Quantitative Verification:
Correctness, Reliability and Beyond

Dave Parker
University of Birmingham

Google, October 2013



Outline

e Verification and model checking
* Quantitative verification
* Probabilistic model checking and PRISM

= Discrete time Markov chains
= Adding continuous-time...

— continuous-time Markov chains

= Adding nondeterminism...
— Markov decision processes

= Adding game theory...

— stochastic multi-player games




Verification

* Checking the correctness of (computerised) systems
using rigorous, mathematically-sound techniques

— in essence: proving that a piece of software, or hardware,
or a protocol behaves correctly

Toyota Prius Infusion pumps

Ariane 5, flight 501



Model checking

 Automated verification: model checking
— exhaustive construction/analysis of finite-state model

— correctness properties expressed in temporal logic

: : '
e Successful in practice

— e.g. Windows device driver development
— example property: “acquire/release

of spinlock always strictly alternate” | 7]
 Why it works (i?
— temporal logic: expressive, tractable
— fully automated, tools available A[ G (trigger—> X deploy) |

— not just verification, but falsification, i.e. bug hunting



Quantitative verification

Adds quantitative aspects (to models and properties)
— probability, time, costs, rewards, ...

Probability
— physical components can fail
— communication media are unreliable

— algorithms/protocols use randomisation
Time
— delays, time-outs, failure rates, ...

Costs & rewards

— energy consumption, resource usage, ...

— profit, incentive schemes, ...



Quantitative verification

* Correctness properties are quantitative

— “the probability of an airbag failing to deploy
within 0.02 seconds of being triggered is at most 0.001”

— “with probability 0.99, the packet arrives within 10 ms”

* Beyond correctness:
— reliability, timeliness, performance, efficiency, ...
— “the expected energy consumption of the sensor”
— “the expected number of FGF ligands after 20 minutes”




Probabilistic
model checking



Probabilistic model checking

e Construction and analysis of probabilistic models
— for example: discrete-time Markov chains (DTMCs)
— transitions labelled with probabilities
— from a description in a high-level modelling language

* Correctness properties expressed in o b o
probabilistic temporal logic, e.g. PCTL 0.5
— trigger = Pyy g9 [ F** deploy ]

— “the probability of the airbag
deploying within 2 time units of 7]
being triggered is at least 0.999”



Probabilistic model checking

Computation of "exact" results (e.g. probabilities)

— graph algorithms, linear equations, linear programming,
numerical fixed points, numerical approximations, ......

Combines numerical and exhaustive analysis

— results show system flaws, anomalies

Flexible and widely applicable

— many types of models, properties

— fully automated + tool support

Scalability and efficiency remains a challenge
— but many advances in efficient techniques



PRISM

PRISM: open source probabilistic model checker

— developed at Birmingham/Oxford University, since 1999
— wide range of probabilistic models, temporal logics

— modelling language, GUI, scalable/efficient techniques

Leading probabilistic verification tool
— research/teaching in 50+ institutions
— 34,000 downloads, 250 external PRISM-related papers

Case studies

— network protocols, security, biology, robotics, power
management, airbag system, cloud computing...

See: www.prismmodelchecker.org



Example: Bluetooth

* Device discovery between a pair of Bluetooth devices
— performance essential for this phase

freq:[CLKmu*k*
e Complex discovery process (CLKigg=CLK 55)
_ mod- 18]:mod 32
— two asynchronous 28-bit clocks

— pseudo-random hopping between 32 frequencies\

— random waiting scheme to avoid collisions ¢
— 17,179,869,184 initial configurations
* Probabilistic model checking (PRISM) ~ * 4%

— “probability discovery time exceeds 6s is always < 0.001”
— “worst-case expected discovery time is at most 5.17s”



Outline

Discrete time Markov chains

Adding continuous-time...
— continuous-time Markov chains

Adding nondeterminism...
— Markov decision processes

Adding game theory...

— stochastic multi-player games



Adding continuous time...



Adding continuous time...

Continuous-time Markov chains

— random (real-valued) transition delays
— delays are exponentially distributed

— e.g. failure rates, reaction times, ...

Failures/repairs in a
cluster of 3 workstations

0.

0.

0.

0.

1

8

6

4}

2




Adding continuous time...

Continuous-time Markov chains |
— random (real-valued) transition delays .
— delays are exponentially distributed

— e.g. failure rates, reaction times, ...

4K, K, i

Reactions between
proteins A, B & AB

K
A+ B _’<k_ AB
Ks 2
A—>»




Continuous-time Markov chains

* Properties (temporal logic CSL)
— S_p999 [ Up ] : "long-run probability of availability is >0.999"

— P_, [ down U**Y repair ] : "what is the probability that it
takes longer than 1 hour to recover from a server failure?"

— R*_, [ I7"] : "expected number of molecules of A at time T?"

* Applications

— performance evaluation
and reliability analysis

—v— full model/no PLC
=—no SHP2

— systems biology: “in-silico”
experiments to validate biologists’
models; later compared to lab results

0.4}




Example: DNA computing

 DNA Strand Displacement language (DSD)
— for designing DNA circuits [Cardelli, Phillips, et al.]

a Y

—_—
t

a xTytat

— reactions naturally modelled as CTMCs

* Analysis of a DNA transducer design —4No G

=@—With GC

— correctness: A [ G deadlock - all done |
design flaw (due to cross talk)
automatically detected

Expected time (s) [x 10°4]

— performance-based design decisions: |
with or without garbage collection? T mberstoptotcsagn



Adding nondeterminism...



Adding nondeterminism...

* Markov decision processes (MDPs)
— generalise DTMCs by adding nondeterminism

e Nondeterminism: unknown behaviour

— concurrency, abstraction, user input, control

e Strategies (or "policies"”, "adversaries")
— resolve nondeterminism based on current history



Markov decision processes

 Two (dual) problems:

e 1. Verification

— quantify over all possible
strategies (i.e. worst-case)

— P_, 0. [ Ferr]: “the probability of error is always < 0.01”

— applications: randomised communication protocols,
randomised distributed algorithms, security, ...

e 2. Strategy synthesis

— P_yo. [ Ferr]:"does there exist a strategy for which the
probability of an error occurring is < 0.01?”

— applications: robotics, power management, security, ...



Example: Power management

 Dynamic power management controllers
— for an IBM TravelStar VP disk drive

— switch between power modes: active/idle/idlelp/stby/sleep
— PRISM model of power manager, disk request queue, etc.

* Build controllers that
W
L : Y
— minimise energy consumption, ‘\‘&x“}&}\\\\\\\\\\
subject to constraints on e.g.  iww N

3
21500

— (i) probability that a request
waits more than K steps

— (ii) expected number of R R [
lost disk requests



Adding game theory...



Adding game theory...

e Stochastic multi-player games
— states controlled by players
— players choose actions in states
— strategies for each player

e Key ideas
— models competitive and/or
collaborative behaviour

— automated methods essential

to reason about complex player
strategies, and interaction with probabilities




Stochastic multi-player games

* Property specifications (temporal logic rPATL)

— ({1,2})) Py o [ FF*>done | : "can nodes 1 and 2 collaborate
so that the probability of the protocol terminating within
45 seconds is at least 0.95, whatever nodes 3 and 4 do?"

* Model checking

— zero sum properties: analysis reduces to 2-player game
— PRISM-games: www.prismmodelchecker.org/games

* Applications
— controller synthesis (controller vs. environment),
security (system vs. attacker), distributed algorithmes, ...



Example: Energy management

* Energy management protocol for Microgrid
— Microgrid: local energy management

— randomised demand management protocol

— random back-off when demand is high

* Original analysis [Hildmann/Saffre'11]
— protocol increases "value" for clients

— simulation-based, clients are honest

e Stochastic multi-player game model

— clients can cheat (and cooperate)



Example: Energy management

* Exposes protocol weakness < We propose a simple

— incentive for clients fix (and verify it)

to act selfishly — clients can be punished

Value per client Value per client, with fix
20 20 -
- All follow alg. —
_____ All follow alg.
- No use of alg. =
c = _ =
D 15 —_ o 15 L.
5 1 5 DeV|_at|on_s of
@ Deviations of |:> 5 varying size
Q o o
Py varying size py
= S
® 10 = -
g c>0 10
5 T T T T T T 1 5 T
1 2 3 4 5 6 7 8 1 2

Number of clients Number of clients



Conclusions

* Quantitative verification
— probabilistic model checking & PRISM
— formal methods to build/analyse probabilistic models
— temporal logics for correctness, reliability, performance, ...
— exact results, combines numerical + exhaustive analysis
— flexible approach, wide range of applications

* Key challenges
— scalability + efficiency: state space explosion
— richer models: continuous space, hybrid systems, ...
— user friendly languages for model/property specification



