so called out-of-order
register access to one and the same global register in several
pipeline stages. This distributed register access further com-
plicates the determination of those registers at every point
in time. Recall that in our OISA model the verification
engineer describes the behavior of the individual pipeline
operations separately. In the pipeline of the WPIP mul-
tiple such operations are always active at the same time.
For designers and verification engineers it is almost impos-
sible to estimate which other operations may be active in
the pipeline in a specific situation. Focusing on a specific
operation it is only possible to specify which registers are
written.

This of course may introduce gaps for the determination
test, as the completeness checker will pin-point to a situa-
tion, where a subset of operations is active such that some
of the registers will be undetermined.

In order to fulfill the determination requirement for regis-
ters that may not be affected by the pipeline operations in
a certain scenario the verification engineer would explicitly
have to specify which registers keep their value or take a
default value. Note that this has to be done for an over-
whelming number of possible pipeline contexts. Due to the
manifold combinations of active operations this is a very
tedious task. Furthermore, the evaluation of these condi-
tions may require additional pipeline registers for interme-
diate results or flags to be determined and cause a chain
reaction of additional specification effort. This results in
an exploding number of additional determination problems
that may unnecessarily slow down the completeness checker.
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Together with the inherent complexity of typical operations
this quickly drives the completeness checker towards its ca-
pacity limits.

In order to overcome the above mentioned limitations and
to reduce the manual specification effort we propose to auto-
matically complete the property set. The only information
that we require the verification engineer to provide is a clas-
sification of the design registers in two disjoint categories
Reg = Regs ∪ Regd. The registers r ∈ Regs of the first
category are supposed to keep their value unless they are
explicitly modified by any of the operations. The registers
r ∈ Regd of the second category are supposed to take a
constant default value def(r) unless explicitly modified. We
generate additional proof obligations in our property set to
check whether the non-written registers show this default
behavior.

The generation of these proof obligations will be detailed
in the sequel. For every register r we compute the subset of
operations Dr ⊂ O such that the TBPs opo() specify a be-
havior for the register r, i.e., for every o ∈ Dr the TBP opo()

includes a subexpression X to
rr = spec(o, r) where spec(o, r)

is a TBP with inspection interval [tor − t̂, tor − 1].
Using the corresponding trigger TBPs we can determine

a condition in terms of the instruction history under which
the register r remains undetermined. This condition is for-
mulated as a past TBP as follows:

default trigger(r):=
∧

o∈Dr
¬ X−to

r opoTriggered()

In order to complete our property set we generate the TBPs

default behavior(r):= default trigger(r)→X (r) = r
for every r ∈ Regs and

default behavior(r):= default trigger(r)→X (r) = def(r)
for every r ∈ Regd.

Note that this process for completion of the property set
is fully automated. Obviously, neither the above TBPs for
specifying the default behavior of a register r nor the TBPs
opoExecuted() for specifying the operations fulfill Bormann’s
property-wise determination criterion where each property
has to determine every relevant signal of the design.

In the remainder of this section, we prove that the proper-
ties in total nonetheless completely determine every design
register. In order to simplify the presentation we omit the
software constraints in the sequel. Note, that a generaliza-
tion is straightforward. We show, that the TBP

P :=
∧

r∈Reg default behavior(r) ∧∧o∈OopoExecuted()

completely determines all registers r ∈ Reg. Note, that the
above TBP is implied by our properties.

We conduct the step case of a temporal induction. The
determination of the registers in the base case is ensured by
a dedicated property for checking the reset behavior of the
design that particularly checks the initial values of the reg-
isters. It should be noted that in practice the completeness
check may be weakened by allowing some of the registers to
be uninitialized after reset.

For the step case of the proof we may assume that the
property G (P ) determines every register r ∈ Reg in the
time interval [0, . . . , t− 1] from reset.

We pick a register r ∈ Reg and evaluate the past TBP
default trigger(r) at time t-1. Due to the induction hypothesis

the value of this TBP is determined. In case it is true, also
the register r is determined either by the default value or by
its previous value which again is determined by the induction
hypothesis.

In the remainder of the proof we can now focus on the
non-default behavior for r, i.e., we may assume that de-

fault trigger(r) evaluates to false. This implies that for at
least one operation o ∈ Dr ⊂ O the TBP X−to

r opoTriggered()

evaluates to true for an instruction sequence starting at
timepoint t0 = t − tor . We claim that for every instruc-
tion sequence this operation o is uniquely determined. This
is implied by the software constraints introduced for the re-
moval of the hazards in Section 4.1.

For determination of r we need to investigate the TBP
opo(). By construction of the default properties this TBP
contains a subexpression X to

rr = spec(o, r) that determines
the value of the register r based on the values for other reg-
isters r′ ∈ Reg and the inputs. In order to check whether
spec(o, r) is determined we have to shift its inspection inter-
val [tor− t̂, tor−1] to the time point t0. This indicates that we
need to consider the value for the other registers in the time
interval [t0 + tor − t̂, t0 + tor − 1] = [t− t̂, t− 1]. By induction
hypothesis the registers are determined in this time interval.

5.1 Weaker determination requirements for
pipeline registers

The completeness approach as presented so far does not
distinguish between global design registers and temporary
pipeline registers and requires global determination for every
register. Some operations on pipeline registers, however,
may not be relevant in every context.

In our OISA model such an operation o would only be
related to an instruction i if at least one of the modified
pipeline registers is relevant for the behavior of the instruc-
tion. In WPIP implementations it may happen that such
operations are also started by instructions that never use
the corresponding results. Note, that such a behavior may
considerably simplify the decoding of the instructions.

In the optimized implementation the pipeline registers
modified by o will not show the default behavior generated
from the OISA model. In order to avoid unnecessary spec-
ification effort for specifying irrelevant behavior of pipeline
registers in a specific implementation we introduce a special
treatment for these registers in the sequel. Note, that this
also increases re-usability of the specification.

Instead of globally proving determination of the pipeline
registers rp we conduct a local determination analysis when-
ever a pipeline register is used inside a specification spec(o, r)
of another register r ∈ Reg. We check that every instruc-
tion i that invokes o, i.e., (i, o) ∈ OISA, invokes exactly one
other operation o′ such that rp is determined at the appro-
priate point in time. Of course spec(o′, rp) may require other
pipeline registers to be determined as well. We avoid cyclic
dependencies in the specifications of pipeline registers by a
restrictive use of the generalized next state operator X trp for
these registers. Our tool checks that the following restric-
tions are always valid. We ensure that all specification TBPs
spec(o′, r) use a unique value trp for every instance of X trp .
Moreover, every operation op writing rp is supposed to use
a smaller exponent t ≤ trp for every other pipeline register

X tr′p used in the subexpression X trp rp = spec(o′, rp) that
specifies the value of rp. The exponent trp corresponds to
the pipeline stage where the pipeline register is written. The
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restriction on the usage of pipeline registers in specifications
of other pipeline registers reflects the fact that pipeline reg-
isters should be written by an instruction prior to a read
access of the same instruction. If this restriction is not valid
for a specific register we treat it as global register.

6. APPLICATIONS
The presented techniques for gap-free formal WPIP ver-

ification have been implemented in a tool chain on top of
the commercial property checking tool Onespin 360 MV [11]
that supports Bormann’s completeness checking approach [2].

The methodology presented in this paper has been ap-
plied to designs implementing various channel decoding al-
gorithms partly for industrial use. More precisely we veri-
fied an academic MAP decoder design and several versions
of a flexible trellis processor called FlexiTreP. The FlexiTreP
designs support multiple channel decoding algorithms. This
results in a large pipeline with 15 pipeline stages and a so-
phisticated distributed memory architecture.

The fact that both designs stem from the same application
domain has made it possible to reveal a further advantage of
our OISA. Although the designs have completely different
instruction sets and pipeline structures they share a couple
of similar operations. The verification IP for these opera-
tions turned out to be reusable with marginal adoptions. For
example, the timing of an operation that has been spread
over a number of subsequent pipeline stages differs from a
single cycle implementation which has to be reflected in the
verification IP.

Before starting formal verification all designs had been
intensively simulated by the design team applying the de-
bugging features of the industrial ASIP design tool used in
the projects. Although the designers considered the respec-
tive IPs ready for sign-off we were able to identify serious
bugs that lead to a code revision.

For example, we identified two bugs of the MAP design
that were caused by inconsistent bit widths of operands and
source registers that resulted in a wrong code for sign exten-
sions. For the FlexiTrep design we were able to show that
a saturation operation located in pipeline stage 14 showed an
unintended behavior under certain conditions on the operands.
For operands in a certain range two out of three saturation
units evaluated a wrong saturation condition. Due to the
weak controllability of the late pipeline stages this corner-
case behavior was masked during the intensive sign-off sim-
ulations

Another bug identified by property checking turned out
to be caused by a late code change where the designer forgot
to remove a specific value assignment to a specific control
signal. This resulted in a race condition for two parallel RTL
assignments for the same signal. Furthermore, we discovered
a bug in the RTL code generation concerning the translation
of a sequence of if-statements. The corresponding bug was
not found by simulation because the simulation was mainly
performed within the ASIP design environment where the
behavior was correctly simulated.

Besides the above mentioned bugs, the designers also con-
sidered our feedback valuable for further optimizations of
the design. Finally, we also identified bugs in software pro-
grams targeted to the WPIPs where the software constraints
identified by our formal techniques had been ignored by the
assembler programmer. This has been checked by a fully au-
tomatic and extremely efficient compliance check that reuses

the explicitly available constraints that result from the ver-
ification process.

7. CONCLUSION
This paper presents a formal verification methodology

which adapts an industrial gap free property checking flow to
the specific requirements of weakly programmable IP (WPIP)
designs. We design a verification IP that we call an op-
erational ISA (OISA) model. Based on the OISA model
we generate a set of interval property that provably fulfills
the completeness criterion used by the gap free verification
methodology introduced by Bormann [2].

As a by-product of the formal verification efforts taken
for the hardware we obtain a formal specification for the re-
strictions that the software must comply with when running
on the verified WPIP. In an earlier case study it has already
been demonstrated that an automatic compliance check for
the software is feasible by making only small extensions to
a state-of-the-art formal property checker.

Together with the gap free verification result for the hard-
ware we believe that this allows for verification of the soft-
ware targeted towards the WPIP with respect to an abstract
model derived from the OISA model. This will be subject
of our future research.
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Abstract

Bluespec SystemVerilog (BSV) is a Hardware Description Language based on the guarded action model
of concurrency. It has an elegant semantics, which makes it well suited for formal reasoning. However,
little work has been done on applying mechanized verification to BSV designs. We present a prototype
embedding of BSV in the SAL model checker, for which translation from BSV to SAL is verified with the
PVS theorem prover. We demonstrate the practical applicability of our approach by establishing deadlock
freedom, mutual exclusion and liveness for a BSV implementation of Peterson’s protocol.

Keywords: Bluespec, Embedding, Model Checker, Theorem Prover, Hardware Description Language.

1 Introduction

Bluespec SystemVerilog (BSV) [Nik04] is a language for high-level hardware de-
sign, and produces hardware that’s competitive with hand-written RTL in terms of
time and area for most designs [WNRD04,Nik04]. It developed from research using
Term Rewriting Systems (TRS) to produce hardware specifications that could be
synthesized and formally verified [AS99]; in common with TRS, BSV is semanti-
cally elegant, which makes it well suited for formal reasoning [ADK08]. To date,
however, only one investigation has been made into the mechanized verification of
BSV designs [SS08] which presented a translation schema from a subset of BSV into
Promela, the input language of the SPIN model checker [Hol03].

In this paper we present a strategy for embedding a subset of BSV in the SAL
model checker [dMOR+04], where the BSV-to-SAL translation can be verified with
a simple proof in the PVS theorem prover [ORS92]. The subset of BSV that we
embed includes a number of language features not covered in [SS08]; namely the
instantiation of non-trivial nested modules, methods with arbitrary side-effects and

1 Email:dar@cs.man.ac.uk
2 Email:dlester@cs.man.ac.uk
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return values, and rule composition from methods with arbitrary side-effects and
return values. In this work we offer a translation schema: we have yet to build a
BSV-to-SAL compiler, which will be developed at a later stage in tandem with our
related research into automated abstraction of BSV designs.

As an example of our approach, we embed a BSV implementation of Peterson’s
protocol in the SAL language; we then verify the BSV-to-SAL translation with PVS
and establish deadlock freedom, mutual exclusion and liveness with the SAL model
checker.

1.1 The Challenges of Embedding BSV in SAL

BSV uses guarded actions to express concurrency, and so is similar to several lan-
guages that were developed for the formal study of concurrency, including UNITY
[CM88], TLA [Lam02], Promela and the SAL language. There is a rich body of
literature on the use of model-checkers for verifying systems expressed in these lan-
guages. However, BVS is a more complex language in some respects, being intended
for hardware design rather than abstract specification:

(i) Complex encapsulation of state. BSV has a ‘module’ construct, which
allows elements of state to be associated with ‘rules’ (guarded actions) that
spontaneously transform the state, and ‘methods’ that can be called by other
modules to return a value from the state, and possibly transform it in the
process. Rules can be composed from the methods provided by other modules;
in this way, the execution of a rule in one module can alter the state in another.

(ii) Widespread presence of data paths. Model-checking is a very useful tool
for efficiently verifying concurrent systems, but can be confounded by the pres-
ence of data paths. Data paths can have very large state spaces, which can
cause state space explosions in model-checkers; for this reason, model-checking
has been more widely used to verify control-based systems. When abstract
specification languages such as UNITY are used for hardware verification, a
model can be constructed that only specifies the control-based components of
a design (when the data path is irrelevant to the properties being verified), or
specifies some abstract interpretation of the data path. With a direct embed-
ding of BSV, however, the hardware design is the specification; we can’t chose
to omit data paths from our formal model. Because of this, we must find a
tractable way to abstract away from data path complexity.

Therefore, in order to produce a usable general purpose embedding of BSV in a
formal guarded action language, we must first bridge the semantic gap by expressing
the constructs of BSV with the more limited constructs of our target specification
language, preferably in such a way that equivalence between the two can be easily
established. When we have achieved this, we must also bridge the abstraction gap,
to obtain abstract specifications that can be efficiently verified [CDH+00].

In this paper, we concentrate on the first of these two steps. We provide an
embedding strategy that maps BSV expressions to SAL expressions that can be
efficiently model checked and verify the translation with PVS. In further work, we
plan to investigate the use of automatic abstraction in order to bridge the abstrac-
tion gap.

2
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After introducing BSV in section 2, we introduce the SAL language in section 3,
along with our strategy for embedding BSV in SAL. Our embedding produces SAL
specifications that can be efficiently model-checked but bear little resemblance to
the BSV code they represent, and we discuss the problems that this can create.

In section 4 we introduce our technique for proving equivalence between BSV
designs and their SAL specifications. We develop two embeddings of BSV in PVS;
a ‘monadic’ embedding that closely resembles BSV and a ‘primitive’ embedding
that shares the same semantics but has a syntax similar to our SAL embedding.
We then show that semantic equivalence between instances of the monadic and
primitive embeddings can easily be established with the powerful proof strategies
of PVS.

In section 5 we report on an unsuccessful attempt to implement our ‘monadic’
embedding strategy in SAL, in order to produce high-level specifications that could
be directly model-checked.

We demonstrate the practical applicability of our approach in section 6 by em-
bedding a BSV implementation of Peterson’s protocol, for which we verify BSV-to-
SAL translation with PVS and establish deadlock freedom, mutual exclusion and
liveness with the SAL model-checker. We provide code listings for this example in
appendix A.

In sections 7 and 8 we discuss related work, conclude the paper and look forward
to further work.

2 Bluespec SystemVerilog

BSV is a language for high-level hardware design, and produces hardware that’s
competitive with hand-written RTL in terms of time and area for most designs
[WNRD04,Nik04]. A comprehensive tutorial can be found online at [Blu].

In BSV, hardware is specified in terms of ‘modules’ that associate elements of
state with ‘rules’ (guarded actions) that transform the state and ‘methods’ that can
be called by other modules to return values from the state, and possibly transform
it in the process.

A simple example of a module is Reg, which specifies a register with one element
of state, no internal rules and two methods, _read and _write. Other modules
can create instances of Reg, and use the methods _read and _write in their own
rules and methods. For example, consider the following rule that uses two registers,
request and acknowledge, both of which hold elements of type Bool 3 :

rule request_rl (!(request._read || acknowledge._read));
request._write(True);

endrule

The rule has a guard, which is a predicate on the state of the registers, and an
‘action’, which transforms the state of the request register.

In general, a rule has the form:

3 BSV users will notice that we’ve de-sugared the method calls for Regs; we do this throughout the paper
to simplify the semantics, and also to emphasize the use of methods inside rules.

3
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rule my_rule (rl_guard);
statement_1;
statement_2;
...

endrule

The statements in the rule body are individual actions that transform the state in
some way. The set of statements are applied in parallel to the state; each statement
is applied to the state as it was immediately before the rule was activated, so that the
changes made by statement_1 aren’t seen by statement_2, or any other statement.
The BSV compiler ensures that the statements in a rule don’t conflict with each
other by simultaneously attempting to write to the same elements of state.

2.1 Term Rewriting System (TRS) Semantics

The behavior of a module can be understood in terms of a simple semantics called
Term Rewriting System (TRS) semantics, also called ‘one-rule-at-a-time’ semantics.
In TRS, a module evolves from a given state by choosing one rule for which the
guard is true and applying the associated action to transform the state; if more
than one guard is true, a nondeterministic choice is made. When actual hardware is
generated from BSV designs, a number of optimizations are applied (for example, a
clock is introduced and multiple rules are executed per clock cycle) but the behavior
is guaranteed to comply with the TRS semantics.

3 An Embedding of BSV in the SAL Language

The TRS semantics (§ 2.1) is conveniently similar to the semantics of the SAL
language. In SAL, a non-deterministic state machine is defined with an initial state
and a transition relation composed of a number of guarded actions. The transition
relation has the form:

TRANSITION
[

guarded_action_1 : guard_1 --> action_1
[]

guarded_action_2 : guard_2 --> action_2
[]

...
]

The guards are predicates on the state of the system and the actions are updates
that change the state in some way. The system evolves from a given state by
choosing one guarded action for which the guard is true and executing the action;
as with BSV, when more than one guard is true for a given state, a nondeterministic
choice is made.

How can we translate BSV rules to SAL guarded actions? Consider the following
BSV rule, which comes from our example in section 6:

rule p_critical (pcp._read == Critical && fifo.notFull);

4
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fifo.enq (True);
pcp._write (Sleeping);
turn._write (False);

endrule

The guard of p_critical is a predicate over the state a register called pcp and
a single-element FIFO called fifo. The action of p_critical changes the state
of fifo and registers pcp and turn. Before we embed this rule in SAL, we need
to define the states of pcp, turn and fifo. We can specify the states of generic
registers and one-element FIFOs with SAL contexts:

Reg {T : type} : CONTEXT = BEGIN

State : type = [# data : T #];

END

FIFOF1 {T : type} : CONTEXT = BEGIN

State : type = [# notFull : bool, notEmpty : bool, data : T #];

END

We can then instantiate these contexts in our Peterson specification:

PC: TYPE = {Sleeping, Trying, Critical};

pcp : Reg{PC}!State,
pcq : Reg{PC}!State,
turn : Reg{bool}!State,
fifo : FIFOF1{bool}!State

We’ve added another register here, called pcq; we don’t refer to it in the rule
p_critical but it gets used in the Peterson example so we include it here for
completeness. Registers pcp and pcq hold elements of type PC (‘program counter’).

Now that we have a state composed of records, we can express our rule as a
guarded action in the TRANSITION relation by expanding all method calls to record
updates and functions over record fields:

TRANSITION
[

p_critical : pcp.data = Critical and fifo.notFull
--> fifo’ = (# data := true,

notFull := false,
notEmpty := true #);

pcp’ = (# data := Sleeping #);
turn’ = (# data := false #)

[]
...

]

5
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This is a straightforward way to express rules, and it produces SAL specifications
that can be efficiently model-checked. When rules call methods that are entirely
side-effecting (like the register method _write or the FIFO method enq) we can
expand the method in-place to a series of record updates. Side-effect free methods
(like the register method _read) can be expanded to pure functions on the state.
Methods that produce a side-effect and also return a value can be decomposed into
a pair of methods; one entirely side-effecting and one side-effect free. In this way, we
can embed rules composed of methods with arbitrary side-effects and return values.

This approach seems quite simple, but can create problems. If we express a
rule by fully expanding all of its method calls we expose its full complexity; BSV
provides the module and method constructs to avoid just this. If we specify more
complex modules in this way (for example, modules where rules and methods call
methods that themselves call methods, all returning values and producing side-
effects) we end up with long-winded specifications that bear little resemblance to
the BSV code they represent. If we assume that the process of translating from
BSV to SAL is not formally verified, it becomes difficult to provide assurance that
the translation is accurate; this makes it difficult to rule out false positives when a
property is proved, or conversely false negatives when a property is disproved.

Readers who are familiar with functional programming might ask: “Why don’t
you produce more abstraction specifications by implementing monads in the SAL
language?”. We tried this, and were unsuccessful; we discuss our failed attempt in
section 5.

4 Verifying BSV-to-SAL Translation with PVS

We saw in the previous section that our strategy for embedding BSV in SAL pro-
duces specifications that can be efficiently model-checked, but bear little resem-
blance to the BSV code they represent. This can be problematic, because errors in
the translation can go unnoticed.

Our solution is to verify individual translations with the PVS theorem prover.
We develop two embeddings of BSV in PVS; a ‘monadic’ embedding that closely
resembles BSV and a ‘primitive’ embedding that shares the same semantics but
has a syntax similar to our SAL embedding. We then prove semantic equivalence
between instances of the monadic and primitive embeddings quite easily with the
powerful proof strategies of PVS.

Our verification strategy would fit into an automatic BSV-to-SAL translation
process as follows. A program for translating BSV to SAL would parse BSV to
produce an abstract syntax tree (call it the BSV AST) and transform this to an
AST that represents the SAL embedding (the SAL AST) which could then be used
to generate the SAL specification. In this system, the BSV AST could be converted
to an instance of our monadic PVS embedding, and the SAL AST to an instance
of our primitive PVS embedding; these two specifications could then be proven
semantically equivalent, in order to verify the process of generating the SAL AST
from the BSV AST.

To give you an idea of how the two PVS embeddings align with BSV and the
SAL embedding, figure 1 shows the BSV rule p_critical along with its embedding

6
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Fig. 1 A BSV rule, together with its embeddings in PVS and SAL

The BSV rule:

rule p_critical (pcp._read == Critical && fifo.notFull);
fifo.enq (True);
pcp._write (Sleeping);
turn._write (False);

endrule

A monadic embedding in PVS:

p critical = rule (pcp‘read = Critical ∧ fifo‘notFull)
(fifo‘enq (true) �
pcp‘write (Sleeping) �
turn‘write (false))

A primitive embedding in PVS:

p critical primitive (pre, post : Peterson) : bool
= pre‘pcp‘data = Critical ∧ pre‘fifo‘notFull
∧ post = pre with

[
(fifo) := (# data := true,

notFull := false,
notEmpty := true #),

(pcp) := (# data := Sleeping #),
(turn) := (# data := false #)

]
A primitive embedding in SAL:

p_critical : pcp.data = Critical and fifo.notFull
--> fifo’ = (# data := true,

notFull := false,
notEmpty := true #);

pcp’ = (# data := Sleeping #);
turn’ = (# data := false #)

in PVS and SAL. Notice the strong syntactic resemblance between the BSV rule
and its monadic PVS embedding, and likewise for the primitive PVS embedding
and the SAL embedding.

4.1 TRS Semantics in PVS

In PVS, we describe a rule as a predicate over pairs of states:

my rule (pre, post: Module State): bool = rl guard (pre) ∧ post = rl action (pre)

Here, rl guard and rl action are the PVS representations of the rule’s guard and
action, and Module State is the PVS representation of the module’s state. We can
express the TRS semantics of a module by composing its rules together:

7
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my TRS module (pre, post: Module State): bool = rule 1 (pre, post)
∨ rule 2 (pre, post)
∨ ...

my TRS module relates pre to post if any rule relates them when applied in isola-
tion: we have a nondeterministic, one-rule-at-a-time semantics.

As with SAL, we can express the states of nested modules with records. We can
then express the state of the top-level module as a record of records. In the case of
the Peterson example, we have:

Peterson : type =
[
# pcp : Reg

[
PC

]
,

pcq : Reg
[
PC

]
,

turn : Reg
[
bool

]
,

fifo : FIFOF1
[
bool

]
#

]
4.2 A Primitive Embedding of BSV in PVS

Now that we have a state composed of records, we can express rules in the same
way that we did in our SAL embedding. For the rule p_critical, we have:

p critical primitive (pre, post : Peterson) : bool
= pre‘pcp‘data = Critical ∧ pre‘fifo‘notFull
∧ post = pre with

[
(fifo) := (# data := true,

notFull := false,
notEmpty := true #),

(pcp) := (# data := Sleeping #),
(turn) := (# data := false #)

]
We call this embedding strategy our ‘primitive’ embedding.

4.3 A Monadic Embedding of BSV in PVS

Our second PVS embedding uses monads to produce specifications that are syntacti-
cally similar to the BSV code they represent. Monads are constructs for conveniently
representing state in pure functional languages; a comprehensive introduction to the
use of monads in functional programming can be found in [Bir98]. Before getting
into the details of our embedding, let’s take a look at the result. This is our monadic
embedding of the rule p_critical:

p critical = rule (pcp‘read = Critical ∧ fifo‘notFull)
(fifo‘enq (true) �
pcp‘write (Sleeping) �
turn‘write (false))

In contrast to the primitive embedding, the complexity of methods and actions
is factored out into monads. This yields rule specifications that are syntactically
similar to the BSV rules that they represent.

Monadic rules can be expanded to expressions involving only record updates and
functions over record fields. p critical has type

[[
Peterson, Peterson

] → bool
]

and
is, in fact, extensionally equivalent to p critical primitive; this can be proven with
the proof strategies (apply-extensionality) and (grind).

8
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4.3.1 A State Monad in PVS
So, how can we use monads to express rules and methods without expanding their
full complexity in-place? Consider the action of a rule, which is composed of a
sequence of statements:

rule my_rule (rl_guard);
statement_1;
statement_2;
...

endrule

Statements can either be methods (e.g. “pcp._write(Critical);”) or let bindings
(e.g. “let x = pcp._read;”). We’ll defer our treatment of let expressions for the
moment and assume that all statements are methods.

The meaning we want to capture for the entire statement block is that an initial
state is transformed independently by the individual statements, and the changes
made by each are combined to give a new state. We can actually achieve the same
effect by applying the statements sequentially; we can apply the first statement to
get a partially updated state, then apply the second statement to update this new
state, and so on. This is possible because the statements are conflict free; no two
statements will update the same element of state, so we don’t need to worry about
later statements over-writing the updates made by earlier statements. However,
each statement needs access to the initial state, as earlier statements might update
elements of state that later statements need to read. This suggests that we specify
statements as instances of the type:

Monad: type =
[[
S, S

] → [
A, S

]]
‘S’ is the type of the module’s state; for rules in the Peterson module it’s the

‘Peterson’ type from § 4.1. ‘A’ is the type of some return value (when methods are
used a statements – for example “pcp._write(Critical);” – the return type must
be Null). Instances of Monad take two copies of the module state (representing the
initial state and a partially updated state) and return a value and a new instance
of the state, with any additional updates added to those of the partially updated
state.

4.3.2 Monad Transformers
We’ve seen that methods can be expressed as instances of the type Monad, which is
essentially a function to transform state. When a method is used as a statement in
a rule, it must operate on the state of the module containing the rule. For a rule in
the Peterson module, all rule statements must operate on the Peterson state; they
will have the type signature:

Monad
[
Peterson, Null

]
=

[[
Peterson, Peterson

]→ [
Null, Peterson

]]
Remember that when methods are used as statements, their return type must be
Null.

Consider again the monadic specification of rule p_critical form the Peterson
module:
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p critical = rule (pcp‘read = Critical ∧ fifo‘notFull)
(fifo‘enq (true) �
pcp‘write (Sleeping) �
turn‘write (false))

The three statements in the action (fifo‘enq (true), pcp‘write (Sleeping) and
turn‘write (false))) have type Monad

[
Peterson, Null

]
; that is to say, they must

operate on instances of the Peterson state, despite the fact that they only influence
individual registers or FIFOs within that state. We can achieve this by specifying
the generic register and FIFO methods as monads that act on types Reg

[
T

]
and

FIFOF1
[
T

]
respectively, and lifting them to monads that act on type Peterson with

monad transformers. For the register methods, we have:

read : Monad
[
Reg

[
T

]
, T

]
= λ (init, updates: Reg

[
T

]
): (init‘data, updates)

write (d: T ) : Monad
[
Reg

[
T

]
, Null

]
= λ (init, updates : Reg

[
T

]
) : (null, (# data := d #))

Transformer : type =
[
Monad

[
R, A

] → Monad
[
S, A

]]
transform (get R:

[
S → R

]
, update R:

[[
S, R

] → S
]
): Transformer

= λ (m: Monad
[
R, A

]
) (init, updates: S) :

let (data, new updates) = m (get R (init), get R (updates))
in (data, update R (updates, new updates))

A function of type Transformer takes a monad over state R and lifts it to become
a monad over state S. We can use the ‘transform’ function to produce a Transformer
that lifts the generic register functions (read and write) to operate on our Peterson
state. For example, we can do this for the pcp register:

pcpT : Transformer
[
Reg

[
PC

]
, Peterson, T

]
= transform (get pcp, update pcp)

where get pcp and update pcp access and update the pcp field of a Peterson record.
We can then define our lifted monads pcp‘read and pcp‘write:

pcp :
[
# read : Monad

[
Peterson, PC

]
,

write :
[
PC → Monad

[
Peterson, Null

]]
#

]
= (# read := pcpT

[
PC

]
(read),

write := λ (x: PC): pcpT
[
Null

]
(write (x)) #)

4.3.3 Monad Connectors
We can compose monadic statements to form statement blocks with the standard
monad connectors [Bir98], with bind (�=) adapted to accept a pair of input states:

�= (m: Monad
[
S,A

]
, k:

[
A → Monad

[
S, B

]]
): Monad

[
S, B

]
= λ (init, updates: S) : let (data, new updates) = m (init, updates)

in k (data) (init, new updates)

� (m: Monad
[
S, A

]
, n : Monad

[
S, B

]
) : Monad

[
S, B

]
= m�= λ (data : A) : n

10
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We can use the bind function to express ‘let’ statements. For example, the
statement block:

let x = pcp._read; pcq._write (x)

becomes:

pcp‘read �= λ x : pcq‘write (x)

or simply:

pcp‘read �= pcq‘write

We can use monads directly in the guard if we overload the standard boolean
and equality operators with functions over monads. For example:

∧ (m, n: Monad
[
S, bool

]
): Monad

[
S, bool

]
= λ (init, updates : S): let b1 = (m (init, updates))‘1,

b2 = (n (init, updates))‘1
in (b1 ∧ b2, updates)

When we have monadic specifications of a rule’s guard and body, we can form
a ‘rule’ that is a predicate over pairs of states with the function:

rule (guard: Monad
[
S, bool

]
) (action: Monad

[
S, Null

]
) (pre, post: S): bool =

(guard (pre, pre))‘1 ∧ post = (action (pre, pre))‘2

5 An Unsuccessful Monadic Embedding in the SAL
Language

We saw in section 4 that monads can be used to produce specifications that bear a
strong syntactic resemblance to the BSV code they represent, so that compilation
from BSV to the target language is reduced to translation of the concrete syntax.
If we could implement monads in the SAL language and model check monadic
specifications directly, there would be no need for us to use PVS. We tried to do
this, and were unfortunately unsuccessful.

SAL has a very expressive language that allowed us to implement our monadic
embedding strategy. To give you an idea of the concrete syntax, this is our embed-
ding of the p_critical rule:

p_critical = (pcp_read = Critical and fifo_notFull,
bool_bool!seq (fifo.enq (true),
PC_bool!seq (pcp.write (Sleeping),

turn.write (false))))

The rule is expressed as a pair of monads representing the rule’s guard and
action. SAL doesn’t support type inference or the definition of infix operators, so
our monadic specifications were a little less concise in SAL compared to PVS.

With rules expressed as monads, the transition relation reduced to ‘boilerplate’,
where the rules’ monads are applied to the current state:

TRANSITION
[

11
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...
[]

p_critical : p_critical.1 --> s’ = bool_!exec (p_critical.2, s)
[]

q_critical : q_critical.1 --> s’ = bool_!exec (q_critical.2, s)
[]

...
]

The various SAL back ends (deadlock checker, symbolic model-checker etc.)
would happily accept our monadic specifications, but struggled to reduce them to
BDD form.

6 Experimental Results: A BSV implementation of Pe-
terson’s Protocol

To demonstrate the practical applicability of our approach, we verified a BSV design
for a 2-process version of Peterson’s protocol [dM04]. We hand-embedded the BSV
design in SAL, verified the BSV-to-SAL translation with PVS and used the SAL
model-checker to establish deadlock freedom, mutual exclusion and liveness. The
BSV design amounts to just over 50 lines of code; extracts of the design and its
embeddings in SAL and PVS can be found in appendix A.

In our implementation of Peterson’s protocol, two processes simultaneously at-
tempt to enter a ‘critical mode’ that can only be entered ‘safely’ by one process at
a time. Each process has a program counter that can be in one of three modes:
Sleeping, Trying and Critical. A process starts in the Sleeping mode, then wakes up,
entering the Trying mode and attempts to enter the Critical mode. Each process
can read the program counter of the other, and will not enter Critical mode if the
other process is Critical. To ensure that the protocol is fair (a Trying process will
always eventually gain access to the Critical mode) there is a boolean ‘turn’ flag.
The state of the turn flag gives priority to one of the two processes; when a process
enters the Critical mode, it sets the turn flag to give the other process priority.

In our BSV design, the two program counters and the turn flag are all held in
registers. To add some complexity to the example, we also have a one element FIFO
that the processes write to when they are in the Critical mode.

We established deadlock freedom for our SAL embedding with the SAL deadlock
checker. We stated mutual exclusion and fairness with LTL assertions in SAL. The
mutual exclusion theorem states that the two processes will never be in critical
mode at the same time:

mutex: THEOREM
System |- G(NOT(pcp.data = Critical AND pcq.data = Critical))

The liveness theorem states that a Trying process will always (eventually) gain
access to the Critical mode:

liveness: THEOREM
System |- (G(F(pcp.data = Trying)) => G(F(pcp.data = Critical)))

12

54



Richards and Lester

and (G(F(pcq.data = Trying)) => G(F(pcq.data = Critical)))

These two theorems were proved by the SAL symbolic model checker in 0.1 and
0.2 seconds respectively.

To verify our BSV-to-SAL translation, we produced a primitive embedding and
a monadic embedding in PVS (extracts are given in appendix A) and proved them
equivalent. The proof required only two strategies; (apply-extensionality) fol-
lowed by (grind). For readers who aren’t familiar with proof in PVS, the entire
user input for this proof is M-x prove, TAB E, TAB G. The proof re-runs in 0.45
seconds.

7 Related Work

There has been one previous investigation into the mechanized verification of BSV
designs. In [SS08] Singh and Shulka present a translation schema from a subset of
BSV into Promela, the input language of the SPIN model-checker. For this subset,
they use SPIN to verify that rule scheduling is a valid refinement and demonstrate
the use of SPIN for verifying LTL assertions. The subset of BSV that they consider is
similar to ours, but does not address the instantiation of non-trivial nested modules,
methods with arbitrary side-effects and return values, or rule composition from
methods with arbitrary side-effects and return values. They translate directly to
Promela in a similar way to our ‘primitive’ SAL translation.

In the wider literature, our work sits somewhere between theorem prover em-
beddings of formal guarded action languages and model-checking of main-stream,
informal hardware and software design languages. There are a number of theorem-
prover embeddings of the well-known guarded action languages. In [Pau00], Paulson
embeds UNITY in the Isabelle [Pau94] higher order theorem prover. He uses a set-
based formalism in his embedding that allows efficient leverage of Isabelle’s proof
tactics., and demonstrates efficient verification of a UNITY specification of Peter-
son’s protocol. In [CDLM08], Chaudhuri et. al. present a proof environment for
TLA+ [Lam02]. As with Paulson, they use automated deduction to lessen the proof
burden. They first attempt to prove theorems with the Zenon first-order tableau
prover, and if this is unsuccessful, call the Isabelle higher order theorem prover. In
[SSA01] Stoy et. al. provide an embedding of TLA in PVS, along with a method of
proving temporal logic assertions about TLA state machines by deductive reasoning
about properties that are invariant for reachable states under the transition rela-
tion. They use this embedding to verify a TLA specification of Cachet, an adaptive
cache-coherence protocol.

Because languages like UNITY and TLA+ were developed for specification
rather than design, there is less emphasis on the use of abstraction for state-space
reduction, which will be necessary in a general-purpose verification tool for the BSV
language. There have been a number of investigations into the use of abstraction and
model-checking to verify programs expressed in hardware and software design lan-
guages. Some of the larger projects include the Java model-checking environments
Bandera [CDH+00] and Java PathFinder [VHBP00], and the C model-checkers
FeaVer [HS00] and SLAM [BR02]. All of these tools employ some combination
of static analysis, slicing, abstract interpretation and specialization to reduce the
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state space. The issue of semantic mismatch between object language and specifi-
cation language is tackled in different ways: Bandera simplifies Java bytecode and
translates the result to the input languages of SPIN and SMV; PathFinder provides
a custom model-checker for Java bytecode; FeaVer uses user-defined lookup tables
to translate C to Promela on a line-by-line basis; SLAM translates C programs to
equivalent boolean programs.

Monads have been used several times before to express state in theorem prover
specification languages. In [Fil03], Filliâtre uses monads to specify non-functional
programs in Coq. Monads are used in [KM02] for the specification of BDD algo-
rithms in Isabelle, and in [BKH+08] to express imperative programs in Isabelle.

8 Conclusions and Further Work

We have presented a strategy for embedding a subset of Bluespec SystemVerilog in
the SAL language, yielding SAL specifications that can be efficiently model-checked.
We also presented a technique for verifying the BSV-to-SAL translation with the
PVS theorem prover, by producing two embeddings in PVS, with one equivalent to
the BSV design and one equivalent to its SAL specification, modulo differences in
concrete syntax.

In further work, we plan to extend our approach with automated abstraction.
We also plan to extend the subset of BSV that can be embedded to include static
elaboration and nested modules with internal rules. We hope to embed the latter by
promoting nested rules to rules in the top-level module with monad transformers.

In related work that’s currently under consideration for publication elsewhere,
we have develped a technique for directly verifying instances of our monadic PVS
specifications. We hope to combine our work in PVS and SAL by producing a
translator that compiles BSV designs to both languages, giving users the benefits of
both tools. We intend to road-test our combined system by verifying a transaction
level BSV model of the communications network of the SpiNNaker super-computer
[FTB06], which we have previously specified and verified using Haskell [RL09]; ver-
ification of this system was the initial motivation for our work.
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A Extracts from a BSV Specification of Peterson’s Pro-
tocol and its Specifications in PVS and SAL

Fig. A.1 Extracts from a BSV Specification of Peterson’s Protocol

typedef enum {Sleeping, Trying, Critical} PC deriving (Bits, Eq);

Reg#(PC) pcp <- mkReg(Sleeping); Reg#(PC) pcq <- mkReg(Sleeping);
Reg#(Bool) turn <- mkReg(True); FIFOF#(Bool) fifo <- mkFIFOF1;

rule wake_p (pcp._read == Sleeping);
pcp._write (Trying);
turn._write (False);

endrule

rule wake_q (pcq._read == Sleeping);
pcq._write (Trying);
turn._write (True);

endrule

rule grant_p (pcp._read == Trying
&& (turn._read || pcq._read == Sleeping));

pcp._write (Critical);
endrule

rule grant_q (pcq._read == Trying
&& (!turn._read || pcp._read == Sleeping));

pcq._write (Critical);
endrule

rule p_critical (pcp._read == Critical && fifo.notFull);
fifo.enq (True);
pcp._write (Sleeping);
turn._write (False);

endrule

rule q_critical (pcq._read == Critical && fifo.notFull);
fifo.enq (False);
pcq._write (Sleeping);
turn._write (True);

endrule

rule read_fifo (fifo.notEmpty);
fifo.deq;

endrule
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Fig. A.2 Extracts from the PVS Embeddings

wake p = rule (pcp‘read = Sleeping)
(pcp‘write (Trying) �
turn‘write (false))

grant p = rule (pcp‘read = Trying ∧ (turn‘read ∨ pcq‘read = Sleeping))
(pcp‘write (Critical))

p critical = rule (pcp‘read = Critical ∧ fifo‘notFull)
(fifo‘enq (true) �
pcp‘write (Sleeping) �
turn‘write (false))

...

wake p primitive (pre, post) : bool
= pre‘pcp‘data = Sleeping
∧ post = pre with

[
(pcp) := (# data := Trying #),
(turn) := (# data := false #)

]
grant p primitive(pre, post): bool

= pre‘pcp‘data = Trying ∧ (pre‘turn‘data ∨ pre‘pcq‘data = Sleeping)
∧ post = pre with

[
(pcp) := (# data := Critical #)

]
p critical primitive (pre, post) : bool

= pre‘pcp‘data = Critical ∧ pre‘fifo‘notFull
∧ post = pre with

[
(fifo) := (# data := true,

notFull := false,
notEmpty := true #),

(pcp) := (# data := Sleeping #),
(turn) := (# data := false #)

]
...

transitions (pre, post) : bool = wake p (pre, post) ∨
grant p (pre, post) ∨
p critical (pre, post) ∨ ...

primitive transitions (pre,post) : bool = wake p primitive (pre, post) ∨
grant p primitive (pre, post) ∨
p critical primitive (pre, post) ∨ ...

transitions lem : lemma transitions = primitive transitions
% Proven with (apply-extensionality) and (grind)
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Fig. A.3 The Transition Relation of the SAL Embedding

TRANSITION
[ wake_p : pcp.data = Sleeping

--> pcp’ = (# data := Trying #);
turn’ = (# data := false #)

[]
wake_q : pcq.data = Sleeping

--> pcq’ = (# data := Trying #);
turn’ = (# data := true #)

[]
grant_p : pcp.data = Trying

and (turn.data or (pcq.data = Sleeping))
--> pcp’ = (# data := Critical #)

[]
grant_q : pcq.data = Trying

and (not turn.data or (pcp.data = Sleeping))
--> pcq’ = (# data := Critical #)

[]
p_critical : pcp.data = Critical and fifo.notFull

--> fifo’ = (# data := true,
notFull := false,
notEmpty := true #);

pcp’ = (# data := Sleeping #);
turn’ = (# data := false #)

[]
q_critical : pcq.data = Critical and fifo.notFull

--> fifo’ = (# data := true,
notFull := false,
notEmpty := true #);

pcq’ = (# data := Sleeping #);
turn’ = (# data := true #)

[]
read_fifo : fifo.notEmpty

--> fifo’ = (# data := fifo.data,
notFull := true,
notEmpty := false #)

] END;

18

60



Introducing Kind #: The Numeric Type System
of Bluespec SystemVerilog

Ravi Nanavati

December 8, 2009

Hardware designers routinely develop and use circuits that are polymorphic over
key hardware parameters and sizes. For example, a FIFO might be polymorphic
over the width of its elements or a register file might permit different numbers of
read and write ports. As aa consequence, any practical hardware design language
must have support for numeric polymorphism. Current, mainstream hardware de-
sign languages have weak numeric type systems that often lead to size-mismatch
bugs.

Bluespec SystemVerilog (BSV) is a high-level, statically typed hardware de-
sign language based on functional programming technology. BSV’s type system
is based on Haskell’s and includes Haskell-style typeclasses with several familiar
extensions (most notably multi-parameter typeclasses with functional dependen-
cies). To support numeric types, BSV adds a new primitive kind (#), whose
members are the natural numbers, and implements numeric type relations as
built-in numeric typeclasses (e.g. Add, Mul) with functional dependencies. BSV
also supports numeric type functions (e.g. TAdd, TMul). These type functions
were introduced as a way of preventing the propagation of some vacuous numeric
constraints, but they turn out to have several other uses (e.g. capturing numeric
constraints in syntactic contexts where typeclass constraints are not permitted).

The numeric type extensions described so far have had several important
successes. Most notably, they are the infrastructure underlying BSV’s Bits

typeclass—a typeclass that converts abstract types to and from canonical bit-
level representations. However, additional features are required to create a ro-
bust and usable numeric type system. One issue is that structural unification is
not an appropriate way to check the equality of numeric types. There are many
numeric equalities that cannot be proved structurally (e.g. (TMul 2 a)=(TAdd a

a) ). Even worse, there are situations where structural unification makes incor-
rect deductions. To resolve these problems, BSV’s numeric type system replaces
structural unification with an approach based on a numeric equality typeclass,
NumEq. Numeric equality constraints are gathered during ordinary unification
and converted into typeclass constraints. Either these typeclass constraints are
solved by BSV’s type-checker (and a numeric equality witness is created for fu-
ture stages of the compiler) or type checking fails with a suitable error message
about the problem.
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Unfortunately, improved numeric equality is not enough to resolve some of
the usability problems of the system described so far. One problem is handling
local non-syntactic numeric equalities when type-checking definitions with non-
trivial numeric constraints. Theoretically, it is possible to recursively deduce these
equalities using the given numeric constraints. In practice, however, this results
in exponential type-checking time in some important cases. Instead, it is more
practical to eliminate any determined numeric variables in a definition’s numeric
constraints. When this can be done, any local equalities become purely syntactic
and, therefore, easier to handle. In some cases, eliminating a determined numeric
type variable might require introducing a subtraction. Since BSV’s numeric types
are required to be non-negative, this is only permissible if the result of that
subtraction will be non-negative. To ensure this, BSV provides a second numeric
constraint typeclass, AtMost, that can be introduced to guard a subtraction.

The AtMost typeclass has several uses beyond enabling more aggressive elim-
ination of determined numeric variables. It can help improve numeric type-
checking error messages because reasoning involving AtMost more closely cor-
responds to the reasoning designers do when thinking about the numeric con-
straints related to their circuits. It is the natural place to capture greater-than
and less-than numeric reasoning involving numeric type functions and constants.
The AtMost typeclass is also a logical place to insert special-case numeric type-
checking extensions that handle transitive greater-than and less-than reasoning
(which is required to support some kinds of obvious numeric reasoning). Finally,
the AtMosta typeclass captures easily checked witnesses for all of these more
advanced kinds of numeric reasoning.

BSV has a complex numeric type system with several different moving parts.
This complexity is driven by the different kinds of numeric reasoning required for
correctness and usability. That is why we believe that most of the complexity in
BSV’s numeric type system is necessary. We also believe that this system is a
compelling demonstration of the power, flexibility and usability achievable with
language-level numeric types.
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Introduction

Bluespec:

a high-level hardware design language based
on guarded atomic actions; also called rules.

Refinement:

coarse-grained actions to fine-grained sets of
actions.

we will show a general mechanism to establish, formally, the
correctness of a refinement.

Michael Katelman and Nirav Dave Modular Refinement for Bluespec Hardware Designs
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Outline

demonstrate a common refinement paradigm;

formalize the correctness criterion;

describe the automated correctness checking procedure we’ve
implemented.

Michael Katelman and Nirav Dave Modular Refinement for Bluespec Hardware Designs

Part I: Example Refinement

Michael Katelman and Nirav Dave Modular Refinement for Bluespec Hardware Designs
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Example Refinement

x ≡ 17(41)

×4

+1
(squash)

assume “×4” is an expensive operation that we want to refine,
e.g., to allow for a faster clock in the synthesized device.

Michael Katelman and Nirav Dave Modular Refinement for Bluespec Hardware Designs

Example Refinement

×4

. . . gets refined to . . .

substituting {r1
2 , r

2
2 } for r2 as above, is the design correct? what

about r3 and the squash signal?

Michael Katelman and Nirav Dave Modular Refinement for Bluespec Hardware Designs
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Refinement Pattern

monolithic rule acting as a bottleneck in the synthesized
design;

split into multiple rules and add new state;

possibly update other rules, accounting for the split.

Michael Katelman and Nirav Dave Modular Refinement for Bluespec Hardware Designs

Part II: Definition of Correctness

Michael Katelman and Nirav Dave Modular Refinement for Bluespec Hardware Designs
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Bluespec (abstractly)

clearly, we need a formal definition of correctness that exposes
errors during a refinement. it should also be intuitively satisfying
and susceptible to automated proof.

to start, let us take an abstract view of what a Bluespec design is.

Definition

A Bluespec design is a pair

D = (2i , {r1, . . . , rn})

where i ∈ ω and for all 1 ≤ j ≤ n, rj : 2i ⇀ 2i .

Michael Katelman and Nirav Dave Modular Refinement for Bluespec Hardware Designs

T (D)

another way to view a Bluespec design is as a transition system
defined by its rules.

Definition

Let D = (2i , {r1, . . . , rn}) be a Bluespec design, we let

T (D) = (2i ,−→D⊆ 2i × 2i )

denote the transition system where (s, s ′) ∈−→D⇔ rj(s) = s ′ for
some rj ∈ D

the Bluespec compiler essentially implements hardware which is
cycle-consistent with −→+

D.

Michael Katelman and Nirav Dave Modular Refinement for Bluespec Hardware Designs

67



Definition of Correctness

of course . . . this is ultimately about refinement.

Definition

Let D = (2i , {r1, . . . , rn}) be a Bluespec design, a refinement of D
is any design

D′ = (2i+k , {r̄1, . . . , r1
l , . . . , r

m
l , . . . , r̄n})

where r̄j extends rj ∈ D so that

r̄j(s)/2i = rj(s/2i ) whenever rj(s) defined;

and rl is replaced by {r1
l , . . . , r

m
l }.

Michael Katelman and Nirav Dave Modular Refinement for Bluespec Hardware Designs

Definition of Correctness

Definition

Let D be a Bluespec design and D′ a refinement of D. We call D′

a correct refinement of D iff

−→D′ /2i ⊆−→=
D with respect to T (D), T (D′);

where −→=
D denotes the reflexive closure of −→D.

there is no single “right answer” when we consider what it means
for a refinement to be correct, but the above definition is a very
strong and natural correspondence.
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Part III: Checking Correctness Automatically

Michael Katelman and Nirav Dave Modular Refinement for Bluespec Hardware Designs

Checking Correctness Automatically

we now have a definition of what it means for a refinement to be
correct, but how can we actually check it?

first, we reduce to establishing a certain simulation

H : T (D′) −→ T (D);

second, we convert the simulation conditions to a symbolic
form suitable for SMT tools;

finally, an efficient SMT solver discharges the obligations
establishing the simulation.
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Simulations

Definition

Let A = (A,−→A⊆ A× A) and B = (B,−→B⊆ B × B) be
transition systems. A simulation

H : B −→ A

consists entirely of a relation H ⊆ B × A such that for all a, a′ ∈ A
and b ∈ B where (a, b) ∈ H and a −→A a′, there exists a b′ ∈ B
such that b −→B b′ and (a′, b′) ∈ H.
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Simulations

simulations are typically used in abstractions relating Kripke
structures.

(strict) simulations reflect satisfaction of ACTL* formulae

our goal is slightly different, so that we want to establish a
particular mapping as a simulation, namely

rem2i : 2i+k −→ 2i

where i , k are as above for designs D,D′.
a straightforward implication is that −→D′ /2i ⊆−→D
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Caveat

unfortunately, we don’t expect rem2i to define a simulation, in
general.

the issue is that the “extra” state bits, i ≤ b < k, can take on
values which are unreachable during normal operation.

. . . therefore, we need to do something more; specifically, constrain
the state space

for this we introduce the concept of transaction consistency .

Michael Katelman and Nirav Dave Modular Refinement for Bluespec Hardware Designs

Transaction Consistency

Definition

Let D′ be a refinement of D as given earlier. A state s ∈ 2i+k is
transaction consistent with respect to D,D′ if

s −→!
{r1

l ,...,rm
l } s ′ implies s/2i −→!

{rl} s ′/2i

where the refinement takes rl to {r1, . . . , rm
l } as above, and −→!

denotes a terminating sequence of transitions.

transaction consistency is essentially just a flushing condition.
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Bluespec to SMT

we have implemented a tool to convert arbitrary sequences of
Bluespec rules to logical formulae; specifically

r gets converted to π(~x), δ(~x , ~y)

where π characterizes the guard of r and δ its action, and ~x , ~y are
symbolic variables representing elements of 2i+k .

formulas are formatted for STP, a fast bit-vector solver
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Transaction Consistency to SMT

let n ∈ ω and ~x etc. be symbolic variables representing states of
2i+k ;

ζn(~x ,~x
′) def

= ~x0 = ~x ∧
∧
o<n

 ∨
1<p≤m

δrp
l
(~xo ,~xo+1)

∧
∧

1<p≤m

[
¬πrp

l
(~xn)

]
∧ ~x ′ = ~xn

where ~x0, . . . ,~xn are fresh variables. any satisfying assignment ρ

to the variables of ζn(~x ,~x
′) means that

ρ(~x) −→!
{r1

l ,...,rm
l } ρ(~x

′) in exactly n steps.
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Transaction Consistency to SMT

now, letting ~y etc. be symbolic variables representing states of 2i ;

ξn(~y , ~y
′) def

= ~y0 = ~y ∧
∧
o<n

[δrl (~yo , ~yo+1)] ∧ ¬πrl (~yn) ∧ ~y ′ = ~yn

where ~y0, . . . , ~yn are fresh variables. any satisfying assignment ρ

to the variables of ξn(~y , ~y
′) means that

ρ(~y) −→!
{rl} ρ(~y

′) in exactly n steps.
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Transaction Consistency to SMT

for a given state of 2i+k represented by a symbolic variable ~x, let

ϑ(~x)
def
=

∨
n<t′

[
ζn(~x ,~x

′)
] ∧

∨
n<t

[
ξn(~x/2i ,~x ′/2i )

]
any satisfying assignment ρ to the variables of ϑ(~x) means that
ρ(~x) is transaction consistent.
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Refinement Correctness to SMT

the rest is just a matter of converting diagrams

~x , ϑ(~x)
rem2i- ~x/2i

~x ′, ϑ(~x)

r ′ ∈ D′

? rem2i- ~x ′/2i

r ∈ D
?

...............

to SMT formulae.

Michael Katelman and Nirav Dave Modular Refinement for Bluespec Hardware Designs

Refinement Correctness to SMT

for a given r ′ ∈ D′, let ψr ′ denote

ψr ′
def
= δr ′(~x ,~x ′) ∧ ϑ(~x) ∧

∧
r∈D

[¬πr (~x/2i ) ∨ δr (~x/2i , ~y ′r )
] ⇒∨

r∈D

[
πr (~x/2i ) ∧ ~x ′/2i = ~y ′r

]

to check a given refinement for correctness, we need to establish
that ψr ′ is a tautology, for all r ′ ∈ D′; this can be done with STP
by negating ψr ′ and checking for non-satisfiability. note that we
also have to establish preservation of transaction consistency under
r ′, which can be done through a separate characterization of ¬ϑ.
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Summary

formalized a natural correctness condition for a common
refinement pattern used in Bluespec;

described an automated correctness checking procedure we’ve
implemented;

in the future we need to apply this technique to substantial
case studies and determine the capacity/bottlenecks of the
approach.
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A Proposal for a More Generic, More Accountable, Verilog ∗

Cherif Salama Walid Taha
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Despite its wide use in industry, Verilog provides
limited support for capturing (not to mention statically
checking) parametric circuit descriptions. The 2001
IEEE Verilog standard [6] introduces generative con-
structs that offer a concise way of describing circuit
families; however, these constructs are limited to loops
and conditionals. In addition, the new standard still
restricts module parameters to integer values. In this
work, we address these expressivity limitations, iden-
tifying the key extensions needed to overcome these
limitations, and showing that our previous work on stat-
ically checking parameterized Verilog modules can be
extended to these significant extensions

Verilog’s support for generative constructs provides
a natural way to capture the design of circuits with
linear structures. While many important circuits like
adders, multipliers, and counters fit this pattern, there
are other equally important circuits that have so far
required ad hoc program generation techniques to de-
scribe. Examples of such circuit patterns include tree
shaped circuits [4] and butterfly circuits [7]. Addition-
ally, even when they only feature linear structures,
generic composition patterns like the common rip-
ple pattern shown in Figure 1, cannot be expressed
in Verilog. These expressivity restrictions do not ex-
ist in functional hardware description languages like
Lava [2]. For example, the ripple pattern can be de-
scribed in Lava as follows:

ripple circ (cin, []) = ([], cin)

ripple circ (cin, a:as) = (b:bs, cout)

where

(b, carry) = circ (cin, a)

(bs, cout) = ripple circ (carry, as)

∗This work was supported by the National Science Foundation
(NSF) SoD award 0439017, and the Semiconductor Research Con-
sortium (SRC) Task ID: 1403.001 (Intel custom project).

Figure 1. The ripple pattern connecting n instances of
circ (adapted from [2])

Describing such patterns requires the use of recur-
sion, polymorphism, as well as the ability to parametrize
one circuit by other circuits. These points were made
in early works by Sheeran et al [2] and by O’Leary et
al [8], and these ideas have also been incorporated into
systems such as BlueSpec [3].

Our goal is to re-introduce these techniques into Ver-
ilog as extensions that can be implemented through
a pre-processor, that is, as syntactic sugar. In addi-
tion, and most importantly, we wish to demonstrate that
powerful static analyses are still possible with these ex-
tensions.

Achieving these goals requires: 1) extending the
syntax in a manner that is compatible with standard
Verilog, 2) defining the semantics for the new exten-
sions by a translation into Verilog, and 3) defining the
static analysis at the level of this extended source lan-
guage.

For syntax, we propose a syntax which would allow
expressing the above Lava example as follows:

module ripple

(output ’t1 [N:1] b, output ’t3 cout,

input ’t2 [N:1] a, input ’t3 cin);

parameter N = 4;

modparameter circ;

’t3 carry;
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if (N=0)

assign cout = cin;

else begin

circ c (b[1],carry,cin,a[1]);

ripple #(N-1) #M(circ) r

(b[N:2],cout,a[N:2],carry);

end

endmodule

The above generic module recursively describes the
ripple pattern. It is parametrized by an integer parame-
ter N and by the module circ. It also allows the ports
a and b to be arrays of arbitrary types. Although fairly
concise, the Verilog description is still longer than its
Lava counterpart primarily due to its explicit type dec-
larations (as opposed to Lava’s inferred types). This
price cannot be avoided since we aim to provide exten-
sions that fit naturally with the rest of Verilog, and that
existing Verilog users can easily adopt. The technical
novelty in our approach, therefore, is not in its syntax,
but in the powerful static analyses that it supports.

For the above code to be legal, the pre-processing
uses a source-to-source translation to define the fol-
lowing semantic extensions: 1) Recursive modules,
2) higher order modules, and 3) parametric polymor-
phism.

The semantics of the program are defined only when
instantiated with concrete values for both the integer
and module parameters at which point it is replaced
with the corresponding specialized module. The result-
ing module is parameter and recursion free.

For the static analysis, we extend type-checking of
circuit families [5], bus-width checking [9], and gate
count estimation [10]. Adding recursive modules is the
most challenging extension to handle because it in-
troduces the possibility of pre-processing divergence
which requires static termination analysis. Addition-
ally, recursive modules makes static resource estima-
tion harder because the amount of resources required
by a module may potentially be a recurrence relation.
We propose using PURRS [1], a recurrence relation
solver, and show that it can be used to obtain a closed
form estimate.

Using a variety of different examples of circuit fam-
ilies, we illustrate the expressivity gained by the lan-
guage extensions, and the feasibility of the static analy-
ses even in the presence of challenging circuit patterns.
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Contemporary Verification Methodology

simulation dominates industrial verification methodology.

constrained random testbench + compute cluster.

≈ 95% of bugs found through simulation (ITRS 2007/2008)

enormous engineering effort is required to build, adjust, and
maintain testbenches.

“. . . sources report that in current development projects
verification engineers outnumber designers, with this ratio
reaching two to one for the most complex designs.”

(ITRS 2007/2008)

Michael Katelman A High-level Language for Testing
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Solution Space

so, testing effort dictates verification time; how can the efficacy of
this testing regime be improved?

smart testing algorithms, e.g., Magellan, DeNibulator;

language-level improvements, e.g., concepts from OOP,
temporal assertions, and randoms all appear in SystemVerilog;

management tools for assessing completeness of testing effort,
e.g., coverage statistics.

Michael Katelman A High-level Language for Testing

A High-level Language for Testing

we’re proposing a testbench language with the following features:

embedded in a high-level declarative language;

simulation context of design-under-test is a first-class object;

simulation context is symbolic;

integration with very general, efficient bit-level SMT solver.

overarching idea is testing-as-meta-language, enabling verification
engineers to develop tailored, smart testing algorithms.

Michael Katelman A High-level Language for Testing
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Outline

explain what the language is;

demonstrate the utility of its novel features; and

show how it can be effectively implemented.

Michael Katelman A High-level Language for Testing

Part I: Defining the Testing Language

Michael Katelman A High-level Language for Testing
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Overarching Idea

testing-as-meta-language means considering testing as a program
that manipulates simulation contexts.

power to look into the future, past, and parallel universes; and

programmatically orchestrate multiple simulation contexts;

a SystemVerilog testbench, by contrast, exists at the same
level as the device-under-test;

Michael Katelman A High-level Language for Testing

Core API (in Haskell)

the “core” API must provide a small, versatile interface; first and
foremost, a mechanism for symbolic simulation:

eval :: Int -> VSI ()

VSI is a “state monad” encapsulating the simulation context;

it essentially denotes a function from context to context;

eval :: Int -> (Context -> Context)

Michael Katelman A High-level Language for Testing
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Core API

the core API also includes a set of functions for creating
device-level predicates and interacting with the SMT solver;

solve :: VlogExp -> VSI (Maybe Subst)
applyM :: Subst -> VSI ()
apply :: Subst -> VlogExp -> VlogExp
at :: VlogExp -> Int -> VSI VlogExp

Michael Katelman A High-level Language for Testing

Core API

also, for getting a list of all identifiers, all inputs, and all outputs;

listIds :: VSI [VlogId] -- all source ids
listIs :: VSI [VlogId] -- all top-level inputs
listOs :: VSI [VlogId] -- all top-level outputs

. . . and various other functions; at the moment, the API is in flux.

Michael Katelman A High-level Language for Testing
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Derived Operations

some “derived” functions we will be using in the examples below:

simulation with a partial substitution, leaving all undefined
values symbolic:

simulate :: Int -> [[(VlogId,VlogExp)]] -> VSI ()

completely random simulation on all inputs:

simulateRand :: Int -> VSI ()

resolve symbolic variables to concrete values so that the
expression is logical 1 during some cycle already simulated;

solveAnyCycle1 :: VlogExp -> VSI (Maybe (Subst,Int))

Michael Katelman A High-level Language for Testing

Formalization of the Language

briefly, let us mention a formalization of the language which we’ve
done using a logic called rewriting logic.

analogous to meta-languages used to control theorem provers.

we formalize the semantics of Verilog in rewriting logic. this
corresponds to the axioms being reasoned from in the analogy.

via reflection, rewriting logic also becomes the meta-language;
serving the function of, e.g., ML.

the core API corresponds to rules of inference in the analogy.

although our implementation is in Haskell, it is also possible to
implement the language directly in rewriting logic, e.g., using a
tool such as Maude.

Michael Katelman A High-level Language for Testing
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Part II: Demonstrating the Language

Michael Katelman A High-level Language for Testing

Example

module maze(i,clk,pos);
input i,clk;
output reg [2:0] pos ;

always @(posedge clk)
case (pos)

0 : pos <= i ? 3 : 1;
1 : pos <= i ? 2 : 0;
2 : pos <= i ? 7 : 3;
3 : pos <= i ? 4 : 2;
4 : pos <= i ? 4 : 5;
5 : pos <= i ? 6 : 7;
6 : pos <= 6; // ‘‘out’’
7 : pos <= 7; // ‘‘dead-end’’

endcase
endmodule

Michael Katelman A High-level Language for Testing
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Example

first, a simple example using symbolic simulation and employing an
automated solver;

test :: VSI ()
test = do

simulate 10 [[]]
Just (s,j) <- solveAnyCycle1 ("pos" ‘expEq‘ 6)
applyM s

. . . result is a concrete simulation with signal pos equal to 110 at
cycle j; found via symbolic simulation and a query to an SMT
solver.

Michael Katelman A High-level Language for Testing

Example

. . . solving the same problem, but with multiple simulation contexts
and complex control;

test = runContT (callCC $ \exit -> g [] exit) return
where g xs exit = do

p <- lift (valOfId "pos")
when (p == expConst 6) $ exit []
if p ‘elem‘ xs

then return xs
else do

ctxt <- lift get
lift (simulate 1 [[("i",exp1)]])
xs’ <- g (p:xs) exit
lift (put ctxt)
lift (simulate 1 [[("i",exp0)]])
g xs’ exit

Michael Katelman A High-level Language for Testing
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Example

. . . we can also combine the two, e.g., to get an effect similar to
Magellan.

strat :: VSI a -> Ctxt -> VSI (a,Ctxt)
-- run with context

trial = do
simulateRand 5
simulate 5 [[]]
solveAnyCycle1 ("pos" ‘expEq‘ 6)

test = do
ctxt <- get
xs <- mapM (strat trial) (repeat ctxt)
let Just (c,y) = find (isJust . snd) xs

Just (s,j) = y
put c ; applyM s

Michael Katelman A High-level Language for Testing

Input Class

we also provide a type-class so that a test can be built at a
high-level; consider

module counter(ctrl,amt,clk,cnt);
input [1:0] ctrl,amt;
input clk;
output reg [7:0] cnt;

always @(posedge clk)
case (ctrl)

0: cnt <= 0;
1: cnt <= cnt + amt;
2: cnt <= cnt - amt;
3: cnt <= cnt;

endcase
endmodule

Michael Katelman A High-level Language for Testing
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Input Class

we can define a data type for the module’s operations and make it
an instance of the appropriate type-class.

data CntrIntf = RST | INC Int | DEC Int | STOP

instance Input CntrIntf where
toDUT (RST ) = [[("ctrl",0)]]
toDUT (INC i) = [[("ctrl",1),("amt",i)]]
toDUT (DEC i) = [[("ctrl",2),("amt",i)]]
toDUT (STOP ) = [[("ctrl",3)]]

test = do
let xs = [RST,replicate 4 (INC 1), STOP]
simulate (length xs) xs

note that simulate’s type needs to become more general.

Michael Katelman A High-level Language for Testing

Part III: Implementation
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Overview

our implementation is called “vsi”: for verilog symbolic interpreter.

written entirely in Haskell and compiles with ghc;

handles both synthesizeable and behavioral code;

integrated with the STP, a solver for bit-vectors and arrays;

will be released under a common open-source license.

Michael Katelman A High-level Language for Testing

Contexts

after parsing and a canonicalization phase, all the data for
symbolic simulation is stored in a record:

data Ctxt = Ctxt {
srcSt :: Map (VlogId ) (VlogExp),
tmpSt :: Map (VlogId ) (VlogExp),
usrSt :: Map (VlogId ) (VlogExp),
hist :: Map (VlogId,Integer) (VlogExp), ...

the state is split into separate maps for (a) source ids, (b)
temporary ids, and (c) symbolic variables added by the user.

Michael Katelman A High-level Language for Testing
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Contexts

to support behavioral Verilog code, we maintain a set of process
queues; as opposed to, e.g., doing a synthesis step;

immQ :: [Process () ] ,
activeQ :: [Process () ] ,
inactiveQ :: [Process () ] ,
nonBlkQ :: [Process () ] ,
futureQ :: [Process Integer] ,
assigns :: Map VlogId [VlogStmt] ,
waitQ :: Map VlogId [Process VlogEvt],

. . . a process is essentially a guarded list of Verilog statements, plus
some extra data depending on context.

type (Process a) = (a,VlogExp,[VlogStmt]) -- (_,guard,_)

Michael Katelman A High-level Language for Testing

Simulation

as noted earlier, the top-level type denoting a simulation is a
“state monad” on contexts; specifically

type (VSI a) = StateT Ctxt IO a

. . . which is essentially equivalent to a function with type . . .

Ctxt -> IO (a,Ctxt)

IO is stuffed into the monad so that external calls to the SMT
solver can be made.

Michael Katelman A High-level Language for Testing
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Evaluation

events are processed as per the scheduling semantics defined by
the Verilog standard;

delta :: VSI Integer
delta = do

done <- epsilon
if not done
then delta
else tickClock

epsilon :: VSI Bool
epsilon = do

xs <- gets immQ
if (not . null) xs
then do

mapM evalP xs
return False

else do
xs <- gets activeQ
...
...

else return True

Michael Katelman A High-level Language for Testing

Evaluation

symbolic execution is cased on each statement construct:

evalP :: Process () -> VSI ()
evalP (_,guard,stmts) = do

modify (\ctxt -> ctxt{guard = guard})
evalS stmts

evalS :: [VlogStmt] -> VSI ()
evalS (IF’THEN’ELSE c s1 s0 : stmts) =

if is1 c
then evalS (s1:stmts)
else if is0 c

then evalS(s0:stmts)
else do

p1 <- procGuarded () ( c) (s1:stmts)
p2 <- procGuarded () (expNot c) (s0:stmts)
toActiveQ [p1,p2]

Michael Katelman A High-level Language for Testing
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Future Work

pin-down the language, or “core api”;

work on a set of substantial case studies;

continue to improve the performance of vsi;

functionality outside of testing, e.g., coverage statistics.

Michael Katelman A High-level Language for Testing

Summary

we’ve presented a high-level language for hardware testing that
promotes a paradigm of testing-as-meta-language and . . .

allows multiple, symbolic simulations to be orchestrated in
unison and

integrates formal algorithms in a general way; plus, we’ve

demonstrated its utility and feasibility of implementation.
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Clock Typing of n-Synchronous Programs

Louis Mandel Florence Plateau Marc Pouzet
Université Paris-Sud 11 and INRIA Saclay

Synchronous functional languages such as Lustre or Lucid Synchrone define a restricted class of Kahn
Process Networks which can be executed without buffers. This condition is ensured by a dedicated type
system, the clock calculus. Every stream is associated to a clock defining the instants where the stream is
present. Every expression must in turn verify a type constraint such as:

H ` e1 : ck1 | C1 H ` e2 : ck2 | C2

H ` e1 + e2 : ck3 | {ck1 === ck2 === ck3} ∪ C1 ∪ C2

which states that under the typing environment H, e1 + e2 has clock ck3 if e1 has clock ck1, e2 has clock ck2

and ck1 === ck2 === ck3. Constraints C1 and C2 are gathered during typing. Synchronous languages only
consider equality constraints. An expression is well typed if its actual clock equals its expected clock and
this means that no buffer will be necessary to store or delay it. n-Synchrony [1] relaxes these constraints by
allowing to compose streams whose clocks are not equal but can be synchronized through the introduction
of bounded buffers. It is obtained by extending the clock calculus with a subtyping rule which defines points
where a buffer should be inserted. If a stream x with clock ck can be consumed later on a clock ck′ using a
bounded buffer, we shall say that ck is a subtype of ck′ and we shall write ck <:<:<: ck′.

H ` e : ck | C

H ` buffer(e) : ck′ | {ck <:<:<: ck′} ∪ C

In term of sequence of values, buffer(e) is equivalent to e but it may delay its input using a bounded buffer.
The purpose of the extended clock calculus is to compute this bound. The designer can write buffer(e)
everywhere in the program as potential places where a buffer can be inserted. Then, the clock calculus
automatically computes bounds for these buffers.

n-Synchrony can be defined for any language of clocks provided we are able to test equality (ck1 === ck2),
subtyping (ck1 <:<:<: ck2) and size(ck1, ck2) to compute the buffer to synchronize ck1 and ck2. An interesting
case is the one where clocks are restricted to be ultimately periodic binary sequences for which all the above
properties are decidable.

Last year, we presented how to abstract clocks in order to check the subtyping relation in an efficient
manner [2]. This year, we shall present Lucy-n, the first implementation of a n-synchronous programming
language. In this talk, we will describe the language as an extension of Lustre. Then, we will explain its clock
calculus and the constraints resolution algorithm. Finally, we will illustrate it on a multimedia application.

References

[1] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet. N -Synchronous Kahn
Networks: a Relaxed Model of Synchrony for Real-Time Systems. In ACM International Conference on
Principles of Programming Languages, January 2006.

[2] A. Cohen, L. Mandel, F. Plateau, and M. Pouzet. Relaxing synchronous composition with clock abstrac-
tion. In Hardware Design using Functional languages, pages 35–52, York, UK, 2009.
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Kahn Process Networks [Gilles Kahn, 1974]

Q
oxi y

RP

Network of processes

• concurrent execution

• communication through buffers of sufficient size

If processes are deterministic then the network is deterministic

2

Programming Kahn Process Networks

Problem: computation of sufficient buffer sizes

• risk of data loss, of deadlock

• sometimes, need of infinite buffers

Goal:

• rejection of infinite buffers

• automatic sizing of buffers

Related work:

• Synchronous Data Flow and variants [Lee et al.] [Buck]

• scheduling [Carlier, Chretienne] [Baccelli, Cohen, Quadrat]

• Network Calculus [Cruz], Real-time Calculus [Thiele et al.]

3
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Dataflow Synchronous Model

Programming Kahn networks without buffers:

• programming languages: Lustre, Signal, Lucid Synchrone

• instantaneous consumption of produced data

• strong guaranties: bounded memory, absence of deadlocks

But: communication without buffers sometimes too restrictive

(e.g. multimedia applications)

4

n-Synchronous Model:
Programming Kahn Networks with Bounded Memory

Automatic methods at compile time to:

• accept to store data in buffers

• reject networks needing infinite memory

• compute activation paces of computations nodes

• compute sufficient buffers sizes

More flexibility with the same guaranties

5
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Overview

1. Lucy-n: a n-Synchronous Extension of Lustre

2. Periodic Clocks

3. Abstract Clocks

4. Conclusion and Future Work

6

Lucy-n: a n-Synchronous Extension of Lustre
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A Dataflow Synchronous Kernel Sampling

xx

c

when

c’

when

flow values clock

x 5 7 3 6 2 8 1 ... 1111111...

c 1 0 1 0 1 0 1 ...

x when c 5 3 2 1 ... 1010101...

c’ 1 0 1 1 ...

(x when c) when c’ 5 2 1 ... 1000101...

clock(x when c) = clock(x) on c

clock((x when c) when c’) = clock(x when c) on c’

on operator : 0.w1 on w2

def
= 0.(w1 on w2)

1.w1 on 1.w2

def
= 1.(w1 on w2)

1.w1 on 0.w2

def
= 0.(w1 on w2) 8

A Dataflow Synchronous Kernel Merging

x’

y’

c

m
e
r
g
e

flow value clock

x’ 5 3 2 1 ... 1010101...

y’ 2 5 1 ... 0101010...

c 1 0 1 0 1 0 1 ...

merge c x’ y’ 5 2 3 5 2 1 1 ... 1111111...

9
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A Dataflow Synchronous Kernel Scalar Operators

x

y
+

z

c

when
z’

c

when
y’

+
t

flow values clock

x 5 7 3 6 2 8 1 ... 111111...

y 3 2 1 5 4 1 7 ... 111111...

z = x + y 8 9 4 11 6 9 8 ... 111111...

c 1 0 1 0 1 0 1 ...

z’ = z when c 8 4 6 8 ... 101010...

y’ = y when c 3 1 4 7 ... 101010...

t = z’ + y’ 11 5 10 15 ... 101010...
10

A Dataflow Synchronous Kernel Scalar Operators

x

y
+

z

c

when
z’

y’
+

t

flow values clock

x 5 7 3 6 2 8 1 ... 111111...

y 3 2 1 5 4 1 7 ... 111111...

z = x + y 8 9 4 11 6 9 8 ... 111111...

c 1 0 1 0 1 0 1 ...

z’ = z when c 8 4 6 8 ... 101010...

y’ = y 3 2 1 5 4 1 7 ... 111111...

t = z’ + y’ rejected
11
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A Dataflow Synchronous Kernel Scalar Operators

x

y
+

z

c

when
z’

c’’

when
y’

+
t

flow values clock

x 5 7 3 6 2 8 1 ... 111111...

y 3 2 1 5 4 1 7 ... 111111...

z = x + y 8 9 4 11 6 9 8 ... 111111...

c 1 0 1 0 1 0 1 ...

z’ = z when c 8 4 6 8 ... 101010...

y’ = y when c’’ 2 5 1 ... 010101...

t = z’ + y’ rejected
12

n-Synchronous Extension: Bufferization Operator

x

y
+

z

c

when
z’

c’’

when
y’

+
t

flow values clock

z’ = z when c 7 4 6 8 ... 101010...

z’’ = buffer(z’) 7 4 6 ... 010101...

y’ = y when c’’ 2 5 1 ... 010101...

t = z’’ + y’ 9 9 7 ... 010101...

• adaptability relation ⇒ communication through a bounded buffer

• example : 101010... <: 010101...
13
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Adaptability Relation Cumulative Function

Instants

N
u
m

b
e
r

o
f

o
n
e
s

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

w1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1

Ow1
: cumulative function of the word w1

14

Adaptability Relation

Instants

N
u
m

b
e
r

o
f

o
n
e
s

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

Writings in the buffer

Readings in the buffer

buffer size size(w1, w2) = maxi∈N(Ow1
(i)−Ow2

(i))

adaptability w1 <: w2

def
⇔ ∃n ∈ N,∀i, 0 ≤ Ow1

(i)−Ow2
(i) ≤ n

synchronizability w1 ⊲⊳ w2

def
⇔ ∃b1, b2 ∈ Z,∀i, b1 ≤ Ow1

(i)−Ow2
(i) ≤ b2

precedence w1 � w2

def
⇔ ∀i, Ow1

(i) ≥ Ow2
(i)

15
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Typing

We want to guaranty at compile time that:

• clocks are equal when the communication is done without buffers

• clocks are adaptable when communication is done through buffers

It is done by typing techniques.

• The clock of a node is described by a type scheme:

σ ::= ∀α1, . . . , αn. (ck × ...× ck)→ (ck × ...× ck)

• The clock of a flow is described by a type:

ck ::= α | ck on ce | ck on not ce

• Equality of clocks is ensured by equality of types: ck1 === ck2

• Adaptability of clocks is ensured by subtyping: ck1 <:<:<: ck2

This type calculus is named clock calculus
16

Clock Calculus Clock Types

Equality and subtyping constraints are collected during typing:

C ::= {ck1 === ck2} ∪ C | {ck1 <:<:<: ck2} ∪ C | ∅

Examples of typing rules:

H ⊢ e1 : ck1 | C1 H ⊢ e2 : ck2 | C2

H ⊢ e1 + e2 : α | {ck1 === ck2 === α} ∪ C1 ∪ C2

H ⊢ e : ck | C

H ⊢ buffer(e) : α | {ck <:<:<: α} ∪ C

H ⊢ e : ck | C

H ⊢ e when ce : ck on ce | C
17
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Clock Calculus Example

+
z

c

when
z’ z’’

y’

c’’

when

+

plus plus

x

y
t

z
αz

x
αx

y

αy

z’
αz on c

z’’

y’

αy on c′′

z’ z’’
αz′′

t
αt

(αx × αy)→ αt such that C =















αx === αy === αz;

αy on c′′ === αz′′ === αt;

αz on c <:<:<: αz′′















; (α× α)→ α on c′′ such that C =
{

α on c <:<:<: α on c′′
}

18

Clock Calculus Type Inference

Constraints solving

• simple case:

α on w1 <:<:<: α on w2 ⇔ w1 <: w2

⇒ verification of adaptability relation on words w1 <: w2

• more difficult case:

α1 on w1 <:<:<: α2 on w2 ⇐















α1 ← α on c1

α2 ← α on c2

α on c1 on w1 <:<:<: α on c2 on w2

⇒ inference of paces c1 and c2 such that c1 on w1 <: c2 on w2

Buffer size computation

size(α on w1, α on w2) = size(w1, w2)

19
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Periodic Clocks

Ultimately Periodic Clocks

Example : 0(00111) = 0 00111 00111 ...

Adjustment

• increase of the prefix size: 0(00111) = 0 001(11 001)

• repetition of the periodic pattern: 0(00111) = 0(00111 00111 00111)

Verification of relations on clocks

• equality test: 0(00111 00111) = 0 00(111 00)

• synchronizability test: (11010) ⊲⊳ 0(00111)

• precedence test: (11010) � 0(00111)

• adaptability test: conjunction of synchronizability and precedence

Clock expressions

• computation of on : 0(00111) on (101) = 0(00101)

• computation of not : not 0(00111) = 1(11000)
21
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Paces Inference

Example of a system without prefix:

C1 =















α1 on not (100) <:<:<: α2 on (10)

α1 on (1) <:<:<: α3 on (01)

α3 on (011) on (10) <:<:<: α2 on (01)















1. Computation of clock expressions

C1 =















α1 on (011) <:<:<: α2 on (10)

α1 on (1) <:<:<: α3 on (01)

α3 on (010) <:<:<: α2 on (01)















2. Instantiation of type variables

α1 ← α on c1, α2 ← α on c2, α3 ← α on c3

C1 =















α on c1 on (011) <:<:<: α on c2 on (10)

α on c1 on (1) <:<:<: α on c3 on (01)

α on c3 on (010) <:<:<: α on c2 on (01)















22

Paces Inference

3. Transformation into an adaptability constraints system

A1 =















c1 on (011) <: c2 on (10)

c1 on (1) <: c3 on (01)

c3 on (010) <: c2 on (01)















4. Transformation into adjusted forms

A′

1
=















c1 on (011) <: c2 on (1010)

c1 on (111) <: c3 on (010101)

c3 on (010010) <: c2 on (0101)















23
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Paces Inference

5. Transformation into linear inequations on indexes of 1s in clock variables ci

source I_c3(1)1

I_c1(1)

1

I_c2(1)

1

I_c3(2)1 I_c3(3)1

I_c2(2)

0

I_c3(4)1 I_c3(5)1 I_c3(6)1

I_c2(4)

0

0

I_c1(2)1

0

I_c1(3)1

0

0

I_c2(3)

0

1 1 1

Summary:

• proved correct

• problem with prefixes

• may be expansive: the number of linear inequations is proportional to the

number of 1s in the system

24
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Abstract Clocks

Abstract Clocks: abs (w) = 〈b0, b1〉 (r)

Instants

N
u
m

b
e
r

o
f

o
n
e
s

161514131211109876543210

11

10

9
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5

4

3

2

1

0

Ow1

a1 =
˙

0, 4

5

¸ `

3

5

´

∆
1

∆
0

∆1 : r × i + b1

∆0 : r × i + b0

concr (〈b0, b1〉 (r)) =







w |
w[i] = 1 ⇒ Ow(i) ≤ ∆1(i)

w[i] = 0 ⇒ Ow(i) ≥ ∆0(i)
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Abstraction of Clocks

Instants

N
u
m

b
e
r

o
f

o
n
e
s

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

Ow2

a2 =
˙

− 9

5
,− 3

5

¸ `

3

5

´
∆

1

∆
0

Abstraction of ultimately periodic words:

abs (0(00111)) =

〈

−
9

5
,−

3

5

〉 (

3

5

)

27

Abstraction of Clocks

Abstraction of clock expressions:

abs(not w) = not∼ abs(w)

abs(ce1 on ce2) = abs(ce1) on
∼ abs(ce2)

Correctness property of operators:

not w ∈ concr(not∼ abs(w))

ce1 on ce2 ∈ concr(abs(ce1) on
∼ abs(ce2))

Definition of abstract operators:

not∼ 〈b0, b1〉 (r)
def
= 〈−b1,−b0〉 ( 1− r)

〈b01, b
1
1〉 (r1) on

∼ 〈b02, b
1
2〉 (r2)

def
=

〈b01 × r2 + b02, b
1
1 × r2 + b12〉 (r1 × r2) with b01 ≤ 0 and b02 ≤ 0

28
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Adaptability of Abstract Clocks ⊲⊳∼and �∼

Instants

N
u
m

b
e
r

o
f

o
n
e
s

161514131211109876543210

11

10

9

8

7

6
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4
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1

0

Ow1

Ow2

a1 =
˙

0, 4

5

¸ `

3

5

´

a2 =
˙

− 9

5
,− 3

5

¸ `

3

5

´

synchronizability
˙

b01, b
1

1

¸

(r1) ⊲⊳∼
˙

b02, b
1

2

¸

(r2)
def
⇔ r1 = r2

precedence
˙

b01, b
1

1

¸

(r) �∼
˙

b02, b
1

2

¸

(r)
def
⇔ b12 − b01 < 1

buffer size size∼(a1, a2) =
¨

b11 − b02
˝

Properties: a1 ⊲⊳∼ a2 ⇒ ∀w1 ∈ concr (a1) , ∀w2 ∈ concr (a2) , w1 ⊲⊳ w2

a1 �
∼ a2 ⇒ ∀w1 ∈ concr (a1) , ∀w2 ∈ concr (a2) , w1 � w2

∀w1 ∈ concr (a1) , ∀w2 ∈ concr (a2) , size(w1, w2) ≤ size∼(a1, a2)
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Video Application

ds

sp

mg

720

480
SD

1920

1080

HD

1920

1080

HD

1920

1080

HD

1920

1080

HD

720

480
SD

Picture in Picture:

• takes two High Definition images as input

• downscales the first one to obtain a Small Definition image

• embeds the small image in the big one
30

108



Video Application

downscaler

incrust end

whenot

incrust end

m
e
r
g
e
α6 on hf on not first sd line on vf

small

α10 on incrust end

big

α10 on not incrust end

picture in picture end

o
α10

p1

α6

p2

α10

51 (* picture in picture *)

52 let clock incrust_end =

53 (0^(1920 * (1080 - 480)) {0^1200 1^720}^480)

54

55 let node picture_in_picture_end (p1, p2) = o where

56 rec small = buffer(downscaler p1)

57 and big = (p2 whenot incrust_end)

58 and o = merge incrust_end small big
31

Video Application

System to solve:

{α6 on hf on not first sd line on vf <:<:<: α10 on incrust end}

1. Adaptability constraints

α6 ← α on c6, α10 ← α on c10

{c6 on hf on not first sd line on vf <: c10 on incrust end}

2. Abstraction of constraints

{abs (c6) on
∼ abs (hf ) on∼ not∼ abs (first sd line) on∼ abs (vf )

<:∼ abs (c10) on
∼ abs (incrust end)}

i.e. {abs (c6) on
∼

〈

−720, 481

3

〉 (

1

6

)

<:∼ abs (c10) on
∼ 〈−192200, 0〉

(

1

6

)

}

3. System of linear inequations

4. Solution: c6 = 04315(1), c10 = (1)

picture in picture end :: ∀α. (α× α on 04315(1))→ α on 04315(1)
32
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Summary

delay buffer size

minimal result 1 920 (≈ 1 HD line) 191 970 (≈ 266.6 SD lines)

abstract result 4 315 (≈ 2 HD lines) 193 079 (≈ 268.1 SD lines)

• proved correct

• incomplete by nature

• handles systems with prefixes

• good performances: the number of linear inequations is proportional to the

number of adaptability constraints in the system

33

Conclusion and Future Work
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Conclusion

• n-synchronous model:

more flexible composition of nodes without loss of guaranties

• two clocks languages studied

• algorithm with abstraction:

efficient and working on non periodic clocks

• algorithms implemented in Lucy-n

• coq proofs

35

Future Work

• integer clocks

• paces inference on periodic clocks with prefixes

• buffers with limited size, strict buffers

• links with static scheduling in Latency Insensitive Design

[de Simone, Boucaron, Millo]

• code generation

36
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Synthesis of Data Parallel GPU Software into FPGA Hardware

Satnam Singh

Microsoft Research

This presentation describes an embedded domain specific language for expressing data 
parallel computations. The Accelerator library is embedded in C++ and also in C# and it 
can be used from other .NET languages such as F#. The library provides data-parallel 
arrays and data-parallel  operations which are designed to be applied to whole arrays 
rather  than individual  elements e.g.  transpose,  stride operations and shifts which are 
similar to stencil style computations.

The original target for this library was GPU code via a DirectX-based compilation flow; 
after that a target for x64 multi-core processes using SIMD instructions was developed. 
This  presentation  describes  a  new  target  for  this  library  which  supports  efficient 
compilation  to  Xilinx  FPGAs.  We  show  how  the  discipline  of  the  whole-array 
operations allows us to generate efficient address-generation hardware.
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Chalk: a language and tool for architecture

design and analysis

Wouter Swierstra Koen Claessen Carl Seger
Mary Sheeran Emily Shriver

January 20, 2010

Abstract

By virtue of Moore’s law, today’s hardware designs are extremely com-
plex. A modern microprocessor contains multiple cores (often heteroge-
nous), multiple levels of caches, complex high-speed interconnects and
is built using over a billion transistors. Designing a functionally correct
high-performance architecture of such a complex system is very challeng-
ing. However, as hardware migrates from air-conditioned computer rooms
to our pockets, a range of non-functional design aspects take on the same
urgency and importance as the functional correctness and performance
aspects. Current hardware and architecture description languages are
struggling to keep up with this burgeoning complexity. We see two possi-
ble ways forward: either bite the bullet and start trying to reason about
SystemC, as recently argued for by Vardi [15], or start again and try to
provide exactly the right abstractions in a much simpler setting. We have
chosen the latter approach, in a joint project that has been running since
Feb. 2009. This talk is very much a description of work in progress and
is aimed at stimulating discussion.

1 Introduction

Computer architecture design is a complex multi-faceted engineering task. Tra-
ditionally, the primary focus was on functional correctness and performance.
However, today other design parameters have emerged that are taking on the
same, or even greater, importance. For example, as a result of the proliferation
of mobile electronic devices, power consumption is now as important a design
consideration as raw performance. Of course, these design requirements are
often contradictory and require careful tradeoffs.

Architects must strike a balance between performance, power consumption,
cost, and many other non-functional design constraints. The exact repercussions
of early design decisions are not always clear: how will an additional cache
improve performance? How much additional power will the cache require? How
much will it cost? It is crucial to provide architects with tool support to make
such decisions.

1
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To partially address these problems, we are designing Chalk, a domain spe-
cific embedded language for computer architecture design. We are implementing
Chalk as a combinator library in the general purpose functional programming
language Haskell [14]. The design of Chalk has been driven by three key goals:

Simplicity The core combinators that Chalk provides are simple. Users do
not need to be familiar with advanced functional programming techniques
to grasp the core language design.

Abstraction Chalk exposes all of Haskell’s language features to computer
architects. Architects may capture common design patterns using poly-
morphism, higher-order functions, and algebraic data types.

Analysis Circuit descriptions in Chalk are executable. Furthermore, we pro-
vide several example non-standard interpretations of Chalk circuits. Cru-
cially, however, we enable users to define their own analyses of Chalk
circuits specific to any particular domain.

The pursuit of these goals has led to new insights. More specifically, this
paper makes the following research contributions:

• We have given a comparison of existing domain-specific embedded lan-
guages for hardware description (Section 2). Based on our observations,
we motivate the design of a deep embedding of a behavioural architec-
ture description language, addressing some of the weaknesses of previous
attempts (Section 3). We illustrate our design choice with an example
architecture taken from the literature (Section 4).

• A deep embedding enables us to define new behaviours, that is, non-
standard interpretations of our circuits. We present several example anal-
yses that can be formulated as such non-standard interpretations, includ-
ing the maximum delay/pipeline depth, circuit visualisation, and a simple
activity analysis.

• Finally, this paper presents a case study in applying the recent extensions
to the Glasgow Haskell Compiler (GHC), such as Generalised Algebraic
Data Types, may be used in the design of domain specific embedded lan-
guages.

2 Embedded hardware description languages

Our work on Chalk draws inspiration from two existing domain specific lan-
guages for hardware design: Lava [1, 4] and Hawk [10, 5, 8]. Both Lava and
Hawk are languages embedded in Haskell that were developed approximately
ten years ago. Despite these superficial similarities, Lava and Hawk are poles
apart. Before describing our work on Chalk we will give a brief overview of
both Lava and Hawk.

2
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2.1 Lava

Lava is a combinator library for gate-level descriptions of hardware circuits. The
core idea underlying Lava is to define a data type with separate constructors
for different hardware gates, for example:

data Gate c where
And :: c -> c -> Gate
Or :: c -> c -> Gate
Not :: c -> Gate
...

data Lava where
Circuit :: Ref (Gate Lava) -> Lava

Rather than represent gates as a straightforward inductive data type, there is
an additional level of indirection here. The Lava data type wraps every recursive
subgate in an additional Ref type constructor. This indirection is necessary to
observe sharing in our embedded language. Consider the following, somewhat
contrived, example:

silly x = or x x

If we generate hardware circuits from a gate-level description without this extra
indirection, using the silly function results in two copies of its argument circuit.
The programmer probably meant to generate a single copy of the function’s
argument, but duplicate the result of this circuit using a fan-out.

The situation is even worse in the presence of recursively defined circuits.
Any function traversing a recursively defined circuit may fail to terminate. Such
a function expects a finite circuit, but traversing the circuit repeatedly unfolds
the recursive definition, resulting in divergence.

To address this problem, Lava wraps all recursive subcircuits in a additional
Ref type. The interface for manipulating these references is:

type Ref a
ref :: a -> Ref a
deref :: Ref a -> a
unique :: Ref a -> Unique

Although the Ref type is kept abstract, it is implemented as a pair of a value
of type a, together with some unique identifier (generated using GHC’s library
Data.Unique). The creation of references is not a pure function. It uses GHC’s
primitive function unsafePerformIO to enable the presentation of a pure inter-
face to the user. The consequences of breaking purity have been discussed in
the literature [2]. Dereferencing, on the other hand, is entirely safe: it simply
discards the unique identifier. Similarly, the unique function projects out the
unique identifier from a reference. When we compare to values of type Ref a
for equality, we compare their unique identifiers and not the values.
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This is not the only way to make sharing observable. Earlier versions of
Lava used a state monad to generate unique names. Recent work by Gill [7]
gives a good overview of the different solutions that have been proposed to this
problem.

If we introduce smart constructors for individual gates that take care of the
reference creation, we can define a multiplexer between two bits as follows:

mux :: Lava -> Lava -> Lava -> Lava
mux c t e = or (and t c) (and e (not c))

The mux function is a bit-level if-than-else: if the signal c is true, it will return
the value of t; otherwise it will return the value of e. Here we have to describe
the behaviour of the multiplexer by defining its implementation in terms of
logical gates.

Lava defines a rich combinator library for composing circuits. Besides ob-
vious candidates such as sequential and parallel composition, Lava illustrates
how many complex circuit patterns such as butterfly circuits can be described
succinctly using recursion [3].

The embedding of Lava into Haskell is deep, that is, we have a Haskell
data type representing Lava’s abstract syntax tree. As a result, functions that
traverse the tree can compute different values of interest. For instance, we can
simulate circuits, compute input for automated theorem provers, or generate
VHDL descriptions.

Lava is a structural hardware description language. All circuits are imple-
mented from a handful of simple, primitive gates. It uses Haskell’s abstractions
to provide combinators for assembling circuit descriptions. When designing new
circuits, however, thinking at the gate-level can be too restrictive. The gate-
level design of a circuit may not be available until later on in the design process.
The fact that integers as well as bits can “flow” on Lava wires alleviates this
problem a little for some classes of circuits, but still one is anchored to a low
level of abstraction and this can be over-restrictive.

2.2 Hawk

In contrast to Lava, Hawk is a behavioural hardware description language. A
circuit’s behaviour is defined to be the (infinite) list of values that are produced
at consecutive clock cycles:

type Hawk a = [a]

Based on this simple design principle, there are several combinators that turn
out to be useful when defining Hawk circuits:

constant :: a -> Hawk a
constant x = x : constant x

lift :: (a -> b) -> Hawk a -> Hawk b
lift f (x : xs) = f x : lift f xs
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delay :: a -> Hawk a -> Hawk
delay x xs = x : xs

The definition of a multiplexer in Hawk is very different from the Lava defini-
tion we saw previously. One possible definition simply pattern matches on its
argument lists:

mux :: Hawk Bool -> Hawk a -> Hawk a -> Hawk a
mux (c:cs) (t:ts) (e:es) = x : mux cs ts es
where
x = if c then t else e

This definition uses Haskell’s if-then-else construct instead of describing a series
of gates that have the same behaviour. Furthermore, this definition is polymor-
phic – the two branches may be Hawk circuits of any type.

The real strength of Hawk is its ability to quickly give executable speci-
fications of complex architecture designs [10]. Having all of Haskell at your
disposal, including polymorphism and algebraic data types, can make complex
architecture descriptions surprisingly simple.

Hawk does have its drawbacks compared to Lava. Hawk is a shallow em-
bedding – in contrast to Lava, there is no Haskell representation of the abstract
syntax tree of Hawk circuits. As a result, the only thing you can do directly with
Hawk circuits is simulate them. In contrast to Lava, there is no immediate way
to generate hardware descriptions or analyse the circuits. (Note, however, that
initial studies on transforming and verifying Hawk descriptions have been per-
formed nonetheless [12, 11]. We hope to enable similar reasoning more directly
in our future work.)

3 Introducing Chalk

The previous section discussed how Lava is a deep embedding of a structural
hardware description language and Hawk is a shallow embedding of a behavioural
hardware description language. Chalk aims to combine the best of both worlds:
a deep embedding of a behavioural description language.

Chalk provides several combinators and types to write architecture descrip-
tions. This section outlines how to use these combinators by means of several
small examples. The next sections will discuss more substantial examples and
the underlying implementation of the library.

The simplest combinator is called pure. It has the following type:

pure :: a -> Circuit a

In other words, it turns any Haskell value into a (constant valued) circuit. A
circuit producing a value of type a has the Haskell type Circuit a. For example,
we may want to write the signal that is always False:
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zero :: Circuit Bool
zero = pure False

Similarly, if we want to describe a component that inverts a signal, we can also
use the pure function:

inverter :: Circuit (Bool -> Bool)
inverter = pure not

Here not is Haskell’s Boolean negation function. Note that these signals do not
need to be first-order – here we have a signal of type Bool -> Bool.

Now we may want to ‘connect’ the inverter and zero signals. There is a
second combinator, written using the infix operator <*>, that does just this:

<*> :: Circuit (a -> b) -> Circuit a -> Circuit b

You may want to think of this combinator as making function application ex-
plicit. Using this combinator we can wire together the inverter and zero signal
to get a signal that is always one

one :: Circuit Bool
one = inverter <*> zero

Using these two basic combinators, it is fairly straightforward to write more
complicated signal functions. For instance, the mux takes three input signals.
Based on its first input signal, it outputs one of its other arguments.

mux :: Circuit Bool -> Circuit a -> Circuit a -> Circuit a
mux cs ts es = pure cond <*> cs <*> ts <*> es
where
cond :: Bool -> a -> a -> a
cond c t e = if c then t else e

Besides the two primitive combinators we have seen so far, we also need some
notion of delay:

delay :: a -> Circuit a -> Circuit a

You can use the delay function to write recursive signal functions. For example,
you may want to repeatedly apply a function to some initial value:

iterator :: a -> Circuit (a -> a) -> Circuit a
iterator x h = delay x (h <*> iterator h x)

In the first clock cycle this will return x, in the second cycle it will return h(x),
in the third cycle it will return h (h(x)), and so forth.

Finally, you may want to organise circuits into a hierarchy. There is one last
combinator, component, that explicitly groups a circuit into one logical unit:

component :: String -> Circuit a -> Circuit a

The String argument gives some name to the component. It need not be
unique. As we will see, it can be useful to name subcircuits in order to make
the results of circuit analyses easier to understand.
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4 A simple microprocessor

Before describing the implementation of Chalk, we will present an example
architecture description. Hopefully this will illustrate that Chalk circuits have
the same ‘behavioural feel’ as those written in Hawk.

As a running example, we will take an example from the Hawk literature [10].
The Simple HAwk Microprocessor, or SHAM, only consists of an ALU and a
register file. There are four registers. The ALU can add, multiply, or increment
integers. We start our specification with the following data types:

data Reg = R0 | R1 | R2 | R3

data Cmd = ADD | MUL | INC

The Reg data type corresponds to the four registers, R0 through R3. The Cmd
data type describes the three ALU commands. Figure 1 gives a visualisation of
the SHAM architecture.

The definition of the ALU is extremely simple. Given a command and a
pair of integers, it computes the result of executing that command with those
integers as input:

alu :: Circuit Cmd -> Circuit (Int, Int) -> Circuit Int
alu cmds xys =
component "ALU" (pure interpret <*> cmds <*> xys)
where
interpret :: Cmd -> (Int, Int) -> Int
interpret ADD (x,y) = x + y
interpret MUL (x,y) = x * y
interpret INC (x,_) = x + 1

Note that by convention, INC increments the first integer, ignoring the second
integer.

The register file is slightly more complicated. The type of register file is:

regFile :: Circuit Reg -> Circuit Int
-> Circuit Reg -> Circuit Reg
-> Circuit (Int, Int)

The first two arguments contain write information: the register file should write
the value of the second argument to the register given by the first argument.
The regFile should return a pair of the integers stored in the registers specified
by the third and fourth argument respectively.

The register file is defined as follows:

regFile wr val rd1 rd2 =
component "RegisterFile" res
where
initRegs = (0,0,0,0)
rf :: Circuit ((Int, Int), RegState)
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rf = pure step <*> wr <*> val <*> rd1 <*> rd2
<*> delay initRegs regStates

(res, regStates) = (fmap fst rf, fmap snd rf)

type RegState = (Int, Int, Int, Int)

step :: Reg -> Int -> Reg -> Reg
-> RegState -> ((Int, Int), RegState)

step wr x rd1 rd2 regs = ((res1, res2), regs’)
where
regs’ = updateReg (wr,x) regs
res1 = lookupReg rd1 regs’
res2 = lookupReg rd2 regs’

updateReg :: (Reg,Int) -> RegState -> RegState
lookupReg :: Reg -> RegState -> Int

We initialize all the registers to 0. We define the register file using an
auxiliary circuit definition, rf. The rf circuit has the same arguments as the
register file, but also maintains the current state of the registers.

The bulk of the work is done by the step function which is given similar
arguments to those of regFile – only now we have an additional argument
of type RegState, representing the current state of the registers. It computes
the new state of the registers, reg’, that results from performing the required
update. The step function also looks up the two argument registers rd1 and rd2
in this newly computed register state. It returns the results of this read (res1
and res2), together with the new register state reg’. We need two auxiliary
definitions, updateReg and lookupReg, to complete the definition of the register
file. These definitions are both unremarkable and have been omitted.

Now we can assemble the ALU and register file into a complete micropro-
cessor. The microprocessor receives a sequence of register assignments, such as
R3 <- ADD R2 R1. It proceeds by looking up the values of the argument regis-
ters. The resulting integers are passed to the ALU; the result of the computation
is then written to the destination register. The output of the microprocessor is
a sequence of values and destination registers, corresponding to the assignments
made after every clock cycle.

With this in mind, we define the sham circuit as follows:

sham :: Circuit Cmd -> Circuit Reg
-> Circuit Reg -> Circuit Reg
-> (Circuit Reg, Circuit Int)

sham cmd dest arg1 arg1 = (dest’ , aluOutput’)
where
aluOutput = alu cmd aluInputs
aluInputs = regFile dest’ aluOutput’ arg1 arg2
dest’ = delay R0 dest
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Figure 1: The SHAM microprocessor

aluOutput’ = delay 0 aluOutput

The aluInputs are the result of consulting the register file. To prevent a zero-
delay loop between the register file and ALU, we explicitly delay the initial
input to the register file. The results from the register file are passed to the
ALU, together with the commands specified in the cmd signal, yielding the
ALU outputs. The assignments resulting from the ALU are passed back to the
register file, that is updated accordingly.

5 Implementation and analysis

The implementation of the Chalk primitives is very simple. We implement
the primitive combinators (delay, pure, component, and <*>) by defining the
following data types:

data CircuitF c a where
Pure :: a -> Circuit c a
App :: c (b -> a) -> c b -> Circuit c a
Delay :: a -> c a -> Circuit c a
Component :: String -> c a -> Circuit a

data Circuit a where
Circuit :: Ref (CircuitF Circuit a) -> Circuit a

Just as in Lava, we use references to make sharing observable.
The Chalk interface is applicative [13]. A functor is said to be applicative

if we can define instances of the following two classes:

class Functor f where
fmap :: (a -> b) -> (f a -> f b)
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class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

The applicative instance for our Circuit data type are entirely straightfor-
ward:

instance Applicative Circuit where
pure x = Circuit (ref (Pure x))
c1 <*> c2 = Circuit (ref (App c1 c2))

Note that much of Chalk’s interface is overloaded. In later sections, we will
show how to exploit this overloading to assign non-standard interpretations to
circuits.

It is worth mentioning that the instance definition that we have given above
does not satisfy the laws of applicative functors. For example, the following law
will not hold:

pure f <*> pure x = pure (f x)

The left-hand side is (roughly) equal to App (Pure f) (Pure x), while the
right-hand side is Pure (f x). We believe this is not real problem, provided
we do not pattern match on the structure of circuits explicitly during their
definition. Keeping this data type abstract when circuits are defined should
achieve just this.

Simulation Like in Hawk, we can still simulate our circuits, producing an
infinite list of values. The simulate function takes a signal function and returns
an infinite list corresponding to the values produced by the circuit at every clock
cycle.

simulate :: Circuit a -> [a]
simulate (Circuit c) = sim (deref c)
where
sim :: CircuitF Circuit a -> [a]
sim (Pure x) = repeat x
sim (App f x) = zipWith id (simulate f) (simulate x)
sim (Delay x xs) = x : simulate xs
sim (Component nm c) = simulate c

In the case of Pure x constructor, we construct the infinite list where every
element is equal to x. To handle application we simulate both the ‘function’
circuit and the ‘argument’ circuit, yielding an infinite list of functions and an
infinite list of arguments. We return the result of point-wise applying every
function to its corresponding argument. Simulating Delay x c adds x to the
head of the list obtained by simulating c. Finally, to simulate a component, we
ignore the String and simulate its underlying circuit.
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Readers already familiar with applicative functors may recognise the simulate
function as a type class morphism [6] – although in this instance perhaps an
applicative functor homomorphism is more accurate – mapping the Circuit
applicative functor into streams. The pure and <*> definitions of the Circuit
type are mapped to the corresponding pure and <*> definitions for infinite lists.

This is not the only such applicative functor homomorphism. For instance,
the applicative homomorphism from Chalk circuits to the identity applicative
functor computes the first value produced by a circuit:

first :: Circuit a -> a
first (Circuit c) = sim (deref c)
where
sim :: CircuitF Circuit a -> [a]
sim (Pure x) = x
sim (App f x) = (first f) (first x)
sim (Delay x xs) = x
sim (Component nm c) = first c

Pipeline depth In contrast to Hawk, we can now define non-standard in-
terpretations of our circuits. A simple example of such an interpretation is to
compute the maximum number of latches on all possible evaluation paths be-
tween the input and output of a circuit. This example is inspired by a similar
analysis by Luk [9].

To count the maximum number of latches, we traverse our Circuit data
type. As this data type may contain loops, we need to maintain a list of all the
nodes we have already visited during the traversal. Every time we encounter
a new node, we add it to the list of nodes we have visited. If we encounter a
node we have visited previously, we simple return 0. On the other hand, if we
encounter a new node, we continue our traversal.

delaySim :: Circuit a -> Int
delaySim c = evalState (sim c) []
where
sim :: Circuit a -> State [Unique] Int
sim (Circuit c) = do
visited <- get
if unique r ‘elem‘ visited
then return 0
else modify (r:) >>

step (deref r)
step :: CircuitF Circuit a -> State [Unique] Int
step (Pure x) = return 0
step (App f x) = liftM2 max (sim f) (sim x)
step (Delay x c) = fmap (1 +) (sim c)
step (Component nm c) = sim c
step (Input nm) = return 0
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The most important computation happens in the step function, where we pat-
tern match on the possible constructors of the CircuitF data type. A Pure
constructor has no delay. In the case of the App constructor, we take the maxi-
mum of the delay of the two subcircuits. In the branch for the Delay constructor,
we increment the maximum delay.

This can be easily generalised to any monoid. For example, we may want to
collect the unique identifiers of all the nodes along the critical path.

This is once again a homomorphism between applicative functors. To see
this, consider that every monoid is a phantom applicative functor [13]. The
delaySim function maps pure to 0 and <*> to max.

Activity analysis When estimating the power usage of a high-level architec-
ture, one of the key parameters is the switching frequency, the probability that
a signal will change from one clock cycle to the next. Using Chalk we can
define a simulation that measures just that.

Although we could simulate a circuit and inspect adjacent elements in the
stream of values, there is an alternative. Using the first function we saw
previously, we can delay an arbitrary circuit by a single clock cycle:

delayed :: Circuit a -> Circuit a
delayed c = delay (first c) c

To monitor the switching frequency, we simply compare the original circuit with
its delayed counterpart:

activity :: (a -> a -> b) -> Circuit a -> Circuit b
activity m c = pure m <*> delayed c <*> c

Here we have abstracted over the exact function that compares the values that
a circuit produces.

As a small example, we will show how to do a simple activity analysis on the
register file of the simple microprocessor defined in Section 4. The real work is
done in the definition of the rf circuit of type

Circuit ((Int, Int), RegState)

There are several metrics in which we could be interested. The simplest analysis
only measures if the signal has changed or not:

hasChanged :: Circuit Bool
hasChanged = activity (==) rf

This is much too coarse to be useful. A much better measure would count the
number of bits that has changed. To do so, we need to define the following
auxiliary function:

bitDiff :: Int -> Int -> Int
bitDiff x y = count (complement (xor (bit x) (bit y)))

12

126



The bitDiff function converts its two integer arguments to a 32-bit word. It
proceeds by using an xor and complement operation to compute a word whose
only non-zero entries correspond to changed bits. Finally, it counts the number
of one bits in the resulting word. By applying this function to each of the integers
returned by the rf circuit, we can get a much more refined activity analysis. Of
course, we could also choose to measure only changes in the registers, and not
take changes to the other signals into account, such as the integers that result
from looking up the values stored in the register file.

6 Design exploration

The implementation of the ALU in the microprocessor from Section 4 was en-
tirely straightforward. Other alternatives are certainly possible. In this section,
we show how to use Chalk to explore and evaluate different design alternatives.

Suppose we expect most numbers handled by the ALU to be reasonably
small. In that case, it might be worthwhile to define two different multipliers:
one that can only multiply small numbers and another that can multiply larger
numbers, but consumes more power. When is such a design preferable?

To make an informed estimate, we need to keep track of how often each
multiplier is used. One way to do so is by defining the following types:

data Ticked a = T {val :: a, cost :: Double}

type TCircuit a = Circuit (Ticked a)

Instead of just computing the values at every clock cycle, the TCircuit type
also computes an estimated cost for every cycle.

The central observation we now make is that the TCircuit type is still an
applicative functor. To see this, define the applicative instance for the Ticked
type and observe that applicative functors are closed under composition:

instance Functor Ticked where
fmap f (T x cost) = T (f x) cost

instance Applicative Ticked where
pure x = T x 0.0
(T f c1) <*> (T x c2) = T (f x) (c1 + c2)

We can now define a variation of the pure operator that introduces non-zero
costs:

costed :: Double -> a -> TSignal a
costed i x = pure (T x i)

Using these ingredients, we could define our new, clever multiplier as follows:
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multiplier :: TCircuit (Int, Int) -> TCircuit Int
multiplier xys =
mux (sizeTest xys) (cheapMul xys) (dearMul xys)

sizeTest :: TCircuit (Int, Int) -> TCircuit Bool
sizeTest xys = costed 0.1 (\(x,y) -> x < threshold &&

y < threshold) <*> xys

cheapMul, dearMul :: TCircuit (Int, Int) -> TCircuit Int
cheapmul xys = costed 0.2 (uncurry (*)) <*> xys
dearMul xys = costed 0.5 (uncurry (*)) <*> xys

Here we have chosen fixed constants for the cost of the multipliers and control
logic. This circuit now introduces a bit of control logic to decide which multiplier
to use. Depending on the argument values, the mux returns the result computed
by one of the two multipliers.

There is an error in this definition. The cost per clock cycle is constant:
regardless of which branch is chosen, the cost of both branches is still summed.
To solve this, we need to define a variation of the mux we have seen previously:

smartMux :: Circuit (Ticked Bool) -> Circuit (Ticked a)
-> Circuit (Ticked a) -> Circuit (Ticked a)
smartMux bs ts es = pure f <*> bs <*> ts <*> es
where
f :: Ticked Bool -> Ticked a -> Ticked a -> Ticked a
f (T True c) t e = T (tval t) (c + cost t)
f (T False c) t e = T (tval e) (c + cost e)

This version of the mux only sums the costs of the branches that are chosen. By
simulating a multiplier using this new multiplexer, we can evaluate the power
cost of this alternative design.

Discussion

Although we believe the design of Chalk is sound in principle, we believe we
can sharpen these ideas further with specific examples. In particular, we would
like to study how Chalk’s applicative interface can be used during the design
of more realistic architectures.
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